Roller Straightening Process and FEM Simulation for Stainless Steel Clad Plate

Jin He-Rong¹², Yi Ya-Li*³, Han Xue-Yan³ and Liang Yan³

¹Key Laboratory of Advanced Forging & Stamping Technology and Science of Ministry of National Education, Yanshan University, Qinhuangdao, 066004, China
²Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao, 066004, China
³School of Mechanical Engineering, Yanshan University, Qinhuangdao, 066004, China

Abstract: Based on elasto-plastic deformation straightening theory and adopting 11 rolls plate straightening mode, the isothermal residual curvature straightening process is proposed for stainless steel clad plate. The straightening mathematical model is established to realize plate shape finishing and stress reforming. By using finite element analysis software, establishing straightening process and determining intermesh, the effects of intermesh on shape and residual stress are analyzed. The results indicate that the straightening process meet the finishing plainness of stainless steel clad plate after rolling. Longitudinal residual stress of the clad plate is evenly distributed across width. The cladding plate and steel substrate are symmetrical and the ascent of stress near the edge is greater. Longitudinal residual stress across length is distributed with the wave of pull-press-pull and the cladding plate and base plate are symmetrical. The above researches are based on the previous theory of the application of stainless steel clad plate straightening technology.

Keywords: FEM analysis, intermesh, residual stress, roller straightening, stainless steel clad plate.

1. INTRODUCTION

Complying with the overall national planning for building a resource-saving and environment-friendly green steel industry, stainless steel clad plate combines high corrosion resistance of stainless steel and excellent mechanical properties of low-alloy steel, mainly used in petrochemical, marine engineering, nuclear and high-quality oil and gas pipelines and other major equipment industry [1, 2]. Because of the different deformation resistance and thermal expansion coefficient of stainless steel cladding plate and steel substrate, the hot-rolled stainless steel clad plate shows great bending deformation and residual stress to the side of cladding plate after rolling. This defect is difficult to eliminate in the cold state and greatly influences the shape quality [3].

Parallel roller leveler can straighten plate with different original curvature even after repeated bending, reduce the residual stress and make it homogenized [4]. In the roller straightening process, a suitable intermesh is the key to ensuring the quality of straightening. Presently, a lot of researches have been done on bending deflection model and reduction pattern of roller straightening of plate [5-7]. With the development of finite element theory, simulating the plate straightening process by the finite element analysis software can accurately forecast the law of straightening [8-10]. However, the research of stainless steel clad plate straightening technology is rare. In this paper, for the problem of hot-rolled stainless steel clad plate straightening, based on the elasto-plastic straightening theory, the isothermal residual curvature straightening process is given. Using explicit dynamic finite element analysis software ANSYS/LS-DYNA to simulate roller-straightening process and analyze the effect of straightening process parameters on straightening quality, which provides some guidance for the production practices of stainless steel clad plate.

2. MODEL OF STRAIGHTENING PROCESS

Bending deflection is an important parameter in the straightening model. In engineering applications, material mechanics methods are commonly used to calculate the deflection [4]. At the deflection state of Fig. (1), according to the plane section assumption, without considering shear deformation, bending deflection \(\delta_w \) is

\[
\delta_w = \int_0^l x A_{\xi_2} dx - \delta_0
\]

where, \(x \) is the distance to the side straightening roller (mm); \(A_{\xi_2} \) is the total bending curvature at \(x(1/mm) \); \(\delta_0 \) is the original bending deflection (mm).

When the bending moment \(M \) that is applied to stainless steel clad plate is removed, an equivalent resilient rebound effect caused by the bending moment \(-M\) is produced, the springback curvature \(A_f \) can be obtained by the following formula

\[
M = \frac{1}{3} A_f B \left[E_2 \left(z_x^2 + (z_i - h_i)^1 \right) + E_1 \left(z_y^1 - (z_i - h_i)^2 \right) \right]
\]
where, E_1 and E_2 represents the elastic modulus of the cladding plate and substrate, respectively (MPa).

![Fig. (1). The midpoint bending deflection.](image1)

After unloading, the bending deflection of stainless steel clad plate will resume. After resuming, the residual deflection is δ_r and elastic recovery deflection δ_i is

$$\delta_i = \int_0^1 xA_1 \, dx$$

where, A_0 is elastic recovery curvature at $x(1/mm)$.

Therefore, the residual deflection δ_r is

$$\delta_r = \delta_0 - \delta_i = \int_0^1 xA_0 \, dx - \delta_0 - \delta_i$$

where, A_0 is elastic recovery curvature at $x(1/mm)$.

3. STRAIGHTENING PROCESS SCHEME

The temperature of hot-straightening is generally between 500°C and 800°C, at the same temperature, thermal expansion coefficient of stainless steel cladding plate α_1 is greater than that of carbon steel substrate α_2. As a result, in the cooling process, the contraction length of stainless steel cladding plate is larger than that of the carbon steel substrate, resulting in longitudinal bending to the side of cladding plate. In view of this phenomenon, isothermal residual curvature straightening process plan is made, that is, in the hot-straightening process, keeping the temperature of two base metals of stainless steel clad plate consistent, at the end of the straightening process, the stainless steel clad plate have some residual curvature bending to a substrate side. When the temperature decreases to the room temperature, the differential thermal expansion coefficient of the two base metals make the clad plate into the straight state.

The shape changes of stainless steel clad plate before and after cooling, shown in Fig. (2). l is the length of the clad plate when the clad plate was cooled to room temperature, h_1 and h_2 are the thickness of cladding plate and substrate respectively, l_1 and l_2 are the length of cladding plate and substrate after hot-straightening respectively. Considering the thermal expansion and cold contraction of the steel is a reversible process, the clad plate, which is straight at room temperature, is heated to the temperature of the hot-straightening process. Then the clad plate generates longitudinal bending toward the substrate side, which is the reversible process as shown in Fig. (2). The following is the derivation of bending curvature that heated from room the temperature to the hot-straightening temperature process.

Assuming the longitudinal bending of stainless steel clad plate is a circular-arc, the average curvature radius located at the half of the thickness of the cladding and substrate plate is R_1 and R_2 respectively, there is

$$l_1 = R_1 \quad l_2 = R_2$$

As Fig. (2) shows

$$R_1 - R_2 = \frac{1}{2} (h_1 + h_2)$$

(a) Plate shape after hot-straightening \hspace{1cm} (b) Plate shape at room temperature

![Fig. (2). Plate shape before and after cooling.](image2)

The shortened length Δl_1, due to the effect of the compressive stress by the substrate can be obtained according to Hooke Law

$$\Delta l_1 = l \left(\alpha_1 - \alpha_2 \right) \Delta T \frac{E_1 S_1}{E_1 S_1 + E_2 S_2}$$

where, S_1 and S_2 are the section area of cladding plate and base plate, respectively (mm2).

Combining the equations (5), (6) and (7), under the same width of stainless steel clad plate B, section area $S = Bh$ is proportional to the thickness h, R_1 is given by

$$R_1 = \frac{\left(h_1 + h_2 \right) \left(E_1 h_1 + E_2 h_2 \right)}{2E_1 h_1 (\alpha_1 - \alpha_2) \Delta T}$$

After straightening and taking the bending radius of the thickness center of stainless steel clad plate as the residual curvature radius R, we obtain

$$R = \frac{1}{2} h_1 + \frac{1}{2} h_2 = \frac{\left(h_1 + h_2 \right) \left(E_1 h_1 + E_2 h_2 \right)}{2E_1 h_1 (\alpha_1 - \alpha_2) \Delta T} + \frac{1}{2} h_2$$

Using 11 medium rolls and heavy plate leveler, conduct a bending calculation, as shown in Fig. (3). The basic parameters of roll leveler are shown in Table 1.

![Fig. (3). Structure diagram of roller straightening model.](image3)

The material property of stainless steel clad plate is shown in Table 2 [11].
Table 1. Parameters of straightening machine.

<table>
<thead>
<tr>
<th>Roll Diameter/mm</th>
<th>Roller Spacing/mm</th>
<th>Roll Length/mm</th>
<th>Arrangement of Roller System</th>
</tr>
</thead>
<tbody>
<tr>
<td>285</td>
<td>300</td>
<td>3500</td>
<td>Above 5 rollers Below 6 rollers</td>
</tr>
</tbody>
</table>

Table 2. Material property of stainless steel clad plate.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Cladding Plate 316L</th>
<th>Substrate Q345R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density/(kg/m³)</td>
<td>8000</td>
<td>7850</td>
</tr>
<tr>
<td>Elastic modulus/GPa</td>
<td>151</td>
<td>125</td>
</tr>
<tr>
<td>Yield strength/MPa</td>
<td>160</td>
<td>135</td>
</tr>
<tr>
<td>Thermal expansion coefficient/(10⁻⁶/°C)</td>
<td>18.71</td>
<td>14.62</td>
</tr>
<tr>
<td>Poisson's ratio</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Length × width × thickness/mm</td>
<td>5000×3000×5</td>
<td>5000×3000×45</td>
</tr>
</tbody>
</table>

When setting the intermesh of straightening roller, the intermesh of the first four straightening rollers adopt small deformation straightening scheme to make the stainless steel clad plate flat, and the last intermesh gives the stainless steel clad plate a residual curvature for bending to the side of the cladding plate. Based on the parameters in Table 2, the intermeshes of straightening roller are obtained by calculation, as shown in Table 3.

Table 3. Material property of stainless steel clad plate.

<table>
<thead>
<tr>
<th>Roll No.</th>
<th>Initial Curvature 0.1m⁻¹ The Intern mesh</th>
<th>Initial Curvature 0.2m⁻¹ The Intern mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.22</td>
<td>0.24</td>
</tr>
<tr>
<td>4</td>
<td>0.186</td>
<td>0.189</td>
</tr>
<tr>
<td>6</td>
<td>0.176</td>
<td>0.178</td>
</tr>
<tr>
<td>8</td>
<td>0.172</td>
<td>0.175</td>
</tr>
<tr>
<td>10</td>
<td>0.21</td>
<td>0.22</td>
</tr>
</tbody>
</table>

4. FINITE ELEMENT ANALYSIS AND DISCUSSION

4.1. Finite Element Model

Taking the above-mentioned analysis data as the simulation object, establish the finite element model of roller straightening, as shown in Fig. (4).

Material property parameters of stainless steel clad plate are shown in Table 2, and basic parameters of roll leveler are shown in Table 1. Straightening temperature is 600°C. Considering the role of the backup roll, the straightening roll is taken as a hollow rigid body. Eight nodes solid element is used to establish the bilinear kinematic hardening material model. Due to the special nature of the joint surface of clad plate, using Glue Boolean operations for the joint surface of substrate and cladding plate before meshing, to ensure that the joint surface share the nodes. Modeling using 1/2 of the plate width, unit is divided into 165×50×(7base plates+3 cladding plates)(Length × width × thickness), 82,500 in all.

4.2. The Residual Curvature Analysis after Straightening

Because the residual curvature of stainless steel clad plate is very small after straightening, assuming the final shape of sheet is a circular arc, whose radius is the radius of the residual curvature R. Reading the stainless steel clad plate coordinates after straightening, after treatment of the coordinates, the values of residual curvature radius are obtained, as shown in Table 4. The roughness values of plate can be calculated by the chord height of the 1000mm chord length. According to the Chinese standard (GB/T8165-2008), the roughness values of stainless steel clad plate should be less than 10mm/m. The higher standard for stainless steel clad plate is that the roughness values should be within 5mm/m.

As can be seen from Table 4, after straightening, stainless steel clad plate bends to the substrate side, coinciding with the results of the process. With the increase of straightening speed or the original curvature, elastic-plastic deformation rate of stainless steel clad plate increases, material work hardening phenomenon is more obvious, resulting in the simulation requiring intermesh greater than the theoretical amount. The value of residual curvature radius increases, and has a certain bias compared with the theoretical calculation 89mm. Through calculation, the maximum roughness after straightening is 1.53mm/m, the smallest roughness is 0.64mm/m. According to residual curvature straightening process with the temperature difference, along with the cooling after straightening, stainless steel clad plate will generate shrinkage deformation to the side of cladding plate, the roughness values will be further improved.

4.3. The Residual Stress Analysis after Straightening

Other studies have shown that the longitudinal residual stress of plate is the main residual stress after straightening and has the main influence effect on the plate shape [7]. Taking the surface path of stainless steel clad plate AA and BB as the research object, analysing the longitudinal residual stress of stainless steel clad plate after straightening, as shown in Fig. (5).

The original curvature of a stainless steel clad plate is 0.1m⁻¹ and the straightening speed is 5m/s. After straightening, the longitudinal stress distribution along the setting path on the substrate and cladding plate surface is, as shown in Fig. (6) and Fig. (7), respectively.
Fig. (5). The position of paths in the stainless steel clad plate.

Fig. (6). Longitudinal residual stress path AA across length.

Fig. (7). Longitudinal residual stress path BB across width.

As shown in Fig. (6), the longitudinal residual stress along the length direction presents a tensile-compression-tensile wave distribution and the substrate side and the cladding side are symmetrical. Longitudinal residual stress distribution is more uniform before the tail, the longitudinal residual stress at the substrate side is within -17MPa~38MPa and at the cladding side is within -40MPa~48MPa. The stress at the cladding side is greater than the stress at the substrate side, because the yield strength of the cladding plate is greater than the yield strength of the substrate. Since the tail of clad plate generates swing pendulum vibration passing in and out the leveler, the residual stress has larger fluctuations and risings. Fig. (7) shows that the longitudinal residual stress is well distributed along the width direction, the substrate and the cladding sides are symmetrical, and stress values increase largely near the edge.

CONCLUSION

The isothermal residual curvature straightening process is proposed. The intermesh of No.2 and No.4 roller should be increased to make the plastic deformation ratio close to the limit value, which can eliminate the initial residual curvature. Setting large intermesh amount for No.10 roller to ensure residual curvature bending to the side of base plate after straightening, as a result, the shape of stainless steel clad plate is good at room temperature after straightening, the residual stress value is small and distributed evenly.

For different type of stainless steel clad plate straightening, analyzing the straightening velocity and original curvature by FEM analysis, longitudinal residual stress distribution after straightening can be predicted. Effective process parameters setting can reduce the longitudinal residual stress of stainless steel clad plate and obtain excellent flatness.

CONFLICT OF INTEREST

The authors confirm that this article content has no conflict of interest.

ACKNOWLEDGEMENTS

This material is based upon work supported by Natural Science Foundation of Steel and Iron Foundation of Hebei Province of China (grant no. E2014203118).

REFERENCES
