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Abstract: Morphological analysis as applied to English has generally involved the study of rules for inflections and 
derivations. Recent work has attempted to derive such rules from automatic analysis of corpora. Here we study similar 
issues, but in the context of the biological literature. We introduce a new approach which allows us to assign probabilities 
of the semantic relatedness of pairs of tokens that occur in text in consequence of their relatedness as character strings. 
Our analysis is based on over 84 million sentences from the MEDLINE database, over 2.3 million token types that occur 
in MEDLINE, and enables us to identify over 36 million token type pairs which have assigned probabilities of semantic 
relatedness of at least 0.7 based on their similarity as strings. The quality of these predictions is tested by two different 
manual evaluations and found to be good.  
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INTRODUCTION 

 Morphological analysis is an important element in natural 
language processing. Jurafsky and Martin [1] define 
morphology as the study of the way words are built up from 
smaller meaning bearing units, called morphemes. Robust 
tools for morphological analysis enable one to predict the 
root of a word and its syntactic class or part of speech in a 
sentence. Stemming algorithms [2] use basic knowledge of 
grammar to eliminate recognized suffixes, leaving a putative 
root word. A good deal of work has also been done toward 
the automatic acquisition of rules, morphemes, and analyses 
of words from large corpora [3-12]. While this work is 
important it is mostly concerned with inflectional and 
derivational rules that can be derived from the study of texts 
in a language. While our interest is related to this work, we 
are concerned with the multitude of tokens that appear in 
English texts on the subject of biology. We believe it is clear 
to anyone who has examined the literature on biology that 
there are many tokens that appear in textual material that are 
related to each other, but not in any standard way or by any 
simple rules that have general applicability even in biology. 
It is our goal here to achieve some understanding of when 
two tokens can be said to be semantically related based on 
their similarity as strings of characters.  
 Thus for us morphological relationship will be a bit more 
general in that we wish to infer the relatedness of two strings 
based on the fact that they have a certain substring of 
characters on which they match. But we do not require 
knowledge of exactly on what part of the matching substring 
their semantic relationship depends. In other words we do 
not insist on the identification of the smaller meaning  
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bearing units or morphemes. Key to our approach is the 
ability to measure the contextual similarity between two 
token types as well as their similarity as strings. Neither kind 
of measurement is unique to our application. Contextual 
similarity has been studied and applied in morphology [8, 
11, 13, 14] and more generally [15]. String similarity has 
also received much attention [16-23]. However, the way we 
use these two measurements is, to our knowledge, new. Our 
approach is based on a simple postulate: If two token types 
are similar as strings, but they are not semantically related 
because of their similarity, then their contextual similarity is 
no greater then would be expected for two randomly chosen 
token types. Based on this observation we carry out an 
analysis which allows us to assign a probability of 
relatedness to pairs of token types. This proves sufficient to 
generate a large repository of related token type pairs among 
which are the expected inflectionally and derivationally 
related pairs and much more besides.  
 The paper is organized as follows. We begin by defining 
contextual and lexical similarity. These definitions are then 
followed by a description of the method by which they are 
used to estimate the probability of semantic relatedness of 
two tokens. The lexical similarity is initially based on IDF 
weights of the substring features used. This was initially 
chosen because IDF weighting is a way to account for the 
information conveyed by a string based on its frequency in a 
dataset and is quite successfully used in information retrieval 
applications [24, 25]. We find by experiment that weighting 
all features with the value 1.0 is more effective than IDF 
weights and we introduce a procedure for learning these 
weights which provides even greater sensitivity. These 
results are followed by an evaluation of the accuracy of the 
predicted probabilities and we show by direct human 
judgments as well as by an application to improve the Porter 
stemmer that the predictions are indeed close to what 
humans would predict. Given the learned weights and the 
resulting probability estimates we show how to summarize 
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all the data to produce probability estimates that two tokens 
are semantically related based on their lexical similarity 
alone. The fact that the resulting probability estimates are 
linearly related to the lexical similarity score, we believe, 
provides some support for the machine learning approach 
used. The paper ends with a discussion and conclusion 
section. A preliminary and abridged version of this work 
appeared in the past [26], but the current work gives a 
thorough analysis of the machine learning approach used and 
a formal evaluation of the probabilities predicted confirming 
their accuracy.  

DATA 

 A March 2007 copy of MEDLINE was used for this 
study. In the first step all the MEDLINE documents were 
broken into sentences using the MedPost [27] sentence 
segmenting function available on SourceForge under the title 
“medpost” . This produced a set of 84,475,092 sentences. 
The sentences were then tokenized by breaking at all non-
alphanumeric characters including spaces, tabs, and 
punctuation. The resulting tokens that contained at least one 
alphabetic character were retained for analysis. This resulted 
in 2,341,917 token types and these are the subject of our 
study.  

MEASURING CONTEXTUAL SIMILARITY 

 In considering the context of a token in a MEDLINE 
record we do not consider all the text of the record. In those 
cases when there are multiple sentences in the record the text 
that does not occur in the same sentence as the token may be 
too distant to have any direct bearing on the interpretation of 
the token and will in such cases add noise to our 
considerations. Thus we break MEDLINE records into 
sentences and consider the context of a token to be the 
additional tokens of the sentence in which it occurs. 
Likewise the context of a token type consists of all the 
additional token types that occur in all the sentences in 
which it occurs. While there is an advantage in the 
specificity that comes from considering context at the 
sentence level, this approach also gives rise to a problem. It 
is not uncommon for two terms to be related semantically, 
but to never occur in the same sentence. This will happen, 
for example, if one term is a miss-spelling of the other or if 
the two terms are alternate names for the same object. 
Because of this we must estimate the context of each term 
without regard to the occurrence of the other term. Then the 
two estimates can be compared to compute a similarity of 
context. We accomplish this using formulas of probability 
theory applied to our setting. 
 Let T denote the set of 2,341,917 token types we consider 
and let t1 and t2 be two token types we wish to compare. 
Then we define 
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probabilities for t1 and t2, respectively. The expressions on 
the right sides in (1) are given the standard interpretations. 
Thus 
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 Here we have made use of an additional assumption, that 
given i , 
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t  are independent in their probability of 

occurrence. While independence is not true, this seems to be 
just the right assumption for our purposes. It allows our 
estimate of 
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may never occur together in a sentence. In other words it 
allows our estimate to reflect what context would imply if 
there were no rule that says the same intended word will 
almost never occur twice in a single sentence, etc. Our 
contextual similarity is then the mutual information based on 
contextual probabilities 
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 There is one minor practical difficulty with this 
definition. There are many cases where 
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MEASURING LEXICAL SIMILARITY 

 Here we treat the two token types, t1 and t2 of the 
previous section, as two ASCII strings and ask how similar 
they are as strings. String similarity has been studied from a 
number of viewpoints [16-23]. We avoided approaches 
based on edit distance or other measures designed for spell 
checking because our problem requires the recognition of 
relationships more distant than simple miss-spellings. Our 
method is based on character ngrams as features to represent 
any string [19, 20, 22, 23]. If 

  
t = "abcdefgh"  represents a 

token type, then we define F(t) to be the feature set 
associated with t  and we take F(t) to be composed of i) all 
the contiguous three character substrings ”abc”, ”bcd”, 

  
"cde",  "def ",  "efg ",  and " fgh" ; ii) the specially marked 
first trigram ”abc!”; and iii) the specially marked first letter 
" #"a . This is the form of F(t) for any t at least three 
characters long. If t consists of only two characters, say 
”ab”, we take i)”ab”; ii) ”ab”; and iii) is unchanged. If t 
consists of only a single character “a”, we likewise take i) 
“a”; ii) “a!”; and iii) is again unchanged. Here ii) and iii) are 
included to allow the emphasis of the beginning of strings as 
more important for their recognition than the remainder. We 
emphasize that F(t) is a set of features, not a “bag-of-words”, 
and any duplication of features is ignored. While this is a 
simplification, it does have the minor drawback that different 
strings, e.g., ”aaab” and ”aaaaab”, are represented by the 
same set of features.  

 Given that each string is represented by a set of features, 
it remains to define how we compute the similarity between 
two such representations. Our basic assumption here is that 
the probability
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are also represented at some level in t2, should be represented 
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by the fraction of the features representing t1 that also appear 
in t2. Of course there is no reason that all features should be 
considered of equal value. Let F denote the set of all features 
coming from all 2.34 million strings we are considering. We 
will make the assumption that there exists a set of weights 
w(f) defined over all of 
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semantic importance. Then we have 
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 Based on (4) we define the lexical similarity of two token 
types as 
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 In our initial application of lexSim we take as weights the 
so-called inverse document frequency weights that are 
commonly used in information retrieval [28]. 
If  N = 2,341,917 , the number of token types, and for any 
feature f , fn  represents the number of token types with 

the feature f , the inverse document frequency weight is 
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 This weight is based on the observation that very 
frequent features tend not to be very important, but 
importance increases on the average as frequency decreases.  

ESTIMATING SEMANTIC RELATEDNESS 

 The first step is to compute the distribution of 
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value -1000, 180,845 times (60% of values). The remainder 
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predicate that asserts that t1 and t2 are semantically related in 
the sense that a competent English speaker would judge two 
tokens to be semantically related (different forms or different 
spellings of the same word or words referring to closely 
related concepts). A key point here is that it is unlikely two 
randomly chosen tokens will be judged semantically related. 
Then our main assumption which underlies the method is  
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has probability density function equal to ! . 

 This postulate says that if you have two token types that 
have some level of similarity as strings
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they define. We will refer to such a set as a lexSim slice. 
According to our postulate the subset of 1 2( , )S r r  which are 
pairs of tokens without a semantic relationship will produce 
conSim values obeying the !  density. We compute the 
conSim values and assume that all of those pairs that produce 
a conSim value of -1000 represent pairs that are unrelated 
semantically. As an example, in one of our computations we 
computed a slice 

  
S(0.7,0.725)  and found the lexSim value -

1000 produced 931,042 times.  
 In comparing this with the random sample which 
produced 180,845 values of -1000, we see that  

 

931,042

180,845
= 5.148   (9) 

 So we need to multiply the density for the random 
sample (shown in Fig. (1)) by 5.148 to represent the part of 
the slice 

  
S(0.7,0.725)  that represents pairs not semantically 

related. This situation is illustrated in Fig. (2). Two 
observations are important here. First, the two curves match 
almost perfectly along their left edges for conSim values 
below zero.  
 This suggests that sematically related pairs do not 
produce conSim scores below about -1 and adds some 
credibility to our assumption that semantically related pairs 
do not produce conSim values of -1000. The second 
observation is that while the higher graph in Fig. (2) 
represents all pairs in the lexSim slice and the lower graph all 
pairs that are not semantically related, we do not know 
which pairs are not semantically related. We can only 
estimate the probability of any pair at a particular conSim 
score level being semantically related. If we let ψ represent 
the upper curve coming from the lexSim slice and Φ the 
lower curve coming from the random sample, then  
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represents the probability that a token type pair with a 
conSim score of x is a semantically related pair. Curve fitting 
or regression methods can be used to estimate p. Since it is 
reasonable to expect p to be a nondecreasing function of its 
argument, we use isotonic regression to make our estimates. 
For a full analysis we set 
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LEARNED WEIGHTS 

 Our initial step was to use the IDF weights defined in 
equation (6) and compute a database of all non-identical 
token type pairs among the 2,341,917 token types occurring 
in MEDLINE for which
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value 0.5 because the similarity measure lexSim has the 
property that if one of t1 or t2 is an initial segment of the 
other (e.g., ‘glucuron’ is an initial segment of ‘glucuro-

nidase’) then 
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of the set of weights used. The resulting data included the 
lexSim and the conSim scores and consisted of 141,164,755 
pairs.  
 We performed a complete slice analysis of this data and 
based on the resulting probability estimates 20,681,478 pairs 
among the 141,164,755 total had a probability of being 
semantically related which was greater than or equal to 0.7. 
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Fig. (1). Distribution of conSim values for the 40% of randomly selected token type pairs which gave values above -1000, i.e., for which 
Pc(t1 ∧ t2) > 0. 

-4 -2 0 2 4 6 8 10

conSim

0

20000

40000

60000

80000 Random Sample x 5.148

lexSim Slice S(0.7,0.725)

Comparison of Histograms

 
Fig. (2). The distribution based on the random sample of pairs represents those pairs in the slice that are not semantically related, while the 
portion between the two curves represents the number of semantically related pairs. 

F
re

q
u
e
n
cy



The Morpho-Semantic Relationship The Open Information Systems Journal, 2013, Volume 6    5 

While this seems like a very useful result, there is reason to 
believe the IDF weights used to compute lexSim are far from 
optimal. In an attempt to improve the weighting we divided 
the 141,164,755 pairs into C-1 consisting of 68,912,915 pairs 
with a conSim score of -1000 and C1 consisting of the 
remaining 72,251,839 pairs. Letting w

r
 denote the vector of 

weights we defined a cost function 
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and carried out a minimization of !  to obtain a set of 
learned weights which we will denote by 

0
w
r

. The 
minimization was done using the L-BFGS algorithm [29]. 
Since it is important to avoid negative weights we associate a 
potential v(f) with each ngram feature f  and set  

  
w f( ) = exp(v( f )) . (13) 

 The optimization is carried out using the potentials. The 
optimization can be understood as an attempt to make lexSim 
as close to zero as possible on the large set C-1 where 
  conSim = !1000  and we have assumed there are no 
semantically related pairs, while at the same time making 
lexSim large on the remainder. While this seems reasonable 
as a first step it is not conservative as many pairs in C1 will 
not be semantically related. Because of this we would expect 
that there are ngrams for which we have learned weights that 
are not really appropriate outside of the set of 141,164,755 
pairs on which we trained. If there are such, presumably the 
most important cases would be those where we would score 
pairs with inappropriately high lexSim scores. Our approach 
to correct for this possibility is to add to the initial database 
of 141,164,755 pairs all additional pairs which produced a 
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augmented the data to a new set of 223,051,360 pairs with 
conSim scores. We then applied our learning scheme based 
on minimization of the function !  to learn a new set of 
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> 0. We take this to be a conservative approach as one would 
expect semantically related pairs to have a similar context 
and satisfy 

  
conSim(t
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) > 0  and graphs such as Fig. (2) 

support this. In any case we view this as a conservative move 
and calculated to produce fewer false positives based on 
lexSim score recommendations of semantic relatedness. As 
described in Table 1 we go through repeated rounds of 
training and adding new pairs to the set of pairs. This process 
is convergent as we reach a point where the weights learned 
on the set of pairs does not result in the addition of a 
significant amount of new material.  
 As evidence that the repeated weight production shown 
in Table 1 is a convergent process we computed the 
correlation coefficient between w3 and w4 and obtained an r 
= 0.986. By contrast the correlation coefficient between IDF 
and w4 r = 0.024. The w4 weights appear to be completely 
unrelated to the IDF weights. Another way to compare the 
two sets of weights is to compare the potentials that are 
defined by equation (13). Like energies, potentials are only 
defined up to a constant additive factor, i.e., adding a 
constant factor to all potentials in the set will effectively 
multiply all weights by a constant factor and have no effect 
on lexSim values. The potentials for IDF and w4 weights are 
compared in Fig. (3) and it is evident that there is more 
variation in the learned weights than in the IDF weights. An 
important question then is whether the learned weights are 
overtrained. In an effort to avoid this we have expanded the 
set of pairs on which training is done as shown in Table 1. 
The training data for w4 consists of 440 million pairs of 
tokens and there are 82,388 weights to be learned (this 
number of features occur among the pairs of tokens in the 
training data).  
 The amount of training data versus the number of 
weights itself is some evidence against overtraining, 
however, not all features have a high frequency in the 
training data. In order to examine this issue we have plotted 
a point for each feature in Fig. (4). The y-axis of a point 
represents the number of times that feature appears in token 
pairs in the training data and the x-axis the potential learned 
for that feature. It is clear that the potential only deviates 
from zero (hence the weight from the average weight), when  

Table 1. Repeated Training and Addition of New Pairs Satisfying lexSim > 0.5 Based on the new Weights Obtained Until 
Convergence of the Process. IDF Produces the First Total Set of 141.2 Million Pairs, then each wi is Trained on the Total 
Pairs Listed in its Row and is Used to Produce the Additional Pairs Added in the Next Row.  

Weights Pairs added with lexSim > 0.5 Total Pairs Pairs with conSim > 0 Pairs with conSim < 0 

IDF, w0   141.2 M 41.9 M 99.2 M 

w1 81.9 M 223.1 M 63.8 M 159.2 M 

w2 181.7 M 404.8 M 106.5 M 298.3 M 

w3 27.1 M 431.8 M 113.9 M 318.0 M 

w4 8.5 M 440.4 M 116.4 M 324.0 M 

 0.6 M 441.0 M 116.8 M 324.2 M 
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Table 2. Number of Token Pairs and the Level of their Predicted Probability of Semantic Relatedness Found with Three Different 
Weight Sets.  

Weight Set Prob. Semantically Related > 0.7 Prob. Semantically Related > 0.8 Prob. Semantically Related > 0.9 

w4 36,173,520 22,381,318 10,805,085 

Constant 34,667,988 20,282,976 8,607,863 

IDF 31,617,441 18,769,424 8,516,329 

Table 3. A Table Showing 30 Out of a Total of 379 Tokens Predicted to be Semantically Related to ‘lacz’ and the Estimated 
probabilities. Ten Entries are from the Beginning of the List, Ten from the Middle, and Ten from the End. Breaks where 
Data was Omitted are Marked with Asterisks.  

Probability of a Semantic Relationship Token 1  Token 2 

0.973028 lacz 'lacz 

0.975617 lacz 010cblacz 

0.963364 lacz 010cmvlacz 

0.935771 lacz 07lacz 

0.847727 lacz 110cmvlacz 

0.851617 lacz 1716lacz 

0.90737 lacz 1acz 

0.9774 lacz 1hsplacz 

0.762373 lacz 27lacz 

0.974001 lacz 2hsplacz 

*** *** *** 

0.95951 lacz laczalone 

0.95951 lacz laczalpha 

0.989079 lacz laczam 

0.920344 lacz laczam15 

0.903068 lacz laczamber 

0.911691 lacz laczatttn7 

0.975162 lacz laczbg 

0.953791 lacz laczbgi 

0.995333 lacz laczbla 

0.991714 lacz laczc141 

*** *** *** 

0.979416 lacz ul42lacz 

0.846753 lacz veroicp6lacz 

0.985656 lacz vglacz1 

0.987626 lacz vm5lacz 

0.856636 lacz vm5neolacz 

0.985475 lacz vtkgpedeltab8rlacz 

0.963028 lacz vttdeltab8rlacz 
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Table 3. contd… 

Probability of a Semantic Relationship Token 1  Token 2 

0.993296 lacz wlacz 

0.990673 lacz xlacz 

0.946067 lacz zflacz 

 
Table 4. A Table Showing 30 Out of a Total of 96 Tokens Predicted to be Semantically Related to ‘Nociception’ and the Estimated 

Probabilities. Ten Entries are from the Beginning of the List, Ten from the Middle, and Ten from the end. Breaks where 
Data was Omitted are Marked with Asterisks. 

Probability of a Semantic Relationship Token 1  Token 2 

0.727885 nociception actinociception 

0.90132 nociception actinociceptive 

0.848615 nociception anticociception 

0.89437 nociception anticociceptive 

0.880249 nociception antincociceptive 

0.82569 nociception antinoceiception 

0.923254 nociception antinociceptic 

0.953812 nociception antinociceptin 

0.920291 nociception antinociceptio 

0.824706 nociception antinociceptions 

*** *** *** 

0.802133 nociception nociceptice 

0.985352 nociception nociceptin 

0.940022 nociception nociceptin's 

0.930218 nociception nociceptine 

0.944004 nociception nociceptinerg 

0.882768 nociception nociceptinergic 

0.975783 nociception nociceptinnh2 

0.921745 nociception nociceptins 

0.927747 nociception nociceptiometric 

0.976135 nociception nociceptions 

*** *** *** 

0.88983 nociception subnociceptive 

0.814733 nociception thermoantinociception 

0.939505 nociception thermonociception 

0.862587 nociception thermonociceptive 

0.810878 nociception thermonociceptor 

0.947374 nociception thermonociceptors 

0.81756 nociception tyr14nociceptin 

0.981115 nociception visceronociception 
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Table 4. contd… 

Probability of a Semantic Relationship Token 1  Token 2 

0.957359 nociception visceronociceptive 

0.862587 nociception withnociceptin 

Table 5. Contingency Table for Manual Evaluation of 400 High-Prob Pairs. Rows Correspond to the Manual Judgment, and 
Columns Correspond to the Range of Predicted Probability. The chi-Squared Statistic for this data is 32.1, which is 
Statistically Significant at p<0.001. 

Manual Judgment Predicted Probability of Relatedness 

 0.7-0.8 0.8-0.9 0.9-1.0 Sum 

0 33 22 10 65 

1 75 91 169 335 

Sum 108 113 179 400 

 
there is a substantial frequency of that feature in the training 
data. This is strong evidence against overtraining.  

PROBABILITY PREDICTIONS 

 Based on the learned weight set w4 we performed a slice 
analysis of the 440 million token pairs on which the weights 
were learned and obtained a set of 36,173,520 token pairs 
with predicted probabilities of being semantically related of 
0.7 or greater. We performed the same slice analysis on this 
440 million token pair set with the IDF weights and the set 
of constant weights all equal to 1. The results are given in 
Table 2. Here it is interesting to note that the constant 
weights perform substantially better than the IDF weights 
and come close to the performance of the w4 weights. While 
the w4 predicted about 1.5 million more relationships at the 
0.7 probability level, it is also interesting to note that the 
difference between the w4 and constant weights actually 
increases as one goes to higher probability levels so that the 
learned weights allow us to predict over 2 million more 
relationships at the 0.9 level of reliability. This is more than 
a 25% increase at this high reliability level and justifies the 
extra effort in learning the weights.  
 A sample of the learned relationships based on the 

4
w  

weights is contained in Table 3 and Table 4. The symbol 
‘lacz’ stands for a well-known and much studied gene in the 
E. coli bacterium. Due to its many uses it has given rise to 
myriad strings representing different aspects of molecules, 
systems, or methodologies derived from or related to it. The 
results are not typical of the inflectional or derivational 
methods generally found useful in studying the morphology 
of English. Some might represent miss-spellings, but this is 
not readily apparent by examining them. On the other hand 
‘nociception’ is an English word found in a dictionary and 
meaning “a measurable physiological event of a type usually 
associated with pain and agony and suffering” (Wikepedia). 
 Table 4 shows that ‘nociception’ is related to the 
expected inflectional and derivational forms, forms with 
affixes only found in biology, readily apparent miss-
spellings, and foreign analogs.  

MANUAL EVALUATION 

 We manually evaluated the predicted probability of 
relatedness in the w4 set of Table 2 in two ways. To prepare 
for this, we took all word pairs with lexSim > 0.5 (using w4 
weights) and probability of semantic relatedness > 0.7 based 
on equation (10), and we refer to these as high-prob pairs; 
pairs of words not meeting this criterion are referred to as 
low-prob pairs. There were a total of 35,121,574 high-prob 
(alphanumeric) word pairs. Our direct evaluation examined a 
sample of these, and our stem evaluation examined a sample 
of pairs of words with a common Porter stem, comparing 
them to the high-prob and low-prob sets. 
 Direct Evaluation. We randomly selected and judged 
the relatedness of 400 word pairs from high-prob set using 
uniform sampling over that subset of pairs for which both 
words appeared in at least 100 different MEDLINE articles. 
We imposed this restriction because many low frequency 
tokens are unfamiliar and difficult for a human to judge. 
Each word pair was examined independently by two judges.  
 The basis for judgment was whether or not a pair of 
words appear in MEDLINE with a related meaning that can 
be credited to a common substring they possess. The judges 
disagreed on less than 5% of word pairs, and the differences 
were reconciled by conference. All judging was completed 
without knowledge of the predicted probability of 
relatedness. 
 A total of 65 out of 400 word pairs were judged to be 
unrelated. Examples of unrelated pairs are borrowing/throw-
ing and the abbreviations mcas/cas. Examples of pairs 
judged to be related include sapovirus/adenoviruses (based 
on the common string virus) and sphingoid/sph (based on the 
string sph which is sometimes used as an abbreviation for 
sphingoid). 
 The judged relatedness was compared to the predicted 
probabilities using a Pearson chi-squared test on a 
contingency table that combined probabilities from 0.7-0.8, 
0.8-0.9, and 0.9-1.0. The data is shown in Table 5. The 
Pearson chi-squared test for independence gives x2 = 32.06 
with a p< 0.001. 
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 The data was also visualized using the PAV algorithm 
[30-32] which finds the maximum likelihood estimate of the 
probability of judged relatedness given the predicted 
probability of relatedness. This curve, shown in Fig. (5) 
reveals an increasing relationship between predicted and 
actual probabilities of relatedness. There appears to be a 
relatively consistent lag of the humanly judged probabilities 
behind the machine predictions, but this effect is not large.  
 Stem Evaluation. The Porter stemmer [2] is an 
algorithm that removes recognized suffixes from words to 
yield a putative root, or stem. Words that are stemmed to the 
same root word are presumed conflatable. That is, they may 
be used to refer to similar things, and hence they are 
candidates for query expansion. We evaluated this hypoth-
esis directly by manually evaluating pairs of words having a 
common stem, and compared the results with the set of high-
prob word pairs. 
 We randomly selected 1,000 distinct words from 
MEDLINE using a sampling probability proportional to their 
frequency. Each word was also required to have at least one 
other word with a common Porter stem, and was associated 
with that one with the highest MEDLINE frequency. The list 
of 1,000 word pairs was alphabetized by the first word, and 
each pair was examined to judge whether they possessed a 
common root. 

 Based on this manual evaluation, 63 pairs out of 1,000 
were judged to not possess a common root. For example, the 
Porter stemmer identified unrelated pairs general/generated, 
and international/internal. Examples of word pairs judged to 
be related were cornea/corneas, and unilaterally/unilateral. 
 These judgments were then compared with the set of 
high-prob pairs, as described above. Within the 1,000 pairs, 
792 were high-prob pairs and 208 low-prob pairs. Among 
the 792 high-prob pairs, 3.5% were judged unrelated. But 
among the 208 low-prob pairs, the error rate was more than 
four times this, at 16.8%. The Pearson chi-squared test for 
independence gives x2 = 49.32, with a negligible p-value. 
This confirms that the probability for pairs of words 
computed by equation (10) is indicative of semantic 
relatedness. It also suggests a potential method of filtering 
query expansions based on Porter stemming. 

PROBABILITY ESTIMATES BASED ON LEXSIM 
ALONE 

 Based on the processing of all 440 million token pairs 
with lexSim > 0.5 where the w4 trained weights are used, we 
can estimate the probability that a pair of token types are 
semantically related just from the value lexSim. This 
calculation is based on the assumption that when 
  conSim = !1000  the pair is not semantically related. For all 

 
Fig. (5). The maximum likelihood estimate of the probability that a pair is judged to be related given its predicted probability of relatedness. 
The curve is found using the PAV algorithm on data from 400 manually judged high-prob pairs and their probability of relatedness (equation 
10). 
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other pairs the probability is calculated based on the above 

lexSim slice analysis and the functions
  

p
i{ }

i=0

20

. The 
composite curve for the probability of semantic relatedness 
is computed again by use of isotonic regression and the 
reasonable assumption that the probability should be a non-
decreasing function of the  lexSim  score. The result is shown 
in Fig. (6). 
 An interesting aspect of Fig. (6) is the observation that 
the predicted probabilities based on  lexSim  score alone are 
almost never as great as 0.7. This is to be compared with the 
fact that by making use of the context information available 
in conSim we are able to identify over 36 million token type 
pairs with a probability of being semantically related that is 
greater than or equal to 0.7 and this is just over 8% of the 
total of 440 million candidate token type pairs. Another point 
worth mentioning is the almost linear nature of the 
probability of semantic relatedness as a function of lexSim 
score. While linearity is not necessary for the slice analysis 
to work, linearity does seem desirable and perhaps provides 
a modicum of support for equations (4) and (5).  

DISCUSSION AND CONCLUSION 

 There are several possible uses for the type of data 
produced by our analysis. Words semantically related to a 
query term or terms typed by a search engine user can 
provide a useful query expansion in either an automatic 
mode or with the user selecting from a displayed list of 
options for query expansion. Many miss-spellings occur in 
the literature and are disambiguated in the token pairs 
produced by the analysis. They can be recognized as closely 
related low frequency-high frequency pairs. They may allow 
better curation of the literature on the one hand or improved 

spelling correction of users queries on the other. In the area 
of more typical language analysis, a large repository of 
semantically related pairs can contribute to semantic tagging 
of text and ultimately to better performance on the semantic 
aspects of parsing. Also the material we have produced can 
serve as a rich source of morphological information. For 
example, inflectional and derivational transformations 
applicable to the technical language of biology are well 
represented in the data.  
 There is the possibility of improving on the methods we 
have used, while still applying the general approach. Either a 
more sensitive conSim or lexSim measure or both could lead 
to superior results. Undoubtedly conSim is limited by the fact 
that tokens in text follow a Zipfian [33] frequency 
distribution and most tokens appear infrequently. A pair of 
tokens that each appears infrequently have a decreased 
chance of encountering the same contextual tokens even 
when such an encounter would be appropriate to their 
meaning. This limits the effectiveness of conSim and we 
believe accounts for only being able to extract 8% of the 440 
million token type pairs at a probability of semantic 
relatedness ≥ 0.7. There is probably no cure for this issue 
other than a larger corpus, which would be expected to yield 
a larger set of such high probability pairs (but perhaps not a 
fraction higher than 8%). While it is unclear to us how 
conSim might be structurally improved, it seems there is 
more potential with lexSim. lexSim treats features as 
basically independent contributors to the similarity of token 
types and this is not ideal. For example the feature ‘hiv’ 
usually refers to the human immunodeficiency virus. 
However, if ‘ive’ is also a feature of the token we may well 
be dealing with the word ‘hive’ which has no relation to a 
human immunodeficiency virus. Thus a more complicated 
model of the lexical similarity of strings could result in 
improved recognition of semantically related strings.  

 
Fig. (6). Probability of semantic relatedness of a token type pair as a function of lexSim  score. Applies only to pairs where lexSim > 0.5. 
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 In future work we hope to investigate the application of 
the approach we have developed to multi-token terms. We 
also hope to investigate the possibility of more sensitive 
lexSim measures for improved performance. The current best 
lexSim weights are based on the machine learning method we 
present in this paper. It is possible that other methods of 
machine learning can also be used to bootstrap improved 
weights and such methods need to be investigated.  
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