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Abstract: In the central nervous system (CNS), ATP is released from vesicles at nerve terminals in a frequency-
dependent manner and can activate P2 receptors widely expressed and distributed in the CNS. In addition to interacting 
with P2 receptors, ATP can be rapidly hydrolyzed to adenosine to activate P1 receptors modulating neuronal transmission. 
Thus, complex synaptic interactions in the CNS are modulated by P2 and P1 receptors. This review focuses on the role of 
P2X receptors in temporal lobe epilepsy. P2X receptors are cationic-selective channels gated by extracellular ATP. Seven 
subunits (P2X1-7) are expressed throughout the central nervous system and are involved with modulatory mechanisms of 
neurotransmitter release, hyperexcitability, intracellular calcium influx, cell-cell communication, neuroprotection, and cell 
death. This review discusses the current data regarding the involvement of P2 receptors in the pathophysiology of tempo-
ral lobe epilepsy (TLE). 
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TEMPORAL LOBE EPILEPSY (TLE): DEFINITION, 

EPIDEMIOLOGY AND ETIOLOGY 

Epilepsy is a common chronic brain disorder character-
ized by recurrent seizures due to excessive activation of 
cerebral neurons. TLE is the most frequent type of human 
epilepsy [1, 2]. In about 40% of patients, the TLE is refrac-
tory to medical therapy [3]. TLE syndrome is characterized 
by partial seizures that may or may not be secondarily gener-
alized. Common symptoms include abdominal sensations 
and fear in patients with mesial temporal sclerosis or psychic 
symptoms (eg, déjà vu), abdominal sensation, tinnitus and 
vertigo in patients with lateral TLE [4].  

Neuropathological studies indicate that TLE is frequently 
associated with hippocampal sclerosis [5]. Hippocampal 
sclerosis is detected routinely by image studies during pre-
surgical evaluation of patients with intractable TLE. In a 
recent review, de Lenarolle and Lee [3] cited that about 70% 
of hippocampi removed surgically from patients with TLE 
show hippocampal sclerosis, and 30% do not show sclerosis, 
known as paradoxical temporal lobe epilepsy.  

The etiology and the pathogenesis of this type of medial 
temporal lobe damage are not known. Several studies have 
shown a correlation between severe childhood illness (infec-
tion, febrile convulsions, status epilepticus, SE) and hippo-
campal atrophy in TLE [6, 7]. However, not all TLE patients 
exhibiting hippocampal damage have a history of initial in-
sult. Some experimental and human data suggest that recur-
rent seizures may cause progressive damage to the hippo-  
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campus [5, 8]. Until now, it is unknown whether the damage 
found in the hippocampus is the cause or the consequence of 
TLE. However, surgical removal of the sclerotic hippocam-
pus results in the best seizure-free outcome [3].  

EPILEPTOGENESIS 

The development of an epileptic disorder involves a cas-
cade of events activated by an initial insult in the brain. It is 
well known from studies using animal models [9, 10] as well 
as from studies from human patients [11] that there is a la-
tent period between induction of a localized cerebral insult 
such as head trauma or SE and the appearance of a chronic 
epileptic condition. During the latent period, neuronal loss 
and abnormal synaptic reorganization occurs [12, 13]. This 
reorganization of the neuronal integration can take years in 
patients and weeks in animal models and ultimately leads to 
abnormally increased excitability and synchronization, 
which eventually cause spontaneous seizures (Fig. 1). 

Thus, epilepsy can be considered as an active process 
which results in both ictal phenomena and permanent interic-
tal functional and structural changes in the brain [14]. Pa-
tients who develop TLE demonstrate progression in both the 
number of seizures and in neurological symptoms related to 
seizure such as cognitive and behavioral disorders [15, 16]. 
The long latency before TLE develops suggests that thera-
peutic intervention is a good alternative to prevent the ap-
pearance of seizures. 

The Fig. (1) shows a schematic view of the development 
of an epileptic disorder in patients and in animal models. 
Following an insult, the brain reorganizes networks that pre-
dispose the brain to the development of spontaneous sei-
zures.  
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NEUROPATHOLOGIC FINDINGS IN TLE 

The hippocampus or Ammon’s horn is one of the most 
vulnerable areas of the temporal lobe to develop cell loss 
after seizures. The histological pattern of hippocampal scle-
rosis in TLE patients is characterized by the loss of pyrami-
dal cells in the prosubiculum and CA1 field of the hippo-
campus [5]. The findings also include neuronal loss in the 
hilus of the dentate gyrus and the adjacent CA3 field of the 
hippocampus [17, 18]. In many cases, hippocampal damage 
in TLE is accompanied by mossy fibers reorganization. 
Mossy fibers from the dentate granule cells which normally 
innervate the hilar mossy cells and CA3 pyramidal cells and 
interneurons become reorganized and project into the inner 
third of the molecular layer of the dentate gyrus [19-21]. The 
term "mesial temporal sclerosis" has been introduced to de-
scribe cellular damage in the hippocampus, amygdala, and 
entorhinal cortex [3]. 

EXPERIMENTAL ANIMAL MODELS  

Experimental animal models provide a useful approach to 
assess the mechanisms involved with epileptogenesis. The 
damage precedes the appearance of seizures in several ani-
mal models of human partial epilepsies. SE induced by sys-
temic injection of pilocarpine or kainic acid causes structural 
brain damage in rats. Cell loss is observed in the hilus and 
CA3 region of the hippocampus as well as in the amygdala, 
entorhinal cortex, thalamus and cerebral cortex [9]. Moreo-
ver, prominent mossy fiber sprouting occurs [12]. According 
to Olney et al. [22], kainic acid and other analogues of glu-
tamate are toxic because they activate glutamate receptors on 
neuronal membranes, resulting in prolonged depolarization, 
neuronal swelling and death. By activating M1 muscarinic 
receptors, pilocarpine activates phospholipase C which in 
turn produces diacylglycerol (DG) and inositol triphosphate 
(IP3), resulting in alterations in calcium and potassium, lead-
ing to enhanced excitability [23-25].  

Increased excitability in the hippocampus results from 
decreased activity of ATPases that are unable to repolarize 

the membrane [26, 27]. High intracellular calcium can pro-
mote glutamate release which by activating glutamate recep-
tors allows the entrance of additional calcium to induce SE, 
excitotoxicity and cell death [24, 26]. In these experimental 
models, recurrent spontaneous seizures occur after a latent 
period, which is reminiscent of human TLE [12].  

Kindling is an animal model of TLE, where seizures are 
induced by repetitively applying subthreshold stimulation to 
the undamaged brain [28]. Repeated seizures induce progres-
sive cellular alterations not only in the hippocampus, but also 
in the amygdala, and the entorhinal cortex [29]. Furthermore, 
other studies have demonstrated that the neuronal loss is 
accompanied by aberrant mossy fiber axonal growth of den-
tate granule cells in the hippocampus [30]. 

MOLECULAR CHANGES IN EPILEPTOGENESIS 

Significant cell death and reorganization occurs in CA1, 
and studies have pointed to intense synaptic reorganization 
by calbindin and parvalbumin-positive neurons, which are 
presumably GABAergic neurons, that can result in the inhi-
bition of inhibitory neurons leading to abnormal synchrony 
and seizure activity [31]. This is an evidence that hyperexcit-
ability is not due to the loss of -aminobutyric acid (GABA) 
but involves other mechanisms that are related to increased 
excitatory neurotransmission.  

There is evidence that mossy cell in the hilus and py-
ramidal neurons in CA3 show increased expression of GluR1 
that in turn promote the excitation of granule cells [32]. 

To date, much attention has been given to the increased 
gliosis in this region, mainly of astrocytes, which could also 
contribute to hyperexcitability. There is evidence that astro-
cytes contribute with high levels of glutamate in hippocam-
pal areas where neurons are sparse [3]. Some changes in 
astrocytes, for example, high sodium channels expression, 
reduced potassium inward rectifying channel and elevated 
expression of GluR1 and downregulation of glutamine syn-
thetase, an enzyme responsible for the conversion of gluta-

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Schematic diagram of epileptogenesis in patients and in experimental model. An initial insult can cause brain damage, and the brain 
reorganizes during the latent period, which lasts weeks in animal models or years in patients, in a manner to predispose to the development of 
spontaneous seizures.  
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mate to glutamine, represent potential mechanisms by which 
astrocytes can release glutamate [33-36].  

Astrocytes can modulate inflammatory reactions through 
the expression of the transcription factor nuclear factor kB 
(NF-kB) and activation of prostaglandin E2 (PGE2) in re-
sponse to interleukin-1  (IL-1 ) [37]. PGE2 increases cal-
cium levels within astrocytes and contributes to glutamate 
release [38].  

Besides IL-1 , astrocytes can also produce other immu-
nological agents such as interleukins (IL-1, IL10 and IL-6); 
interferons (IFN)-  and , tumor necrosis factor (TNF)-  and 
transforming growth factor (TGF)- , among others [37, 39]. 
It has been shown that IL-1  is up regulated in sclerotic hip-
pocampus from patients with TLE and can worsen seizures 
through glutamate release [39]. Genes regulated by IL-1  are 
up regulated in sclerotic hippocampi from patients [39]. 

Growing evidence indicates that purines are widely in-
volved in the molecular mechanisms underlying the various 
functions of astrocytes, either by modulating intracellular 
molecules involved in energy metabolism, nucleic acid syn-
thesis, or by activating a variety of membrane receptors [40, 
41]. Purines, by activating P2 receptors can also modulate 
calcium influx and there is substantial evidence that cellular 
cascades initiated by calcium influx and perturbed intracellu-
lar calcium homeostasis are involved in the excitotoxic cell 

death produced by SE. In this paper we focus on recent data 
about the role of P2X receptors in CNS and in epilepsy. 

PURINES AS NEUROTRANSMITTER IN THE  
CENTRAL NERVOUS SYSTEM (CNS)  

The concept that adenosine 5’-triphosphate (ATP) could 
be a neurotransmitter was proposed by Burnstock in 1972 
[42]. This concept had considerable resistance for many 
years because ATP was considered only as an intracellular 
molecule. However, ATP is now recognized as a neuro-
transmitter in all nerve types in both the peripheral and cen-
tral nervous systems [43].  

In 1978 two subtypes of purinergic receptors were identi-
fied: the P1 receptor for adenosine and P2 for ATP and ADP 
[44]. Based on pharmacological characterization and mo-
lecular cloning, P2 receptors were divided into P2X and 
P2Y, based on whether they are ligand-gated ion-channels 
(P2X) or coupled to G proteins (P2Y) [45]. To date, seven 
mammalian P2X receptors, P2X1-7 and eight P2Y receptors 
have been cloned, including receptors activated by pyrimidi-
nes, purines and sugar nucleotides such as UDP-glucose and 
UDP-galactose [46]. P2 receptor function is involved in most 
physiological processes and participates in neurotransmis-
sion in the CNS during the development and in the adult 
brain [47]. The Fig. (2) shows a schematic view of P2 recep-
tor subtypes expressed in CNS and its agonists rank order 
potency. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. (2). Schematic diagram of P2 receptors subtypes for purines and pyrimidines. P2X family of ligand-gated ion channel receptors and P2Y 
family of G-protein-coupled receptors as well as agonists rank order of potency for principal P2 receptors subtypes expressed in central 
nervous system (CNS) are shown. Abbreviations: ATP, adenosine triphosphate; ADP, adenosine diphosphate; Ap4A, diadenosine tetraphos-
phate; BzATP, 2’-3’-O-(4-benzoyl-benzoyl)-ATP; , meATP, , -methylene ATP; 2-meSATP, 2-methyltio ADP; 2-meSATP, 2-methiotio 
ATP; CTP, cytosine triphosphate; ATP S, adenosine 5’-[ -thio]triphosphate; MRS 2365, [[(1R,2R,3S,4R,5S)-4-[6-amino-2-(methylthio)-9H-
purin-9-yl] 2,3dihydroxybicyclo[3.1.0]hex-1-yl]methyl] diphosphoric acid mono ester trisodium salt; UDP, uridine 5’-diphosphate. Data 
from Burnstock [46] and Illes & Ribeiro [48]. 
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Each P2Y receptor binds to a single heterotrimeric G pro-
tein (Gq/11 for P2Y1, P2Y2, P2Y4 and P2Y6 receptors, Gi 
for P2Y12 and P2Y13 and Gi/0 for P2Y14) although P2Y11 
can couple to both Gs and Gq/11 proteins [43, 46]. Both P2X 
and P2Y receptors modulate the level of intracellular cal-
cium ions [48, 49]. P2X is permeable to calcium whereas 
P2Y promotes release of calcium from intracellular stores by 
activating phospholipase C (PLC) and inositol triphosphate 
(IP3) (and/or modulation of adenylyl cyclase) [43].  

The P2 receptor subtypes have a wide but heterogenous 
distribution in the CNS and are expressed in neurons and 
glial cells [43, 50-57].  

P2X1 receptors are found in some regions such as cere-
bellum while P2X2 receptors are abundant in several brain 
areas such as cerebral cortex, hippocampus, habenula, sub-
stantia nigra pars compacta, ventromedial and arcuate hypo-
thalamic nuclei, mesencephalic trigeminal nucleus, ventro-
lateral medulla [43, 50, 51]. P2X3 receptors are highly ex-
pressed in brain areas involved in pain transmission (nucleus 
tractus solitarii, spinal trigeminal nucleus).  

P2X4 receptors show strong expression in the cerebel-
lum, spinal cord, cerebral cortex, hippocampus, thalamus 
and brainstem. Both P2X2 and P2X4 receptors localize to 
postsynaptic specializations of parallel fiber synapses in the 
cerebellum and at Schaffer collateral synapses in the hippo-
campus [57]. Immunohistochemical studies have revealed 
that P2X1-6 receptor subtypes are expressed predominantly 
in neurons, whereas the P2X7 receptor is expressed in glial 
cells (microglia and astrocytes), lymphocytes, macrophages 
as well as in neurons, indicating its participation in inflam-
matory or immune insult processes and cell-to-cell commu-
nication [58, 59]. Evidence for participation of P2X recep-
tors in different developmental processes such as neurite 
outgrowth (P2X3), postnatal neurogenesis (P2X4 and P2X5 
receptors), and cell death (maybe involving P2X7 receptor) 
have been described [47]. A pattern of expression of P2X 
receptors in CNS determined by in situ hybridization and 
immunohistochemistry is shown in Table 1.  

In neurons, P2X receptors mediate fast synaptic re-
sponses to ATP, and P2Y receptors mediate slow responses. 
Postsynaptic currents mediated by release of endogenous 
ATP have been shown in CA1 and CA3 hippocampal sub-
fields [60]. There is evidence that P2X4 and P2X6 subunits 
can increase glutamate-mediated synaptic transmission 
(NMDA receptor) and intensify long-term potentiation [61].  

The P2X7 receptor is an atypical member of the P2X re-
ceptor family that has been extensively studied in CNS. This 
receptor exhibit very low affinity for ATP (EC50=300-400 

M) and has a long (240 amino acid) intracellular C-terminal 
region that permits to form a large non-selective cytolytic 
pore that is permeable to Na+, K+ and Ca++ upon prolonged 
or repeated agonist stimulation [62].  

Functional, pharmacological and immunohistochemical 
studies have shown that P2X7 receptors are present also in 
presynaptic excitatory terminals in the hippocampus inner-
vating both excitatory and inhibitory cells and their activa-
tion can evoke glutamate and GABA release [59, 63]. On the 
other hand, Sim et al., [64] did not detect the presence of 
P2X7 receptors in hippocampal neurons of the adult rodent. 
According to the authors, the P2X7 receptor can be detected 
in neurons only after insults such as ischemic damage or 
other inflammatory diseases of the brain. We have demon-
strated the expression of P2X7 in the hippocampus of pa-
tients with TLE and in epileptic rats (see discussions later).  

Some authors have demonstrated that P2X receptors can 
modify the balance between inhibition and excitation by 
regulating the functioning of GABA-gated channels [65]. 
Co-activation of P2X2 and GABA-A receptors expressed in 
Xenopus oocites leads to a functional cross-inhibition de-
pendent on GABA-A subunit composition. GABA-A recep-
tors containing  subunit, for example, are not inhibited by 
P2X2. The relationship between the P2X receptor and the 
GABA or GABA-A receptor was also reported in the rat 
spinal cord [66] and dorsal root ganglia [67], indicating that, 
at least in these regions, P2X receptor may participate in 
neuronal transmission accompanied by GABA-mediated 
action.  

Table 1. P2X Receptors in CNS 

Subtype 

CX, HPC, Hab, SNPc, HPT, SON, 

medulla, 

trigeminal nu 

mRNA, protein 
Xiang et al., 1998 [50]; Atkinson et al., 

2000 [51] 

DRG, NTS, STN mRNA, protein 
Chen et al., 2002 [52] Vulchanova et al., 

1996 [53] 

Cer, spinal cord, OB, Cx, HPC,HPT, 
Thal 

 

Cer, OB, Cx, HPC, HPT, Thal, Str, SN, 

AMG, Ventricular area (ependymal 

layer) 

mRNA, protein 

 

 

 

mRNA 

Bo et al., 1995 [54]; Buel et al., 1996 
[55]; Collo et al., 1996 [56]. 

 

 

Collo et al., 1996 [56] 

HPC, spinal cord mRNA, protein Rubio and Soto, 2001 [57] 

Abbreviations: CNS, central nervous system; CX, cerebral cortex; HPC, hippocampus; Hab, habenula; SNPc, substantia nigra pars compacta; HPT, hipothalamus; Thal, thalamus; 
SON, supraoptic nucleus; DRG, dorsal root ganglia; NTS, nucleus tractus solitarius; STN, spinal trigeminal nucleus; Cer, cerebellum;Str, striatum; Acb, nucleus accumbens; GP, 
globo pallidus; SN, substantia nigra; OB, olfactory bulb.  
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Cross-talk between P2X receptor and GABA has been 
cited as one of the mechanisms involved in epileptogenesis 
[68]. P2X2 and P2X4 receptor expression was significantly 
reduced in the hippocampus of seizure-sensitive (SS) gerbils 
compared with seizure-resistant (SR) gerbils [68]. The 
downregulation of P2X receptors was closely related to the 
GABA concentration, which is lower in SS than in SR. In 
addition, P2X receptors expression was mediated by GABA-
A receptor, but not GABA-B. However, further studies have 
reported that the expressions of P2X3 and P2X7 receptors 
are modulated by GABA-B receptor activation [69, 70]. 
Treatment with GABA-B receptor agonist baclofen and an-
tagonist phaclofen resulted in increased and decreased P2X7 
receptor expression in the hippocampus, respectively [70]. 
The P2X7 receptor may have different actions depending on 
ATP levels. When stimulated by high extracellular ATP 
concentration (micromolar), P2X7 receptor evokes long-
lasting form of synaptic depression [71]. However, P2X7 can 
also be stimulated by low ATP concentration (nanomolar 
level) but only under presynaptic GABA-B receptors activa-
tion [70, 71]. In these conditions the P2X7 receptor does not 
cause synaptic depression [71].  

The stimulation of P2X7 receptors on astrocytes mediates 
glutamate and GABA release providing a link between ATP 
and excitatory and inhibitory synaptic transmission [72]. 
ATP, glutamate and GABA may synergistically modulate 
synaptic transmission in neuronal systems as well as regulate 
the Ca++ wave propagation in astrocytes networks.  

Considerable evidence indicates that large amounts of 
ATP released from dying cells after insults might induce 
reactive astrogliosis, microglia proliferation and acts as a 
powerful chemoattractant at the site of the injury [73]. Both 
astrocytes and activated microglia are able to induce the re-
lease of cytokines such as IL-1 , TNF- , IL-6, among others, 
which influence neuroinflammatory processes during neu-
rodegeneration [74]. Activation of microglial P2X7 receptors 
by ATP induces TNF-  release and this effect is regulated by 
extracellular signal-regulated kinase (ERK) and p38 mito-
gen-activated protein (MAP) kinase [75]. In addition, data of 
our group have shown an increase in the expression and acti-
vation of MAPK in the hippocampus of rats during the early 
stages of pilocarpine-induced SE showing a relationship be-
tween both signalling pathways [76]. 

To date it is not clear whether microglia protects or dam-
age neurons or whether TNF is beneficial or toxic. TNF may 
enhance injury induced by ischemia and trauma [77, 78] as 
well as provide neuroprotection due to its ability to induce 
the expression of anti-apoptotic and anti-oxidative proteins. 
The dual effect of TNF is mediated by different TNF recep-
tors, with the p55 TNF receptor 1(TNFR1) mediating neuro-
toxic effect, and p75 TNF receptor 2 (TNFR2) eliciting neu-
roprotection [79]. Intriguingly, co-culturing with microglia 
protects neurons against glutamate-induced excitotoxicity 
after stimulation with ATP or its analogue BzATP [75]. Ac-
cording to the authors, the effect was due to a neuroprotec-
tive factor released from P2X7-activated microglia, the 
TNF  (see detailed discussions later). 

Recent study demonstrated that P2X7 receptors in the rat 
hippocampus are not able to process and release IL-1  upon 
P2X7 receptor activation. However, quantitative analysis of 
caspase-1 revealed that the lack of IL-1  release in hippo-

campal astrocytes is due a lack of processing of pro-caspase-
1 and that signaling through P2X7 receptors can modulate 
the immune response of glial cells. Streit et al., [80] have 
cited neuroinflammation as in injury-induced glial activation 
that contributes to neuropathologies. It has been suggested 
that prolonged inflammatory responses in CNS may signifi-
cantly contribute to the pathology seen in epilepsy [81, 82].  

PURINERGIC P2X AND TEMPORAL LOBE  
EPILEPSY 

Some studies have shown the involvement of purinocep-
tor signaling in epilepsy [81, 83-86]. Microinjection of ATP 
analogues into the pre-piriform cortex induces generalized 
seizures, and extracellular ATP concentrations are signifi-
cantly augmented after electrical stimulation of Schaffer 
collaterals in mice with inherited susceptibility to audiogenic 
seizures [83, 84]. 

Our Lab was interested in studying purinergic signaling 
in temporal lobe epilepsy because many of the mechanisms 
involved in epileptogenesis are activated by intracellular 
calcium and P2 receptors are important modulators of cal-
cium in the CNS both in neuron and glia. Using fluorometric 
technique, we were able to demonstrate a biphasic intracellu-
lar calcium increase in response to ATP in the hippocampus 
of chronic rats subjected to pilocarpine [85]. Different from 
control, a short increase followed by an abrupt decrease in 
the fluorescence was obtained when ATP was applied in 
hippocampal slices of epileptic rats, suggesting high expres-
sion of P2X7 receptors (see Fig. 3A). Our predictive obser-
vation was confirmed by imunohistochemistry and Western 
blot analysis which revealed high expression of P2X7 in 
mossy fiber at the proximal dentate gyrus and CA3 area of 
epileptic rats (Fig. 3B, C).  

In a recent study we characterized the expression of P2X 
receptors in the hippocampus of rats at different phases of 
the epileptogenesis induced by pilocarpine. P2X2, P2X4 and 
P2X7 were studied through immunohistochemistry and 
Western blot analysis (hippocampus) at different times after 
the onset of SE, 12 h for acute period, 7 days for latent pe-
riod and 90 days for epileptic condition [86]. Significant 
changes in P2X receptor expression were detected in acute 
and epileptic rats (Fig. 3). The main findings included a de-
crease in P2X4 receptor expression in the hippocampus of 
epileptic rats, with an increased level of P2X7 receptors dur-
ing acute and chronic phases of TLE. In the acute phase, 
diffuse P2X7 receptor staining was found in cell bodies re-
sembling glial cells while in latent and chronic periods, 
P2X7 receptors were almost exclusively located in nerve 
terminals in the CA3 region and dentate gyrus.  

Reduction of P2X4 receptor levels in epileptic hippo-
campi of rats may reflect neuronal loss, which is intense in 
the CA1, CA3, dentate gyrus and hilus [10]. However, a re-
duction of P2X4 receptor levels was observed in areas that 
normally are not damaged in this model, indicating func-
tional changes regarding this receptor in epilepsy. Reduced 
P2X4 receptor expression could also be a part of a compen-
satory mechanism in response to disturbed GABAergic neu-
rotransmission [68, 86]. Indeed, a functional interaction be-
tween P2X2 and P2X4 with GABA-A receptors has been 
proposed for epileptic conditions [65, 68]. In our study, 
P2X2 remained unchanged in all studied periods.  
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Several lines of evidence point to a modulatory role of 
P2X4 receptors in LTP [61, 83]. Indeed, P2X4 receptor 
knockout mice present reduced LTP, indicating the impor-
tance of this receptor in memory processes [87]. Special at-
tention should be given to changes in the expression of P2X4 
receptor in the hippocampus because it could be a mecha-
nism involved in cognitive deficits associated with TLE. It is 
well established that patients with TLE often show impair-
ments in attention, memory, mental processing speed with 
many factors contributing to these changes such as brain 
lesions, localization and lateralization, and antiepileptic 
drugs [4].  

Abundant expression of P2X7 in hippocampal neurons of 
CA1 and CA3 subfields during SE was considered critical 
because excitotoxic cascades are activated resulting in cell 
death. As cited above, both seizures and cell death can re-
lease high levels of ATP into the extracellular milieu, which 
can activate P2X7 leading to intensified cell death [88]. Ac-
tivation of P2X7 results in the formation of large, hydro-
philic, non selective membrane pores permeable to mole-
cules >900 Da causing necrosis and apoptosis. 

In addition, P2X7 receptor expression is intense in cell 
with characteristics of reactive astrocytes and microglia, in-

dicating the involvement of P2X7 receptor with inflamma-
tory processes [86]. Our data are in agreement with those of 
other authors who also demonstrated inflammatory processes 
associated with P2X7 receptor in microglia after SE [81]. 

Neuroinflammation has been described as a form of in-
jury-induced glial activation that contributes to the pathology 
of epilepsy [82]. Several authors have described the in-
creased expression of IL-1 , TNF- , IL-6 and iNOS after 
seizures, suggesting their participation in cell death [73, 89-
91]. However, the contribution of these mediators in neu-
rodegeneration during SE remains to be determined.  

As described above, microglia can protect or harm neu-
rons. Suzuki et al. [75] demonstrated that TNF-  released 
from ATP-activated microglia in co-culture system have 
neuroprotective effects on neurons exposed to glutamate. 
They proposed that ATP released by damaged cells or in-
flammation leads to chemotaxis of microglia to a damaged 
brain area, and activates P2X7 receptors to stimulate the mi-
croglia to secrete neuroprotective factor such as TNF. Thus, 
to determine the role of TNF in the damage cascade after SE, 
it is important to investigate the type of TNF receptor in the 
hippocampus. TNF released by P2X7-activated microglia 
have dual actions based on the receptor population that it 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). A: Fluorescence intensity of intracellular calcium in hippocampus slice. Arrows indicate 0,5 mM of adenosine triphosphate adition 
(a, control rat; b, epileptic rat). B: light microscopy micrographs showing the immunohistochemical for P2X7 receptors in rat hippocampus 
treated with saline (a) or pilocarpine (360 mg/kg, i.p., 15 min before 1 mg/kg of methylscopolamine s.c., b, c, d). Panel (a) and (b) refer to 
dentate gyrus of control group (a) and chronic group (b). Epileptic rat (b) showed strong punctate staining in the hilus and in sprouted mossy 
fibers in supragranular layer of dentate gyrus. Higher amplification of the dentate gyrus is shown in the box in b. Panel (c) shows the stratum 
pyramidale and stratum radiatum (SR) of CA1 of rat during status epilepticus with the presence of immunopositive glial cells. Panel (d) 
shows an amplification of the outlined area in (c). C: Western blot study of P2X7 in the hippocampus of control (CT), and pilocarpine in-
jected groups (SE, rats with 12 h of SE; LAT, latent rats studied 7 days after status epilepticus onset, and SRS, rats with spontaneous recur-
rent seizures, studied 90 days after status epilepticus onset). Expression of P2X7 was increased in hippocampi of SE and SRS group com-
pared to CT. 
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activates: TNFR1 is neurotoxic and TNFR2 elicit neuropro-
tection [79]. 

Increased P2X7 receptor expression in glial cells in the 
hippocampus after pilocarpine-induced SE indicates that this 
receptor can participate in the astrogliosis process resulting 
in disfunction of the adenosine system leading to additional 
seizures [90]. Astrogliosis is accompanied by overexpression 
of adenosine kinase, an enzyme involved with metabolism of 
adenosine to AMP, resulting in decrease in the adenosine 
level, which can predispose brain to seizure onset. 

Other inflammatory mediators have been described in the 
hippocampus of rat subjected to pilocarpine, and molecules 
such as kinins and prostaglandins and seem to participate in 
the pathophysiology of TLE [92-94].  

Finally, the predominant presence of P2X7 in mossy fi-
ber terminals in the stratum lucidum of CA3 and dentate 
gyrus of epileptic rats from pilocarpine model suggests that 
this receptor can modulate the release of neurotransmitters, 
such as glutamate and GABA. P2X7 labeling was also 
shown in the stratum oriens and radiatum of CA1 [86]. Un-
der control conditions, the presence of P2X7 receptors in 
presynaptic terminals can facilitate glutamate and GABA 
release from hippocampal nerves terminals [59, 63]. How-
ever, Rodrigues et al [95] demonstrated by molecular biol-
ogy and functional experiments that whereas P2X1, P2X2/3 
and P2X3 facilitate the release of glutamate, P2Y1, P2Y2 
and P2Y4 receptors inhibit glutamate release from glutama-
tergic terminals in the hippocampus. P2X7 does not presyn-
aptically control glutamate release [95].  

Glutamate is the primary excitatory amino acid neuro-
transmitter in the central nervous system and its activity is 
carefully modulated in the synaptic cleft by glutamate trans-
porters [96].  In previous studies we have demonstrated that 
rats with pilocarpine-induced epilepsy present high levels of 
hippocampal glutamate and calcium transporters (SERCAs), 
suggesting hyperexcitability [97-99]. 

Overexpression of neuronal glutamate transporter has 
been reported associated with high level of extracellular glu-
tamate [100, 101]. 

According to our recent data, P2X2 and P2X7 receptors 
could be involved with hyperexcitability [86] 

Currently, we are studying the participation of purinergic 
P2X and P2Y receptors in the hippocampal functions of pa-
tients with TLE, and preliminary results are in agreement 
with data obtained previously with rats. Indeed, high expres-
sion levels of P2X2, P2X7 and P2Y1 can be observed in cell 
bodies resembling glia and nerve terminals, confirming the 
modulatory role of these receptors in glutamate release and 
inflammatory processes (in preparation). 

CONCLUDING REMARKS 

P2 receptors are involved in most physiological and 
pathological responses and modulate neurotransmitter re-
lease. The results obtained in pilocarpine model and in pa-
tients with TLE implicate that purinergic signaling mediated 
by different types of P2X and P2Y receptors, exerts impor-
tant roles at different stages of epileptogenesis, especially for 
calcium influx, glutamate and GABA release, hyperexcita-
bility, inflammation and cell death. Although the exact role 

of P2 receptor in these mechanisms has remained elusive due 
to the complex nature of ATP and adenosine signaling in 
synapses and astrocytes, or of ATP and GABA cross-talk, 
the current literature suggests the importance of P2 receptors 
in TLE. Further research on P2 receptors in adult and in de-
veloping brain may provide novel mechanisms and therapeu-
tic targets to control epileptogenesis.  
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