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Abstract: Purinergic neurotransmission, involving release of ATP as an efferent neurotransmitter was first proposed in 

1972. Later it was recognised as a cotransmitter in peripheral nerves and more recently as a cotransmitter with glutamate, 

noradrenaline, GABA, acetylcholine and dopamine in the CNS. Both ion channel and G protein-coupled receptors for 

purines and pyrimidines are widely expressed in the brain and spinal cord. They mediate both fast signalling in neuro-

transmission and neuromodulation and long-term (trophic) signalling in cell proliferation, differentiation and death. 

Purinergic signalling is prominent in neuron-glial cell interactions. Purinergic signalling has been implicated in learning 

and memory, locomotor activity and feeding behaviour. There is increasing interest in the involvement of purinergic sig-

nalling in the pathophysiology of the CNS, including trauma, ischaemia, epilepsy, neurodegenerative diseases, neuropsy-

chiatric and mood disorders. 
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INTRODUCTION 

The concept of purinergic neurotransmission was born in 
1972 [1], after it was shown that adenosine 5’-triphosphate 
(ATP) was a transmitter in non-adrenergic, non-cholinergic 
inhibitory nerves in the guinea-pig taenia coli. Subsequently 
ATP was identified as a co-transmitter in sympathetic and 
parasympathetic nerves [2] and it is now recognised that 
ATP acts as either sole transmitter or a co-transmitter in 
most nerves in both the peripheral nervous system and cen-
tral nervous system (CNS) (see [3]). Since 1992, there has 
been an explosion of interest in purinergic transmission in 
the different regions of the brain and spinal cord [3, 4]. Vari-
ous purinergic receptor subtypes have been shown to be 
widely distributed throughout the CNS being present in neu-
rones and glia (see [3]). It is now well established that ATP 
acts both as a fast excitatory neurotransmitter or neuromodu-
lator and has potent long-term (trophic) roles in cell prolif-
eration, differentiation and death in development and regen-
eration, as well as in disease [5, 6]. 

Purinergic receptors were first defined in 1976 [7] and 2 
years later a basis for distinguishing two types of purinocep-
tor, identified as P1 and P2 (for adenosine and 
ATP/adenosine diphosphate [ADP], respectively) was pro-
posed [7]. At about the same time, two subtypes of the P1 
(adenosine) receptor were recognised [8, 9], but it was not 
until 1985 that a proposal suggesting a pharmacological ba-
sis for distinguishing two types of P2 receptor (P2X and 
P2Y) was made [10]. A year later, two further P2 purinocep-
tor subtypes were identified, namely, a P2T receptor selec-
tive for ADP on platelets and a P2Z receptor on macro- 
phages [11]. Further subtypes followed, perhaps the most 
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important being the P2U receptor, which could recognize 
pyrimidines such as uridine 5'-triphosphate (UTP) as well as 
ATP [12]. Abbracchio and Burnstock [13], on the basis of 
studies of transduction mechanisms [14] and the cloning of 
nucleotide receptors [15-18], proposed that purinoceptors 
should belong to two major families: a P2X family of ligand-
gated ion channel receptors and a P2Y family of G protein-
coupled receptors. This nomenclature has been widely 
adopted and currently seven P2X subunits and eight P2Y 
receptor subtypes are recognised, including receptors that are 
sensitive to pyrimidines as well as purines (see [19]). 

There is compelling evidence for exocytotic neuronal ve-
sicular release of ATP [20] and recent studies also support a 
vesicular release of ATP from astrocytes [21, 22], perhaps 
involving lysosomes [23]. Evidence has been provided for 
additional mechanisms of nucleotide release, including ATP-
binding cassette transporters, connexin or pannexin 
hemichannels, plasmalemmal voltage-dependent anion chan-
nels, as well as P2X7 receptors [24, 25]. After release, ATP 
and other nucleotides undergo rapid enzymatic degradation 
by ectonucleotidases, which is functionally important as 
ATP metabolites act as physiological ligands for various 
purinergic receptors [6]. Ectonucleotidases include the E-
NTPDases (ecto-nucleoside triphosphate diphosphohydro-
lases), E-NPPs (ecto-nucleotide pyrophosphatase 
/phosphodiesterases), alkaline phosphatases and ecto-5´-
nucleotidase. Although generally adenosine is produced by 
ectoenzymatic breakdown of ATP, there may be subpopula-
tions of neurones and/or astrocytes that release adenosine 
directly [26]. 

PURINERGIC SIGNALLING IN THE CNS  

The actions of adenosine in the CNS have been recog-
nised for many years (see [27-30]). However, consideration 
of the role(s) of ATP in the CNS received less attention until 
more recently (see [4, 31-40]). In particular, fast purinergic 
synaptic transmission has been clearly identified in the brain 
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[41]. It was first observed in the medial habenula [42] and 
has now been described in a number of other areas of the 
CNS, including spinal cord [43], locus coeruleus [44], hip-
pocampus [45, 46] and somatic-sensory cortex [47]. Electron 
microscopic immunocytochemical studies support these 
functional experiments. Although adenosine, following ec-
toenzymatic breakdown of ATP, is the predominant, presyn-
aptic modulator of transmitter release in the CNS (see [29]), 
ATP itself can also act presynaptically [48]. A strong case is 
made for coordinated purinergic regulatory systems in the 
CNS controlling local network behaviours by regulating the 
balance between the effects of ATP, adenosine and ectonu-
cleotidases on synaptic transmission [49, 50].  

ATP is present in high concentrations within the brain, 
varying from approximately 2mM/Kg in the cortex to 
4mM/Kg in the putamen and hippocampus [51]. Much is 
now known about the breakdown of ATP released in the 
CNS [52]. Cortex and hippocampus synaptic membranes 
exhibit higher activities of NTPDase1 and NTPDase2 than 
cerebellum and medulla oblongata, while ecto-5'-
nucleotidases and adenosine deaminase were found in most 
brain regions.  

1. Purine Receptors in the CNS 

In situ hybridisation of P2 receptor subtype mRNA and 
immunohistochemistry of receptor subtype proteins have 
been carried out in recent years to show wide, but heteroge-
neous distribution in the CNS of both P2X receptors [53-57] 
and P2Y receptors [33, 58, 59]. P2X2, P2X4 and P2X6 recep-
tors are widespread in the brain and often form heteromul-
timers. P2X1 receptors are found in some regions such as 
cerebellum and P2X3 receptors in the brain stem. P2X7 re-
ceptors are probably largely pre-junctional. P2Y1 receptors 
are also abundant and widespread in the brain. The hippo-
campus expresses all P2X receptor subtypes and P2Y1, 
P2Y2, P2Y4, P2Y6 and P2Y12 receptors. 

Evidence has been presented that nucleotides can act 
synergistically with growth factors to regulate trophic events 
[60, 61]. However, a recent paper has shown that ATP can 
also stimulate neurite outgrowth from neuroblastoma cells 
independent of nerve growth factor [62].  

2. Cotransmission 

Evidence for purinergic cotransmission in the CNS has 
lagged behind that presented for purinergic cotransmission in 
the periphery (see [63]). However, in the last few years a 
number of such studies have been reported. 

Release of ATP from synaptosomal preparations and 
slices from discrete areas of the rat and guinea-pig brain in-
cluding cortex, hypothalamus, medulla, and habenula, has 
been measured [64-66]. In cortical synaptosomes, a propor-
tion of the ATP appears to be coreleased with acetylcholine 
(ACh), and a smaller proportion with noradrenaline [67]. In 
preparations of affinity-purified cholinergic nerve terminals 
from the rat caudate nucleus, ATP and ACh are coreleased 
[68]. There is evidence for corelease of ATP with catecho-
lamines from neurons in the locus coeruleus [69] and hypo-
thalamus [66, 70]. Purinergic and adrenergic agonist syner-
gism for vasopressin and oxytocin release from hypotha-
lamic supraoptic neurons is consistent with ATP cotransmis-
sion in the hypothalamus [71]. Corelease of ATP with -

amino butyric acid (GABA) has been demonstrated in the 
rabbit retina [72] and in dorsal horn and lateral hypothalamic 
neurons [73]. There is evidence for corelease of ATP with 
glutamate in the hippocampus [45] as well as widespread 
and pronounced modulatory effects of ATP on glutamatergic 
mechanisms [74]. A recent study has shown that in central 
neuronal terminals, ATP is primarily stored and released 
from a distinct pool of vesicles and that the release of ATP is 
not synchronized either with the cotransmitters GABA or 
glutamate [21]. Cooperativity between extracellular ATP and 
N-methyl-d-aspartate receptors in long-term potentiation 
induction in hippocampal CA1 neurons [75] is consistent 
with ATP/glutamate cotransmission. Colocalisation of func-
tional nicotinic and ionotropic nucleotide receptors have also 
been identified in isolated cholinergic synaptic terminals in 
midbrain [76]. Interactions between P2X2 and both 4 4 and 

4 2 nicotinic receptor channels have been shown in oocyte 
expression studies [77].  

There is indirect evidence supporting the possibility that 
dopamine and ATP are cotransmitters in the CNS [78]. After 
cerebellar lesions in rats producing axotomy of mossy and 
climbing fibre systems, nitrergic and purinergic systems 
were activated with similar time courses on pre-cerebellar 
stations [79]. This raises the possibility that, as in a subpopu-
lation of neurons in the gut, nitric oxide and ATP are co-
transmitters. 

3. Glial Cells 

Multiple P1 and P2 receptor subtypes are expressed by 
astrocytes, oligodendrocytes and microglia (see [57]). 
Adenosine stimulates glutamate release from astrocytes via 
A2A receptors [80]. A3 receptors mediate chemokine CCL2 
synthesis in cultured mouse astrocytes [81]. Astrocytes in the 
cortex and cerebellum express P2Y13 as well as P2Y1 and 
P2X2 receptors [82]. Astrocytes and microglia express many 
purinergic receptor subtypes, but as with myelinating glia, 
the patterns of expression are complex and can change with 
physiological and developmental conditions. Many glial 
cells co-express multiple types of P1 and P2 receptors, but 
there can be considerable heterogeneity in expression pat-
terns among individual cells. NTPDase2 is the dominant 
ectonucleotidase expressed by rat astrocytes [83].  

ATP participates in both short-term calcium signalling 
events and in long-term proliferation, differentiation and 
death of glia [84]. Both adenosine and ATP induce astroglial 
cell proliferation and the formation of reactive astrocytes 
[85]. ATP and basic fibroblast growth factor (bFGF) signals 
merge at the mitogen-activated protein kinase cascade, and 
this integration may underlie the synergistic interactions of 
ATP and bFGF in astrocytes. Activation of adenosine A2B 
receptors in astroglioma cells has been shown to increase 
interleukin-6 (IL-6) mRNA and IL-6 protein synthesis. 
Blockade of A2A receptors prevents bFGF-induced reactive 
astrogliosis in rat striated primary astrocytes [86]. Extracel-
lular nucleotide signalling has also been identified in adult 
neural stem cells [87]. 

Release of ATP through connexin hemichannels in astro-
cytes has been reported [88], although vesicular release has 
also been described [89, 90]. It has also been suggested that 
P2X7 receptor pores may directly mediate efflux of cytosolic 
ATP, glutamate and GABA from glial cells in the CNS [91]. 
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Calcium rises in rat cortical astrocytes are mediated by P2Y1 
and P2X7 receptors, but additional P2 receptors (P2X2, P2X4 
P2X5, P2Y2, P2Y4 and P2Y14) may also contribute [92]. An-
other study has shown that cultured astrocytes are able to 
release UTP either at rest or following hypoxia and that 
P2Y2 receptor mRNA increased by 2-fold during glucose-
oxygen deprivation [93]. P2Y2 and P2Y4 receptors are 
strongly expressed in glial endfeet apposed to blood vessel 
walls [94, 95]. 

4. Neuron-Glial Interactions 

Purinergic signalling is emerging as a major means of in-
tegrating functional activity between neurons, glial and vas-
cular cells in the CNS. These interactions mediate effects of 
neural activity, in development and in association with neu-
rodegeneration, myelination, inflammation and cancer (see 
[5, 96]). 

New findings from purinergic research began to converge 
with glial research as it became more widely appreciated that 
ATP was co-released from synaptic vesicles and thus acces-
sible to perisynaptic glia, while ATP released from glial cells 
could also act on neurons. This common currency for cell-
cell communication opened the possibility of an intercellular 
signalling system that could unite glia and neurons function-
ally. 

BEHAVIOURAL STUDIES 

While the involvement of purinergic signalling in neuro-
transmission and neuromodulation in the CNS is now well 
established, there are relatively few studies of the involve-
ment of purinergic signalling in behavioural pathways, apart 
from brainstem control of autonomic functions, although 
behavioural changes have been reported in pathological 
situations (see [3]). 

ATP and adenosine are involved in mechanisms of syn-
aptic plasticity and memory formation [97, 98]. The hyp-
notic/sedative (somnogenic) actions of adenosine are well 
known as are the central stimulant actions of methylxanthine 
antagonists (see [99-101]). Adenosine, acting through A1 
receptors, is an endogenous, homeostatic sleep factor, medi-
ating the sleepiness that follows prolonged wakefulness. The 
basal forebrain as well as neurons in the cholinergic latero-
dorsal tegmental nuclei are essential areas for mediating the 
sleep inducing effects of adenosine by inhibition of wake-
promoting neurons [102]. It has been suggested that adeno-
sine may promote sleep by blocking inhibitory inputs on 
ventrolateral preoptic area sleep-active neurons [103]. A2A 
receptors in the subarachnoid space below the rostral fore-
brain, activating cells in the nucleus accumbens that increase 
activity of ventrolateral preoptic area neurons, may also play 
a role in the somnogenic effect of adenosine [104].  

The central inhibitory effects of adenosine on spontane-
ous locomotor activity of rodents and antagonism by caffeine 
have been known for some time (e.g. [105, 106]). Later A2A 
receptors on the nucleus accumbens were shown to mediate 
locomotor depression [107]. Modulation of striatal A1 and A2 
receptor-mediated activity induces rotational behaviour in 
response to dopaminergic stimulation in intact rats [108]. 
Interactions between adenosine and L-type Ca

2+
 channels in 

the locomotor activity of rat were demonstrated [109]. A 
predominant role for A1 receptors in the motor-activity ef-

fects of acutely administered caffeine in rats has been re-
ported [110]. A combination of A1 and A2A receptor blocking 
agents induces caffeine-like spontaneous locomotor activity 
in mice [111]. It has been reported that ATP continuously 
modulates the cerebellar circuit by increasing the inhibitory 
input to Purkinje neurons, probably via P2X5 and P2Y2 
and/or P2Y4 receptor subtypes, thus decreasing the main 
cerebellar output activity, which contributes to locomotor 
coordination [112]. P2X2 receptor immunoreactivity in the 
cerebellum was demonstrated and claimed to be consistent 
with a role for extracellular ATP acting as a fast transmitter 
in motor learning and coordination of movement [113]. 

Adenosine given centrally can result in a decrease in food 
intake [114]. In the striatum, extracellular ATP and adeno-
sine are involved in the regulation of the feeding-associated 
mesolimbic neuronal activity in an antagonistic manner 
[115]. It has been reported that feeding behaviour relies on 
tonic activation of A2A receptors in the nucleus accumbens in 
rats [116]. NTPDase3 and 5 -ectonucleotidase regulate the 
levels of adenosine involved in feeding behaviour in rat 
brain [117]. Enhanced food intake after stimulation of hypo-
thalamic P2Y1 receptors in rats has been described [118]. 
Both adenosine and ATP have been implicated in mood and 
motivation behaviour [119-122].  

PURINERGIC PATHOPHYSIOLOGY IN THE CNS, 
INCLUDING EPILEPSY 

There is a rapidly growing literature about the involve-
ment of purinergic signalling in most disorders of the CNS, 
such as neurodegeneration diseases, including Alzheimer's, 
Parkinson's and Huntington's diseases and multiple sclerosis, 
cerebral ischaemia, migraine, neuropsychiatric and mood 
disorders (see [123] and Fig. 1). 

The particular focus of this Special Issue is purinergic 
signalling in epilepsy. Epilepsy affects approximately 1% of 
the population worldwide and recurring seizures have devas-
tating behavioural, social and occupational consequences, 
damaging the brain and increasing pre-existing neurological 
deficits. Current anticonvulsant drugs and complementary 
therapies are not sufficient to control seizures in about a third 
of epileptic patients, so there is an urgent need for treatments 
that prevent development and control epilepsy better. Epi-
lepsy is often accompanied by massive glial cell prolifera-
tion, although the role of these cells in seizures and epilepsy 
is still unclear. 

Both P1 and P2 receptors have been implicated in epi-
lepsy (see [124-127]). Microinjection of ATP analogs into 
the prepiriform cortex induces generalized motor seizures, 
suggesting that P2X receptor antagonists may have potential 
as neuroleptic agents [125]. Epileptiform activity in the CA3 
region of rat hippocampal slices is modulated by adenine 
nucleotides, probably acting via excitatory P2X receptors 
[128]. The hippocampus of chronic epileptic rats shows ab-
normal responses to ATP associated with increased expres-
sion of P2X7 receptors, which are substantially upregulated 
in chronic pilocarpine-induced epilepsy in rats (perhaps in 
microglia) and may participate in the pathophysiology of 
temporal lobe epilepsy [129]. In a study of kainate-provoked 
seizures, enhanced immunoreactivity of the P2X7 receptor 
was observed in microglia as they are changed from the rest-
ing to the activated state [130]. The amount of extracellular 
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ATP detected in hippocampal slices following electrical 
stimulation of Schaffer collaterals was significantly greater 
in mice that have an inherited susceptibility to audiogenic 
seizures [131], perhaps associated with reduced brain Ca

2+
-

ATPase activity. Uridine is released during epileptic activity 
and may act as an inhibitory neuromodulator [132], although 
the underlying mechanism is not known. Increased hydroly-
sis of ATP occurs in rat hippocampal slices after seizures 
induced by quinolinic acid [133]. There is a decrease of pre-
synaptic P2X receptors in the hippocampus of rats that have 
suffered a convulsive period, which may be associated with 
the development of seizures and/or of neurodegeneration 
during epilepsy [134]. Release of glutamate from astrocytes 
by ATP has been implicated in epileptogenesis [135]. 

P1 receptors have also been implicated in epileptic sei-

zures [100, 124, 136-138]. Decreased extracellular adenosine 

levels and altered A1 and P2 receptor activation caused by 
hypercapnia in hippocampal slices provide a plausible 

mechanism for hyperventilation-induced epileptic seizures in 

vulnerable humans [139]. Adenosine, acting via A1 recep-
tors, reduces seizures in an experimental model of temporal 

lobe epilepsy induced by pilocarpine in rats [140]. A lower 

density of P1(A1) receptors in the nucleus reticularis thalami 
in rats with genetic absence epilepsy has been reported 

[141]. Several antiepileptic agents reduce the ability of astro-

cytes to transmit calcium waves, raising the possibility that 
purinergic receptor antagonists blocking intercellular cal-

cium waves in astrocytes could offer new treatments for epi-

leptic disorders.  

 

Fig. (1). Purinergic signalling in the spinal cord.  

Presynaptic primary afferent nerve terminals in the dorsal horn of the spinal cord are depicted releasing both glutamate (GLUT) and ATP as 

cotransmitters by exocytosis. The released ATP acts postsynaptically on P2X2/4/6 and on various P2Y receptor subtypes activated by ADP, 

UTP and UDP, as well as ATP. Glutamate acts postsynaptically on -amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AM-

PARs) and/or N-methyl-d-aspartate receptors (NMDARs). ATP is broken down by ectonucleotidase to adenosine (ADO), which acts as a 

presynaptic inhibitory modulator through P1(A1) receptors, but ATP itself can act presynaptically either to inhibit the release of transmitter 

through P2Y receptors or to enhance the release of glutamate through P2X3 receptors. ATP is also released from astrocytes (and probably 

also from microglia) together with glutamate to participate in glial–neuron interactions. Both P2X and P2Y receptor subtypes are expressed 

by astrocytes. Leukaemia inhibiting factor (LIF) released by astrocytes in response to ATP promotes myelination in oligodendrocytes and re-

myelination through P2Y1 receptors. P2X7 receptors on oligodendrocytes mediate apoptosis. Resting microglia express P2X4 and P2X7 re-

ceptors involved in neuropathic pain. ATP, through P2X7 receptors, promotes IL-1  release. Occupation of P2X4 receptors leads to release of 

brain-derived neurotrophic factor (BDNF) to act on TrkB receptors expressed by neurons in the pain pathway. Occupation of P2X7 receptors 

leads, through ERK and/or nuclear factor of activated T cells (NFAT), to activation of the transcription factor cAMP response element-

binding protein (CREB), whereas P2Y1 receptors also activate CREB, but through p38 signalling. P2Y12 receptors on resting microglia me-

diate cell migration after injury, whereas P2Y6 receptors that are expressed on the activated amoeboid microglia mediate phagocytosis of 

debris at the site of damage. Inhibitory interneurons that corelease -aminobutyric acid (GABA), glycine and ATP modulate the nociceptive 

pathway. (Reproduced from [123] with Permission).  
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