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Abstract: The assessment of circulating neurotransmitters: noradrenaline, adrenaline, dopamine, platelet serotonin, 

plasma serotonin and plasma tryptophan before and after many types of stressor agents and neuropharmacological drugs 

carried out over the last thirty years allowed us to accumulate information dealing with the central nervous system (CNS) 

versus the peripheral autonomic nervous system (ANS) interactions in healthy as well as diseased mammals. Furthermore, 

the accurate knowledge about the CNS circuitry disorders which underlie both the CNS and peripheral clinical syndromes, 

has allowed us to prescribe successful neuropharmacological therapeutical strategies for many types of illnesses. In addi-

tion, the demonstration that the clinical improvement was always paralleled by the normalization of the neurochemical, 

hormonal, immunological and clinical profiles affords strong support to our point of view. According to all the above, the 

authors postulate the existence of two types of diseases: type A and Type N, which are underlain by two opposite CNS + 

ANS disorders. Type A diseases should be associated with the "uncoping stress" syndrome and are underlain by hyperac-

tivity of the adrenocortical glands plus the CNS disorder characterized by the predominance of the C1(adrenergic) + 

DR(serotonergic) axis over the A5(noradrenergic) + MR(serotonergic) binomial, whereas the type N diseases depends on 

the opposite profile: "endogenous depression" syndrome. Finally, we quoted exhaustive evidence showing that the well 

known fading of both the A6(noradrenergic) + C1(adrenergic) CNS nuclei activity occurring during aging is responsible 

for the ANS + CNS disorder which is similar to that underlying psychosis, Alzheimer, post-traumatic stress disorder and 

deficit-attention hyperactive disorder. 

INTRODUCTION  

 We have assessed the peripheral autonomic nervous sys-
tem (ANS) in more than 30, 000 healthy and diseased sub-
jects, throughout the last 30 years. Circulating neurotrans-
mitters [noradrenaline (NA), adrenaline (Ad), dopamine 
(DA), plasma free serotonin (f-5-HT), platelet serotonin (p-
5-HT) and tryptophan (trp)], blood pressure (BP), heart rate 
(HR), plasma glucose, plasma insulin, plasma cortisol, 
plasma prolactin and other hormones have been also investi-
gated before and after different types of stressor such as or-
thostasis, exercise [1-5], and oral glucose tolerance test [6-8]. 
We have also investigated the effects induced by different 
types of drugs: clonidine [9-11], sibutramine [12], buspirone 
[13], tianeptine [14], arginine [15], doxepin [8], dexametha-
sone [16, 17] on the circulating neurotransmitters of both 
normal and diseased subjects.  

 The neurotransmitters have also been investigated during 
sleep periods [18, 19] in normal and diseased subjects. Fi-
nally, the above tests have been carried out during both re-
lapsing and remission periods. The information derived from 
that research work has allowed us to understand the patho-
physiological mechanisms which underlie most type of dis-
eases: gastrointestinal, cardiovascular, endocrinological, 
neurological, psychiatric and others; and in addition, to be 
the first to demonstrate the neuroautonomic profiles which  
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underlie psychosis [20-23], endogenous depression [4, 24], 
hyperinsulinism [8, 24-31], biliary dyskinesia [32-34], ul-
cerative colitis [35], infertility [26, 36], duodenal ulcer and 
gastritis [37, 38], irritable bowel syndrome [39-43], Crohn's 
diseases [44, 45], pancreatitis [45-48], essential hypertension 
[6, 49, 50], thrombocytopenic purpura [51], polycythemia 
vera [52], myasthenia gravis [53], reactive hypoglycemia [8], 
cardiovascular and pulmonary disorders [53-60], bronchial 
asthma [61-64], neurological disorders [65, 66], and others. 
In addition, we demonstrated that the enhanced plasma lev-
els of Ad were associated with both cancer progression and 
natural killer cells hypoactivity [67-69]. Furthermore, the 
systematic assessment of the neurochemical plus immu-
nological parameters allowed us to demonstrate that TH-1 
and TH-2 autoimmune diseases are underlain by neural sym-
pathetic and adrenal sympathetic predominance, respectively 
[67]. Finally, in the present review article we will refer to the 
adequate differentiation of both types of syndromes, which 
allow successfully treatment with neuropharmacological 
manipulations of drugs addressed to revert the CNS + ANS 
disorders.  

ANATOMICAL EVIDENCE 

 The pontomedullary A5 noradrenergic (NA) nucleus is 
responsible for the activity of the neural sympathetic nervous 
system [70-72]. This nucleus sends excitatory axons to the 
lumbar sympathetic acetylcholinergic (ACh) pre-ganglionic 
neurons located at the spinal intermedio lateral segment [73-
75]. Axons of these neurons innervate the somatodendritic 
area of the NA neurons located at the sympathetic ganglia, 
which are crowded by nicotinic (excitatory) receptors [76]. 
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Noradrenergic axons of these neurons integrate sympathetic 
nerves, which release 80-90% of NA plus 10-20% of DA 
[77]. Conversely, the medullary C1 adrenergic (Ad) nuclei 
send glutamatergic axons to the spinal intermedio lateral 
ACh neurons located at the thoracic segment which sends 
excitatory axons to the adrenal glands that secrets 80% Ad + 
10% NA + 10% DA, approximately [70-72, 78-80], which 
are crowded by excitatory nicotinic receptors [81]. Moreo-
ver, the A5(NA) and the C1(Ad) nuclei interchange inhibi-
tory axons [74, 76, 82, 83]. Noradrenaline and adrenaline 
released from both types of axons act at postsynaptic inhibi-
tory alpha-2 receptors [84] hence, both peripheral sympa-
thetic branches can modulate each other [85, 86]. Besides, 
those catecholaminergic nuclei send inhibitory axons to the 
A6(NA) or locus coeruleus pontine nucleus, at which level 
secrete noradrenaline and adrenaline, respectively. These 
catecholamines released at the A6(NA) nucleus exert their 
inhibitory effects by acting at alpha-2 receptors which crowd 
this nucleus. Furthermore, A6(NA) neurons send direct in-
hibitory axons to the A5(NA) and modulatory (polysynaptic) 
drives to the C1(Ad) nuclei [73, 76, 77, 87-93]. However, 
A6(NA) neurons may also be excited by glutamic acid [89] 
as well as by ACh axons which arise from the brain cortex 
and the pedunculo pontine nucleus (PPN), respectively [94, 
95]. The former excitatory drive act at the glycine compo-
nent of the NMDA receptors, whereas the ACh axons act at 
the muscarinic receptors located at the A6(NA) nucleus [65]. 
Finally, ACh axons which arise from the medullary vagal 
complex are also able to excite the A6(NA) neurons [65, 67], 
during acute parasympathetic rebounds that provoke abrupt 
inhibitory responses from the A6(NA) axons addressed to 
restore the ANS acute unbalance episode. This effect is me-
diated by the release of noradrenaline from the A6 axons at 
the medullary nucleus tractus solitarii (ACh) [96-98].  

PHYSIOLOGICAL EVIDENCE 

 The A5(NA) and the C1(Ad) nuclei innervate subcortical 
structures [93], whereas the A6(NA) innervates both the 
brain cortex and subcortical areas [99]. Hence, this latter 
nucleus does not display primary (direct) effects on the ANS 
physiological mechanisms. This phenomenon is consistent 
with others showing that the number of neurons of the 
A5(NA) and C1(Ad) nuclei is completed by birth [93, 100-
103] whereas the number of A6(NA) neurons do not reach 
totality until adultness [104-114]. Furthermore, these neu-
rons fade gradually with aging [104, 107, 115]. This fading 
is paralleled by the underactivity of the C1(Ad) nuclei in 
such a way that aging is always accompanied by the progres-
sive predominance of the A5(NA)-neural sympathetic activ-
ity. These findings are also consistent with facts showing 
that most psychiatric disturbances - psychosis [67, 105, 116, 
117], attention-deficit hyperactive disorder [65], post-
traumatic-stress-disorder [118, 119], and Alzheimer disease 
[120] - are underlain by the underactivity of the A6(NA) plus 
the predominance of the A5(NA) neurons that are responsi-
ble for the peripheral neural sympathetic system [121-127]. 
This latter explains the raised NA/Ad ratio always registered 
in these patients. Finally, we have demonstrated that this 
neurochemical profile is reversible in endogenous depression 
patients but not in the other named disturbances [67]. Ac-
cording to all the above, the therapeutical strategy pretending 
to improve these syndromes should be addressed to revert 

the A5(NA) over A6(NA) predominance. In addition to that, 
it should be expected that the minimization of the A5(NA) 
activity triggered by this therapy would be paralleled by the 
disinhibition of the C1(Ad) and the A6(NA) activities [124]. 

 Other physiological evidence showed that the two 
branches of the peripheral ANS: neural and adrenal sympa-
thetic, are able to antagonize the parasympathetic activity 
which depends on the release of ACh from these nerves, at 
visceral targets. This neurotransmitter is not detectable at the 
peripheral blood because it is fastly destroyed by the acetyl 
cholinesterase enzyme. Moreover, this neurotransmitter is 
uptaked by platelets [2, 125]. However, ACh released from 
parasympathetic nerves is able to act at the nicotinic and 
muscarinic receptors located at the visceral and muscle lev-
els. Furthermore, parasympathetic nerves interact with sym-
pathetic nerves throughout modulatory rather than a "black 
vs. white" antagonism [126-129]. Thus, the assessment of 
the peripheral circulating ACh levels would not afford a use-
ful tool for the understanding of the pathophysiological 
and/or clinical disorders. Besides, a close cooperation be-
tween the peripheral ACh and serotonin neurotransmitters 
has been demonstrated [2, 125, 130, 131]. This factor affords 
additional complexity to the management of this circulating 
neurotransmitter as a useful tool to the understanding of the 
peripheral ANS mechanisms, as is the case of circulating 
catecholamines and indolamines. 

 The circulating serotonin (p-5-HT plus f-5-HT) is re-
leased from the enterochromaffin cells located at the small 
bowel mucosa. Parasympathetic nerves exert an excitatory 
effect at these cells whereas sympathetic nerves display the 
opposite activity. Serotonin released to the blood during 
postprandial periods is partially uptaked by the liver, the 
lungs and platelets (p-5-HT). However, a small fraction re-
mains free in the plasma (f-5-HT). This plasma serotonin is 
able to excite the area postrema located at the medullary 
level (outside the blood brain barrier). This parasympathetic 
nucleus initiates a cascade of excitatory drive at the CNS 
which redounds in the additional increase of the enterochro-
maffin cells activity. Thus, a positive feedback mechanism is 
triggered. Exacerbation of this peripheral + CNS interaction 
underlies the pathophysiology of the Bezold Jarisch syn-
drome [132-135]. This disturbance is successfully treated 
throughout an adequate neuropharmacological therapy, ad-
dressed to enhance the neural sympathetic activity which 
annuls parasympathetic overactivity [12, 14, 52, 54, 136-
139]. 

PATHOPHYSIOLOGICAL EVIDENCE 

 The assessment of both circulating neurotransmitters and 
immunological parameters has demonstrated that almost all 
diseases are underlain by neuroautonomic plus immunologi-
cal disorders depending on the neurosympathetic or adrenal 
sympathetic predominance. The former group is frequently 
paralleled by the TH-1 immunological profile, whereas the 
latter is associated with the TH-2 immunological predomi-
nance. This adrenal sympathetic group presents with abrupt 
oscillations between the adrenal sympathetic versus para-
sympathetic predominance whereas patients affected by neu-
ral sympathetic hyperactivity present a rigid profile which 
shows few and slight alternancy with the parasympathetic 
ANS profile. These phenomena find explanation in facts 
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showing that whereas the C1(Ad) medullary nuclei are heav-
ily interconnected with the ACh (medullary) structures, the 
A5(NA) pontomedullary nucleus sends inhibitory axons to 
but does not receive from the medullary vagal structures [65, 
67, 140, 141]. Furthermore, the flexibility of the Ad vs. ACh 
medullary interaction is extended to the peripheral adrener-
gic vs. parasympathetic branches [67, 142]. These physio-
logical plus pathophysiological interactions are monitored by 
the area postrema. This ACh structure is located at the floor 
of the IV ventricle and in addition, is not protected by the 
blood brain barrier, in such a way that the external face is 
bathed by the blood whereas the internal face interchange 
axons with other medullary nuclei. Serotonergic 5-HT-3 re-
ceptors are excited by the free plasma serotonin (f-5-HT), 
which is released from the enterochromaffin cells under 
parasympathetic excitatory drive [131, 143-145]. It functions 
as an alarm timber which sends signals to the C1(Ad) nuclei. 
Thus all peripheral parasympathetic overexcitation is fastly 
annulled by the adrenal glands secretion of adrenaline. In 
addition, the overexcited C1(Ad) nuclei send inhibitory ax-
ons to the A5(NA) neurons [146, 147], thus, the neural sym-
pathetic activity is also annulled in these acute circum-
stances. This abrupt adrenergic response, registered during 
acute stress periods is not registered in elderly people be-
cause of the hyporesponsiveness of their adrenal cortical 
glands. These facts explain the different neurohormonal 
stress profiles registered in young and elderly mammals [3, 
16, 17, 148]. 

 In summary, we should understand that the acute stress in 
young mammals is underlain by raised catecholamines 
plasma levels + low NA/Ad ratio + raised cortisol plasma 
levels, whereas in elderly mammals, the acute stress is un-
derlain by moderately raised catecholamines + normal or 
high NA/Ad ratio + moderately raised cortisol in the plasma, 
however, it is important to know that both basal noradrena-
line and cortisol are permanently raised in elderly people 
when tested versus young people. The A5(NA) over the 
C1(Ad) predominance registered in the former explain the 
above catecholamines profiles, whereas the higher cortisol 
plasma levels, registered in elderly people depends on the 
predominance of the median raphe (MR) over the dorsal 
raphe (DR) serotonergic neurons registered during aging. 
This MR(5-HT) over DR(5-HT) predominance parallels the 
A5(NA) over C1(Ad) unbalance [136]. With respect to this, 
it should be known that the C1(Ad) and DR(5-HT) activities 
are positively correlated thus, any enhancement of activity of 
the first is followed by the excitation of the second, because 
both nuclei interchange excitatory axons. Furthermore, the 
fading of these two nuclei, registered during elderly fits well 
with all the above. Moreover, the fact that basal cortisol 
plasma levels are raised during aging finds explanation in 
other facts showing that serotonin released at the hypotha-
lamic level is released from the MR(5-HT) rather than the 
DR(5-HT) axons [136]. The former axons trigger the release 
of serotonin as a continuous but not intermittent flowing 
which provokes down regulation of the hypothalamic corti-
sol receptors because of the sustained basal release of this 
hormone [136]. This phenomenon is consistent with the non-
suppression of plasma cortisol during the dexamethasone 
suppression challenge registered in elderly people [17]. This 
disorder is similar to that registered in endogenous depressed 
patients [10]. Besides, it should be remembered that both 

endogenous depressed and elderly people share the same 
neuroendocrine and neuroautonomic profiles as well as psy-
chotic, post-traumatic stress and attention-deficit hyperactive 
disorders. All of them present with neural sympathetic over 
adrenal sympathetic predominance [67]. These pathophysi-
ological disorders are paralleled by the same neurocircuitry 
disorder: A5(NA) predominance over the C1(Ad) + A6(NA) 
and MR(5-HT) over DR(5-HT) predominance [65].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Fig. (1). Adrenal sympathetic activity. This peripheral branch of 

the autonomic nervous system depends on the secretion of 

catecholamines by the adrenal gland [80% of adrenaline (Ad) + 

20% of noradrenaline (NA) + 10% of dopamine (DA)]. These 

glands receive excitatory axons from the thoracic presynaptic 

(ACh) neurons. These ACh-neurons depends on the excitatory 

drives arising from the C1-Ad medullary nuclei, which in addition 

send inhibitory axons to both the A5(NA) and the A6(NA) nuclei. 

Furthermore, these subjects present also, raised levels of plasma 

cortisol (CRT), which depends of the DR-5HT axons. This 

serotonergic nucleus interchanges excitatory drives with the 

C1(Ad) nuclei. Finally, both DR(5-HT) and C1(Ad) axons excite 

the hypothalamic paraventricular nucleus. Evenmore, CRT crosses 

the blood brain barrier and excites the DR(5-HT). This positive 

feedback explains the raised levels of circulating adrenaline and 

CRT, always registered in these patients. The above anatomical + 

physiological + pathophysiological mechanisms are reverted by 

administration of NA uptake inhibitors like desipramine. Finally, 

the raised levels of Ad and CRT in the plasma are consistent with 

the bulk of clinical syndromes underlain by the uncoping stress 

syndrome [67]. 
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THERAPEUTICAL EVIDENCE SUPPORTING THE 
POSTULATION THAT THERE EXIST TWO TYPES 

OF DISEASES: NEURAL SYMPATHETIC (N) AND 

ADRENAL SYMPATHETIC (A) 

Type A Diseases (See Fig. 1) 

 Considering that these diseases are underlain by the ad-
renal sympathetic overactivity (uncoping stress profile), the 
therapy should be addressed to enhance neural sympathetic 
activity; thus the treatment includes the administration of a 
noradrenaline-uptake inhibitor like desipramine [149-151] in 
order to enhance the activity of the A5(NA) neurons which 
are inhibited by both the C1(Ad) and the A6(NA) axons in 
these patients [152]. These latter nuclei are hyper-excited by 
the over-release of corticotrophin releasing hormone (CRH) 
from hypothalamic axons. This phenomenon explains why 
yohimbine (an alpha-2 antagonist) should be added to de-
sipramine. This alpha-2 antagonist would excite the firing 
activity of the hypoactive A5(NA) rather than the hyperac-
tive C1(Ad) and/or A6(NA) neurons [153]. Obviously, the 
administration of yohimbine would act neither at the 
A6(NA) neurons [154], nor at the C1(Ad) or the DR(5-HT) 
neurons because all three nuclei are hyper-excited by the 
CRH released from paraventricular hypothalamic terminals. 
According to the above, the recovery of the A5(NA) neurons 
would reduce the C1(Ad) + A6(NA) over-activity, responsi-
ble for the hypersecretion of adrenaline plus cortisol [136, 
155-159]. 

 Moreover, the DR(5-HT) nucleus interchanges excitatory 
axons with the C1(Ad) neurons and sends inhibitory axons to 
the A6(NA) nucleus [88, 160]. In addition, plasma cortisol 
crosses the blood brain barrier and excites cortisol-receptors 
located at the DR(5-HT) neurons [67]. Furthermore, sero-
tonin released from the DR(5-HT) axons at the hypothalamic 
level excites the CRH + ACTH + cortisol cascade [161, 162] 
that underlies the hormonal branch of "uncoping stress" syn-
drome, which cooperates with the above explained positive 
feedback. Summarizing, the inhibition of the hyperactive 
C1(Ad) neurons would disinhibit the A5(NA) nucleus and in 
addition, will reduce its excitatory drives to the DR(5HT) 
nucleus, which would redound in the disinhibition of the 
A6(NA) neurons [136, 163, 164]. 

 With respect to all the above, it should be known that the 
raised adrenaline plasma levels registered during the uncop-
ing stress periods are responsible for the TH-2 immunologi-
cal profile, which always parallels this syndrome that under-
lies both infectious and malignant diseases during relapsing 
periods. This neuroimmunological disorder depends on the 
ability by the raised levels of adrenaline to interfere with the 
natural killer (NK) cells cytotoxicity against the malignant 
cells. This phenomenon fits well with the successful thera-
peutical effects obtained in advanced cancer patients with 
neuropharmacological manipulations addressed to reduce 
plasma Ad levels [44, 65, 67, 68, 165-168]. 

 Besides, it is necessary to normalize the sleep disorder 
which is always present at these circumstances. This target is 
reached by the administration of clonidine (0.15 mg) plus 
doxepin (25 mg) or imipramine (25 mg) or clomipramine 
(25mg) at nocturnal period. The former drug (an alpha-2 
agonist) would attenuate the overactivity of the A5(NA) + 
A6(NA) + DR(5-HT) nuclei triggered by the diurnal pre-

scription (all of them are crowded by inhibitory alpha-2 re-
ceptors) whereas the tricyclic drugs would allow the slow 
plus progressive fading rather than the sudden fall of the 
above mentioned A6(NA) + DR(5-HT) nuclei [18, 169-172]. 
These tricyclic drugs are both NA- and 5-HT-uptake inhibi-
tors thus, they would interfere with the abrupt fall of the fir-
ing activity of the NA plus 5HT neurons, allowing a gradual 
and progressive fading of this binomial system [173]. This 
neuropharmacological manipulation is necessary to elongate 
the slow wave sleep (SWS) and avoid the short-rapid eye 
movement (REM) latency always present in both stressed 
and endogenous depressed patients [174, 175]. 

Type N Diseases (See Fig. 2) 

 Taking into account that these diseases are underlain by 
neural sympathetic predominance plus reduced adrenal sym-
pathetic activity: C1(Ad) + A6(NA) + DR(5-HT), our thera-
peutical strategy is addressed to revert this neurochemical 
profile. With respect to this, we prescribe the following 
treatment: an noradrenaline-uptake inhibitor like desipramine 
+ an alpha-2 agonist such as clonidine, plus physostigmine 
or rivastigmine (ACh inhibitors, which excite the A6(NA) 
and the C1(Ad) nuclei but not the A5(NA) neurons) [176-
178], plus olanzapine or any other similar drug before break-
fast and lunch. In addition, we add doxepin or clomipramine 
or imipramine before supper and mirtazapine (an alpha-2 + 
5HT-2 antagonist) before bed. We will explain the rational-
ity of this therapeutical approach. 

 Clonidine should inhibit the overactive A5(NA) but not 
the hypoactive C1(Ad) + A6(NA) neurons thus, desipramine 
would act at the latter rather than at the former NA nucleus 
[80, 84, 179-182]. The nocturnal administration of mirtazap-
ine would excite the release of NA + 5-HT from the A6(NA) 
+ DR(5-HT) neurons, respectively, whereas the above men-
tioned tricyclic (doxepin, imipramine or clomipramine) 
would facilitate the prolongation of the simultaneous release 
of NA + 5-HT triggered by mirtazapine. This therapeutical 
strategy allows the prolongation of the SWS and avoids the 
short-REM latency. With respect to the above, it should be 
known that our sleep laboratory demonstrated [18, 24] that 
the prolongation of the SWS depends on the slow and pro-
gressive fading of the noradrenaline circulating levels and 
that the REM sleep appearance is paralleled by the maximal 
fall of it. These findings are consistent with others showing 
that this last sleep period is characterized by the absolute 
disappearance of the firing rate of both A6(NA) + DR(5-HT) 
neurons [82, 175, 183]. This explains why all patients af-
fected by the obstructive sleep apnea syndrome present with 
raised NA/Ad plasma ratio (neural sympathetic overactivity) 
[24, 174, 183-187]. The above phenomena are consistent 
with others showing that A6(NA) and A5(NA) axons display 
a black vs. white antagonism at the upper pharynx and 
respiratory areas; excitation by the former triggers the 
opening of it, whereas the latter provokes the closure of this 
segment [128, 183-187]. 

NEURAL SYMPATHETIC OR ADRENAL SYMPA-
THETIC VS. PARASYMPATHETIC INTERACTIONS 

 Neural sympathetic activity depends on the A5(NA) neu-
rons which send excitatory (glutamatergic) axons to the lum-
bar sympathetic (lateral) spinal (ACh) neurons. Axons of 
these latter integrate the sympathetic pre-ganglionic nerves 
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which synapse at these ganglia. Acetylcholine released from 
these axons excites post-synaptic nicotine receptors located 
at these (NA) neurons [76, 127]. Axons of these NA neurons 
integrate the sympathetic nerves which act at all peripheral 
and visceral targets. In addition, sympathetic nerves are 
crowded by muscarinic excitatory plus DA-2 inhibitory re-
ceptors in such a way that circulating acetylcholine released 
from parasympathetic nerves is able to enhance neural sym-
pathetic activity at visceral levels [87, 101, 164, 188-191]. 
This ACh + NA interaction allows the fast excitation of the 
neural sympathetic branch. In addition to the above, sympa-
thetic nerves innervate and inhibit the adrenal glands secre-
tion by acting at alpha-2 receptors located at this level [128, 
192]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (2). Neural sympathetic activity. Neural sympathetic activity 

depends on the sympathetic nerves release of noradrenaline (NA) 

(90%) + dopamine (DA) (10%). This branch of the peripheral auto-

nomic nervous system (ANS) is positively correlated with activity 

of the ponto-medullary A5(NA) neurons, which excite the spinal 

sympathetic neurons and inhibit the C1(Ad) medullary nuclei (re-

sponsible for the adrenal glands secretion). In addition, A5(NA) 

axons inhibit the medullary vagal complex. The absence of C1(Ad) 

activity redounds in the hypoactivity of the DR(5-HT) neurons. 

Serotonin released from these axons is the most important factor 

which initiates and prolongs the corticotrophin releasing hormone 

(CRH) secretion by the paraventricular nucleus (PVN) at the hypo-

thalamus. The minimization of this factor is consistent with the 

moderated rise of plasma cortisol (CRT), always registered during 

neural sympathetic overactivity. In addition to the above, it has 

been demonstrated that sympathetic nerves inhibit the adrenal 

glands secretion, directly, by acting at alpha-2 receptors located at 

these glands. This is consistent with the raised NA/Ad plasma ratio 

registered in these patients. Furthermore, overactivity of the sympa-

thetic nerves provokes vascular, bronchial, sphincteral (gastrointes-

tinal, urinary) contraction always present in this circumstance [67]. 

 Adrenal sympathetic activity depends on the C1(Ad) me-

dullary neurons which send glutamatergic axons to the tho-

racic sympathetic (lateral) spinal (ACh) neurons [87]. Axons 

of these neurons innervate the adrenal glands, which are 

crowded by excitatory nicotine receptors [81]. Adrenaline 

released from the adrenal glands to the blood stream reaches 

visceral areas at which level display opposite effects to those 

triggered by the sympathetic nerves [193]. These effects are 

mediated by beta-2 receptors, however some areas are 

crowded by alpha-2 receptors but not by the former [194]. 

Excitation of alpha-2 receptors by circulating adrenaline 

provokes cooperator effects with the noradrenaline released 

from sympathetic nerves. In addition, these nerves are also 

provided with excitatory alpha-2 receptors [193]. According 

to all the above, this complex peripheral ANS interaction 

between the two branches of the peripheral ANS explains the 

severe pathophysiological disorders arising from the deficit 

of the adrenal glands secretion, at which circumstances the 

crosstalk between three factors (neural sympathetic, adrenal 

sympathetic and parasympathetic) is reduced to two of them 

[190-196]. Other factors, like the peripheral serotonergic 

system cooperates with the parasympathetic activity, which 

triggers the release of 5-HT from the intestinal source and in 

addition, this latter display an excitatory effect at the area 

postrema medullary nucleus responsible for the enhancement 

of the parasympathetic activity. This positive cholinergic 

plus serotonergic feedback is observed during the called se-

rotonergic syndrome registered in patients affected by the 
carcinoid syndrome [131-133, 143]. 

CENTRAL NERVOUS SYSTEM & PERIPHERAL 

AUTONOMIC NERVOUS SYSTEM PROFILES 

WHICH UNDERLIE AGING 

 The underactivity of the adrenal sympathetic system reg-

istered during aging converts the trinomial physiological 

structure which includes neural sympathetic, adrenal sympa-

thetic and parasympathetic branches of the peripheral ANS 

in a binomial anatomical + physiological “black and white” 

circuitry. This phenomenon is responsible for the lack of the 

normal flexibility and compliance which allows the mitiga-

tion of the responses to stressor stimuli [108, 194-198]. 

 The A6(NA) and the A5(NA) as well as the C1(Ad) nu-

clei are excited during acute stress, in such a way that the 

two sympathetic branches of the ANS might be able to re-

spond in association or dissociation [85]. This compliance 

allows the attenuation of the stressors effects and avoids the 

abrupt appearance of the exhaustion periods (uncoping 

stress). Evenmore, the repetition of controllable stressing 

periods allows the adaptation to them (coping stress). This 

physiological capability fades progressively with aging [199-

201], because of the progressive minimization of the adrenal 

glands activity. This peripheral phenomenon finds explana-

tion in the well known reduction of the number of the 

A6(NA) neurons, which integrate the locus coeruleus pon-

tine nucleus, throughout aging [104]. With respect to the 

above, it should be remembered that this nucleus inter-

changes inhibitory axons with the A5(NA) nucleus and in 

addition sends and receives modulatory axons to and from 

the C1(Ad) medullary nuclei, which in turn, innervate the 
A5(NA), at which level provokes inhibitory responses [67]. 
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CONCLUSIONS 

 The peripheral ANS is modulated by three CNS circuits 
located at the pontomedullary level: 1) the C1(Ad) vs. the 
vagal complex; 2) the pontomedullary A5(NA) + C1(Ad) + 
the vagal complex, and 3) the A6(NA) nucleus which inter-
changes inhibitory axons with the A5(NA) + C1(Ad) but that 
is also able to excite or inhibit the latter. The adequate un-
derstanding of the above crosstalk is absolutely necessary to 
treat the ANS disorder underlin diseases. According with 
this point of view, we postulate the existence of two types of 
diseases: 1) Type N [underlain by hypoactivity of the 
A6(NA) + C1(Ad) nuclei plus hyperactivity of the A5(NA) 
nucleus] which includes: aging, psychosis, endogenous de-
pression, post-traumatic stress disorder, deficit-attention hy-
peractivity disorder, essential hypertension, hyperinsulinism, 
multiple sclerosis, myasthenia gravis, and others. This ANS 
unbalance is associated to TH-1 immunological predomi-
nance. 2) Type A diseases underlain by hyperactivity of the 
C1(Ad) + DR(5-HT) nuclei plus hypoactivity of the A5(NA) 
nucleus (uncoping stress disorder). This ANS unbalance is 
associated to TH-2 immunological predominance. 
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