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Abstract: Mathematician tried to improve the existing methods by generating new methods being able to increase the 

preciseness of results. 

This paper introduces a new heuristic method for global optimization. The method utilizes an attraction –repulsion 

mechanism to move the sample points towards the optimality. The method is in fact a kind of modification of the  

so-called Electromagnetic method, but it is more flexible than Electromagnetic. The proposed scheme can be used either 

as a uniqe approach or as an accompanying procedure for other methods.  

The used mechanism, included, a combination methods of electromagnetic like (EM) heuristic algorithm, with  

attraction- repulsion force, to move the sample point from feasible region toward optimization, then with using the 

Nelder-Mead heuristic searching method, the former points in (EM), converges toward global optimization. 

Keywords: Global optimization, Nelder Mead simplex method, Feasible region, Test functions, Electromagnetic method, Elec-

tro weak method. 

1. INTRODUCTION  

To days applications of important mathematical methods 
in different disciplines developed more than before .Then for 
achieving optimization new approaches developed. Including 
to these, one should mentioned the global optimization that 
could be used for solving problems in mathematics, physics, 
chemistry, industry and economics. 

In most problems in the fields, the special features as dis-
continuity, non differentiability and or non reparability of the 
functions etc... introduced which, formal mathematical proc-
ess with key roles as gradient process is not usable especially 
with lots of variable in hand and the uncertainty of the 
achievements [1-6]. 

To reduce all these, and reaching better response with 
high accuracy we devised an applicable method for global 
optimization, named Electro Weak (EW) method. 

The privileges of the method are as bellow: 

1. Increasing the calculations accuracy.  

2. Increasing the convergence acceleration (shortening 
the calculation time). 

3. Vast applicability of the method [7, 8] for using the 
global optimization. 

2. ELECTRO WEAK (EW) HEURISTIC METHOD-

OLOGY 

 Based on this new method we reach to the following 
problem: 
 

*Address correspondence to this author at the School of Sciences, Physics 

Dept, Islamic Azad University, Mashhad Branch, Iran;  

Tel: +985118435000; Fax : +985118424020;  

E-mail: zahra_sh_emami@yahoo.com 

This work supported financially by research dean of the Islamic Azad  

University Mashhad branch (89243/301/4). 

minimize f (x) 

s. t. x  S 

 (1) 

It assumed that the following quantities are at hand: 

n: the problem dimension  

f(x): the objective function 

uk: upper limit in k
th

 dimension  

lk: lower limit in k
th

 dimension 

The EW method is heuristic and stochastic one because it 

starts from feasible region with stochastic sampling tend to 

global optimization of the problem (see [9, 10] for more de-

tails). In fact the EW global optimization method is a combi-

nation of two Nelder- Mead (NM) and Electromagnetism-

like Mechanism (EM) plus a new excess trend, that leads to 

obtain global optimization including rather all test problem 

with high accuracy and fast convergence of the achieve-

ments. 

Here we introduce (NM) briefly where for more details 
one can see for example [11-13]. 

The Nelder -Mead simplex algorithm is the most widely 
used direct search method for solving the unconstrained op-
timization problem. 

min f (x) (2) 

where f: R
n
 R is called the objective function and n the 

dimension. A simplex is a geometric figure in n dimensions 

that is the convex hull of n + 1 vertices.We denote a simplex 

with vertices  x1, x2, x3, …, xn+1 by . 
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The Nelder-Mead method iteratively generates a se-
quence of simplices to approximate an optimal point of (2). 
At each iteration the vertices of the simplex are ordered ac-
cording to the objective function values. 

f (x1)  f (x2) · · · f (xn+1) (3) 

The algorithm uses four possible operations: reflection, 
expansion, contraction, and shrink, each being associated 
with a scalar parameter:  (reflection),  (expansion),  (con-
traction), and  (shrink). The values of these parameters sat-
isfy >0,  >1, 0<  <1, and 0 <  <1. In the standard imple-
mentation of the Nelder -Mead method for example, the pa-
rameters are chosen to be { , , , } = {1, 2, 1/2, 1/2}.  

Let x be the centroid of the n best vertices.  

Now one may outlines the Nelder-Mead method as fol-
lows (see [11, 12]): 

In one iteration of the Nelder-Mead algorithm : 

1. Sort. Evaluate f at the n+1 vertices of  and sort the 
vertices so that (3) holds. 

2. Reflection. Compute the reflection point xr from xr =x0 
+ (x  xn+1). 

Evaluate fr = f (xr ). If f1  fr <fn, replace xn+1 with xr . 

3. Expansion. If fr <f1 then compute the expansion point 
xe from 

xe = .x + (xr  .x) and evaluate fe = f (xe). If fe <fr , re-
place xn+1 with xe; otherwise replace xn+1 with xr . 

4. Outside Contraction. If fn  fr <fn+1, compute the out-
side contraction point xoc = .x+  (xr  .x) and evaluate foc = f 
(xoc). If foc  fr , replace xn+1 with xoc ; otherwise go to step 6. 

5. Inside Contraction. If fr  fn+1, compute the inside con-
traction point xic from xic = .x   (xr  .x) and evaluate fic = f 
(xic). If fic < fn+1, replace xn+1 with xic; otherwise, go to step 6. 

6. Shrink. For 2  i  n+1, define xi = x1 + (xi x1). 

Although lacking a satisfactory convergence theory, the 

Nelder-Mead method generally performs well for solving 

small dimensional real life problems and continuously re-

mains as one of the most popular direct search methods [11, 
12]. 

It has been observed by many researchers, however, that 

the Nelder-Mead method can become very inefficient for 

large dimensional problems (see, for example, [12] and its 
references). 

Now the general scheme for (EM) is discussed briefly. In 

fact (EM) consists of four phases. These are initialization of 

the algorithm, calculation of the total force exerted on each 

point (as a particle), movement along the direction of the 

force, and application of the neighborhood search to exploit 

the local minima of the function f(x). The general scheme 
can be seen in [9]. 

As mentioned earlier, the (EW) method is a combination 
of two so-called methods.  

To do so, first with using heuristic (EM) method and ran-
dom sampling the best point (xbest) will identified, this in turn 

will be the primary point of (NM) method. The lower and 
upper limits of the variable are defined with lk and uk respec-
tively. 

The initial simplex selection would lead to global opti-
mized responses continuously. The Algorithm (1) shows 
this. 

In this algorithm we have: 

m: number of sample points. 

MAXITER: maximum algorithm iteration.  

LSITER: minimum algorithm iteration in global search.  

: Local search parameter so as 

[0,1]  

Algorithm (1) 

 

 

 

 

 

 

 

 

 

 

 

The initial sub program for sampling m random point 
from feasible region is used from hyper cube. 

It assumed that sample points distributed between upper 

and lower bound homogeneously. This program will ended 

when m points together with the xbest have the best objective 

function. The goal of the sub program in other hand is col-

lecting local information from the point xi. LSITER and  

parameters of the program for iteration and neighboring 

search coefficient. It should be mentioned that each iteration 

acts as the foot step for progressing the sample points to-
wards global optimization. 

Obviously, the displacement of the footsteps in turn 

would led to the movement extension towards the optimiza-

tion direction of the problem. That is in each iteration each 

selected point replaces, the neighboring i-th point until the 

best point xbest of the point reached. Noticeably the (EM) and 

(EW) approach are based upon, attraction- repulsion mecha-

nism of electromagnetic- like relationship so that each sam-

ple point assumed as though there is a free charged particle 
pretending the goal function there.  

If i-th point charge is qi , then from electrostatic we have 
[9, 10]; 
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qi = exp ( n)
f (xi) f (xbest )

( f (xk ) f (xbest )
k=1

m

i=1....m

 (4) 

It is noticeable that in heuristic (EW) method, the electric 
charge for each point will changes in every iteration. The 
point with best objective function have the most favorite 
electric charge. Calculation of the electric charge of each 
point in above mentioned manner, present the moving direc-
tion towards optimization in the next iteration. Total force 
applying to the i-th point is Fi as the superposition of (EM) 
long range force and short range of (EW) force. The com-
parison criteria for this is:  

 (5) 

For (EW) force the criteria is: xi x j d
5  where the norm 

is Euclidian, 

For Fi we have: 

Fi =

(x j xi )
qiqj e

xj xi

xi x j
2

f (x j ) < f (xi )
j=1
j i

m

(xi x j )
qiqj e

xj xi

x j xi
2

f (x j ) f (xi )
j=1
j i

m  (6) 

Here  is a parameter comprised the optimization of test 
function, selected with best fitted condition of Fi that in our 
(EW) method is about 3.25. It should be mentioned that for 
long range points the Fi force obtain refer to the following 
electromagnetic relationship as; 

Fi =

(x j xi )
qiqj

xi x j
2

f (x j ) < f (xi )
j=1
j i

m

(xi x j )
qiqj

x j xi
2

f (x j ) f (xi )
j=1
j i

m
i = 1,2.....m

 (7) 

With total force Fi the i-th point moves randomly in the 
force direction or: 

xi xi +
Fi
Fi
(RNG)i=1,2......m  (8) 

The xi moves toward upper bound (uk) or lower bound 
(lk). Apparently the xbest doesn’t move but instead translates 
to next iteration. The xbest in sub program (NM) method is 
the initial simplex for global optimization. The input pa-
rameter for test function will be started with N = 2,  
m = 40, MAXITER = 60, LSITER = 40, and =0.001.  

3. NUMERICAL RESULTS 

In this section we report some numerical experiments on 
the (EW) method.  

Some test functions from Dixon and Szego (see [3]) are 
considered. In Appendix these test functions are shown. All 
the experiments were done on a Dell XPS 1330 laptop com-
puter. 

First we used only electromagnetic like heuristic algo-
rithm and using the forces by (9), where the output results 
are called (EW1). In fact, 

Fi

q ari qj e i,j

4 °
=

rjj
2

 (9) 

where  (norm is Euclidean), and assumed : 

° = 8.9 x 10
-12 

The (EW1) program achievement is shown in Table 1.  

To reduce the computation errors, we used  = 1  in (9), 
and one can see the results in Table 2. 

 Since we faced long manipulations, we used electro-
magnetic like and electro weak heuristic methods simultane-
ously (EW2), and the results on the test functions are shown 
in Table 3, where we assumed ° = 1.. In Table 4, again we 
found the results where assumed ° = 8.9 x 10

-12
. 

Now, we combine electromagnetic like heuristic algo-
rithm; with attraction- repulsion force, with the Nelder-Mead  

Table 1. (EW 1) Program with ° = 8.9 x 10
-12

 

f(x)(Optimized) f(x)(best) X best Test Function

0.0000 0.0096 (1.0263,0.0145) Complex

0.0000 1.7696 (1.3157,2.8363) Davis

463.0000 463.7006 (1.8367,-6.0240) E1

0.0000 1.5517 (-10.2530,9.3149 ) Griewank

0.0000 1.3293 (-3.6231,-3.2753) Himmelblau

-2.0000 -1.5010 (0.3351,1.3080) Rastrigin

0.0000 0.1518 (1.1357,6.8603) Rosenbrock

-38.85 -38.7036 (12.1000,5.7234) Spiky

0.0000 0.0317 (-0.0995,-0.0411) Stenger
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Table 2. (EW 1) Program with ° = 1 

f(x)(Optimized) f(x)(best) xbest (best) Test Function

0.0000 0.0028 (1.0024,0.0173) Complex

0.0000 3.5312 (-0.2468,3.4309) Davis

463.0000 463.7006 (1.8367,-6.0240) E1

0.0000 0.6731 (-0.6332,-9.3396) Griewank

0.0000 1.4852 (2.9499,2.2954) Himmelblau

-2.0000 -0.9649 (0.7461,0.3401) Rastrigin

0.0000 0.4709 (0.7099,0.4418) Rosenbrock

-38.85 -38.5968 (12.1000,5.6268) Spiky

0.0000 0.1258 (0.2677,0.0509) Stenger

Table 3. (EW 2) Program with ° = 1 

f(x)(Optimized) f(x)(Best) xbest (Best) Test Function

0.0000 0.0271 (-0.5532,0.8591) Complex

0.0000 2.3160 (2.7616,-2.7103) Davis

463.0000 463.0800 (0.7481,-5.8716) E1

0.0000 0.2489 (-2.7462,3.9470) Griewank

0.0000 0.1805 (-2.7727,3.1906) Himmelblau

-2.0000 -1.4967 (0.3600,-0.3081) Rastrigin

0.0000 0.2738 (1.1138,1.2916) Rosenbrock

-38.85 -38.7328 (12.0995,5.7256) Spiky

0.0000 0.0835 (0.2310,0.0575) Stenger

Table 4. (EW 2) Program with ° = 8.9 x 10
-12

 

f(x)(Optimized) f(x)(Best) xbest (Best) Test Function

0.0000 0.0057 (1.0241,0.0050) Complex

0.0000 0.7134 (-0.2028,0.2759) Davis

463.0000 463.7006 (1.0316,6.0579) E1

0.0000 0.2166 (2.7535,4.6074) Griewank

0.0000 0.0735 (3.0482,1.9699) Himmelblau

-2.0000 -1.6448 (0.0408,0.0245) Rastrigin

0.0000 0.5237 (0.8845,0.8538) Rosenbrock

-38.85 38.6196 (12.1000,5.6261) Spiky

0.0000 0.0302 (-0.0965,-0.0056) Stenger

Table 5. Combinational Program (EW) for Test Function 

Program Iteration f(x)(Optimized) f(x)(best) xbest (best) Test Function 

50 0.0000 1.5530e-005 (-0.5010,0.8669) Complex 

129 0.0000 0.0000 (0,0) Davis 

50 463.0000 463.0000 (1.0013,-6.0041) E1 

45 0.0000 0.0000 (0,0) Griewank 

56 0.0000 1.2314e-005 (-2.8046,3.1310) Himmelblau 

51 -2.0000 -2.0000 (0,0) Rastrigin 

68 0.0000 1.0075e-005 (1.0009,1.0021) Rosenbrock 

50 0.0000 0.0000 (0,0) Stenger 
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heuristic searching method, the first algorithm moves the 
sample point from feasible region toward optimization, then 
with using the Nelder-Mead method, the former points in 
electromagnetic like algorithm , converges toward global 
optimization. We called the combined algorithm as (EW) 
and the results on test functions with this new method are 
shown in Table 5, and Table 6. 

First column in Table-6 shows the average evaluation of 

goldenstein price (GP) function obtained from mentioned 

above different methods, where with (EW) optimization 

method only with 60 iteration reached to optimization. This 

least iteration to reach optimization in comparison with other 

methods is the best privilege of the global heuristic optimiza-

tion method we called (EW) method. 

Privilege of the (EW) Heuristic Global Optimization 

1. Reduced time of optimization calculation. 

2. Reduced error of global optimization so as for most 
test functions the (EW) method lead to precise answer 
while the math error vanishes. 

3. The method converges very fast to the global optimi-
zation. 

4. The method is usable even for irregular objective 
functions that are non-differentiable in some points. 

4. CONCLUSION REMARKS 

The combination (EW) method devised and presented 
here is for global optimization bounded functions. 

The (EM) and (EW) methods are based upon electrostatic 
attraction and repulsion forces of charged particles. 

It is assumed that each charged point surrounded the 
global optimization region started to search global optimiza-
tion afterwards (NM) simplex is used to obtain best global 
optimization. 

This combinational method used to find global optimiza-
tion of test functions obtained from [3, 4] and [10] which 

show the accuracy of the method. The results presented satis-
factory achievements even for defined functions with fre-
quent local optimization, so as reaching to global optimiza-
tion completely efficient even if these are not differentiable 
functions.  

Noticeably for nonlinear and unbounded problems the re-
search should be continued.  

APPENDIX 

Here the used test functions are introduced. 

(i) Complex 

 

-2 < xi < 2 i = 1,2 

 

f (x*) = 0 

 

(ii) Davis 

 

 

 

 

f(x*) = 0 

(iii) E1 

 

_10 < xi  < 10      i = 1,2
 

Table 6. A Comparison Among Different Optimization Method 

used for Goldenstein Price Test Function [1, 9, 10]. 

Averaged Evaluation 

Function GP 
Method 

300 Mod. Bremmerman 

1495 Gomulka – V.M. 

2500 Price 

362 Mockus 

82 Perttunen 

113 Perttunen –Stuckman 

191 Jones et al 

1018 Storn – Price 

81 MCS 

420 EM 

60 EW 
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x* = {(1.0022,5.9968)} 

f (x*) = 463.0000 

(iv) Goldstein and Prices (GP) 

 

_2 < xi < 2      i = 1,2 

x* = {(0, 
_

1)} 

f (x*) = 3 

 

(v) Griewank 

 

 

 

 

(vi) Himmelblau 

 

 

 

f(x*) = 0 

 

(vii) Rastrigin 

 

 

 

 

 

(viii) Rosenbrok(Rn) 

 

 

 

 

(ix) Stenger 

 

 

x* = {(0,0), (1.695415,0.7186082)} 

f(x*) = 0 
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