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Abstract: The present brief review argues the case that adenosine can be both a distress signal and a physiological regula-

tor. A key factor in determining which of these possibilities pertain is related to the number of receptors expressed. As the 

signaling from the adenosine receptor to the functional response generally involves amplification, we have a situation in-

volving so called spare receptors. This has the consequence that alterations in the receptor number lead to shifts in the po-

tency of the endogenous agonist rather than a shift in the maximum response elicited. The roles of adenosine are studied 

by antagonists and/or animals (mostly mice) with targeted deletions of receptors or enzymes involved in adenosine me-

tabolism. Whereas, adaptive changes in the genetically modified mice can occur for the physiologically important effects, 

such adaptive changes are less likely to occur for the situations when adenosine acts as a distress signal.  
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There are four evolutionarily well conserved receptors 
for adenosine denoted A1, A2A, A2NB and A3 [1]. They form a 
distinct group among the so called G protein-coupled recep-
tors. The A1 and A3 receptors are predominantly coupling to 
members of the Gi family of G proteins; the A2A and A2B 
receptors predominantly couple to members of the Gs family 
of G proteins. Under some circumstances, especially when 
over expressed, these receptors can also couple to members 
of the Gq and G12 families of proteins [2].  

The potency of adenosine at these receptors is obviously 
determined by the affinity of the endogenous ligand (adeno-
sine) to the different receptors. Unfortunately, it proves very 
difficult to determine this affinity. The reason is that adeno-
sine is rapidly metabolized and formed in biological prepara-
tions including membrane preparations. Therefore, if me-
tabolism of adenosine is prevented, endogenous adenosine 
accumulates to confound the measurements. Especially to 
receptors coupling to Gi proteins this endogenous adenosine 
can be cryptically bound and also influence the apparent 
Bmax values [3, 4]. For this reason, we do not have reliable 
data on the comparative affinity of the endogenous agonist at 
the four adenosine receptors. 

We must therefore, rely on the determination of the po-
tency of adenosine in functional assays. This introduces an-
other important confounding factor: potency of the agonist is 
markedly influenced by the receptor number [5-8]. The rea-
son for this is that adenosine receptors are generally coupled 
via several amplification steps to the final response, and 
they, therefore exhibit the behavior described by pharma-
cologists as ”spare receptors”. In such systems, alterations in 
the receptor number are manifested by parallel shifts in the 
dose response curve, not as alterations in the maximal re-
sponse. Therefore, it is important to compare potencies be-
tween receptors at comparative receptor densities. When this  
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is done it is observed that adenosine is equipotent at A1, A2A 
and A3 receptors, but is some 50 times less potent at A2B 
receptors if alterations in cAMP are recorded [9]. If, by con-
trast, we instead examine the ability to activate MAP kinase 
(which all the receptors do), adenosine is equipotent at all of 
them [10, 11]. Thus, the potency of endogenous adenosine 
depends on the receptor number, and on the type of response 
measured. Furthermore, there is no really good reason to 
divide the receptors into high affinity and low affinity recep-
tors as is sometimes done.  

REGULATION OF ADENOSINE LEVELS 

Adenosine is at a crossroad between different metabolic 
pathways. Hence, there will always be a finite intracellular 
concentration of adenosine. Furthermore, most, if not all, 
cells possess equilibrative adenosine transporters [12, 13]. 
Therefore, there will, by necessity, be also finite levels of 
adenosine in the extracellular space, even under the most 
basal conditions. This basal level has been estimated to be in 
the range of 30-200 nM [14]. From this baseline level, 
adenosine can increase substantially via several mechanisms. 
The equilibrative transporters (ENT 1-4) are usually sensi-
tive to inhibition by drugs, such as dipyridamole and dilazep, 
but the ENT4 subtype present in e.g. heart is much less sen-
sitive to such blockade [15]. The blockers can raise levels of 
adenosine in such cells that are net producers, and at the 
same time raise extracellular adenosine concentrations, 
which explains much of their therapeutic interest. 

There are two principally different ways in which adeno-
sine levels may be increased – formation intracellularly and 
export via transporters, and formation in the extracellular 
space from adenine nucleotides released from cells. The ear-
lier literature on adenosine emphasized the former possibility 
[16, 17]. Adenosine was formed intracellularly whenever 
there was a discrepancy between the rates of ATP synthesis 
and ATP utilization. Thus, adenosine would be formed the 
when work load was markedly enhanced or when the supply 
of metabolizable energy (viz. oxygen and glucose) is limit-
ing as would be the case inter alia in ischemia.  
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More recently, interest has centered on the role of regu-
lated release of ATP as an important source of extracellular 
adenosine. Whereas the focus here was initially on the re-
lease of ATP as a neurotransmitter, stored together with 
other transmitters [18], several other mechanisms have now 
moved to the foreground. One major reason for this is that, 
the classical transmitter vesicles are rather small, and since 
they contain at least an order of magnitude less ATP than 
classical transmitter the amounts released will be quite lim-
ited especially over any distance [19]. Another reason is that, 
ATP is released from many cells that do not release transmit-
ters. Among the mechanisms to be considered are: 1) release 
from cells with damage to the cell membrane e.g. in necrotic 
cell death, 2) release from large storage vesicles containing 
hormones, 3) via connexin/pannexin “hemichannels”, 4) 
from transport vesicles delivering proteins to the cell mem-
brane, and 5) from a subset of lysosomes. It is well known 
that ATP is released from many cells, where cell membranes 
subjected to stretch [20], perhaps via one of the above men-
tioned mechanisms. 

Release from cells with damaged cell membranes could 
provide large increases in extracellular purine levels since 
ATP levels in cells are typically 3-5 mM and extracellular 
adenosine levels 30-200 nM. Release from large storage 
vesicles that also contain hormones or enzymes is potentially 
a more important source than the transmitter storing vesicles, 
since they are typically much larger and hence the total 
amount of ATP is higher. For example, the evidence that 
takes place in pancreatic islets is quite convincing [21]. By 
contrast, the evidence for an important kiss-and-run release 
from synapses is more controversial [22], even though 
stronger evidence is now emerging [23].  

Connexins form gap junctions. Clearly that much cell-
cell contact is mediated via gap-junctions formed by connex-
ins (or connexin like proteins). The cells that express con-
nexins will sometimes express them on such a position of the 
cell membrane, where they cannot contact a connexins on 
another cell. This constitutes a connexins “hemichannel” 
[24]. Such hemichannels have been proposed as the channel 
that causes the release of ATP e.g. in astrocytes [24], and an 
important role in early development has been postulated 
[25]. It is attractive to consider the same molecule as media-
tor of two separate modes of cell-cell communication: gap 
junction contact and ATP-mediated communication [24]. 
Within the context of the present review, a role of these 
channels in endothelial cells, cardiac cells [26], smooth mus-
cle cells and cells of the immune system [27] is particularly 
interesting to consider. It is potentially important that con-
nexins have been suggested to play a critically important role 
in preconditioning [28], as has adenosine (see below).  

The process whereby newly synthesized membrane pro-
teins are inserted in the cell membrane involves fusion of 
intracellular vesicles with the plasma membrane, and in the 
process nucleotides can be released [29]. It has also been 
shown, that lysosomes contain abundant ATP, (perhaps be-
cause of their low pH) and that they release ATP via partial 
and full exocytosis, and that this process can be increased by 
relevant stimuli, such as metabolic deprivation or extracellu-
lar ATP [30]. The relative importance of these different 
mechanisms probably differs depending on the cell type and 
the stimulus.  

Once ATP (or ADP) is released, the phosphate groups of 
extracellular ATP are rapidly split off by ecto-enzymes 
working in concert, first via nucleoside triphosphate diphos-
phohydrolases (NTDPases) similar to CD39 [31], followed 
by hydrolysis via ecto-5´-nucleotidase, CD73 [32]. Knock-
outs of these enzymes have revealed their importance in dif-
ferent organs and situations.  

PHYSIOLOGICAL VERSUS PATHOPHYSIOLOGI-
CAL ROLES 

Several studies estimate the resting extracellular levels of 
adenosine to be in the range 20 – 300 nM [14, 33-38], and 
the levels can rise to the low micromolar range in extreme 
physiological conditions, such as strenuous exercise or sub-
sistence at high altitude, and hence low ambient oxygen [14, 
33, 34, 38]. In ischemic areas or after massive tissue trauma 
leading to cell death by necrosis levels can increase to per-
haps 30 M [36, 38, 39].  

If these data are related to the estimated potency of 
adenosine receptors we arrive at a picture like that illustrated 
in Fig. (1). One can see that, in places where the receptors 
are very abundant, there will be a physiological role of 
adenosine and in places where receptors are fewer may only 
be activated under extreme or pathological circumstances. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Schematic illustration of the relationship between adeno-

sine concentration and the effect mediated by adenosine receptors 

when the receptors are very abundant (as for example the A2A re-

ceptors on striatopallidal neurons where levels are well above 100, 

000 receptors per cell), or when they are less abundant (down to a 

100 receptors or less per cell). Typical experimental data showing 

the relationship between receptor number and position of the dose-

response curve are found in references [5-8]. This relationship is 

then superimposed on data on the levels of adenosine (in nM) in 

tissue fluids under different circumstances. This is also based on 

actual measurements referred to in one of the several studies using 

microdialysis referred to in this review. 

 

There have been many studies examining the roles of the 
adenosine receptors in different biological processes. Some 
of the key results are summarized in Table 1.  
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HOW TO STUDY THE ROLES OF ADENOSINE  
RECEPTORS 

The roles of the receptors can be studied either by phar-
macological means or altering the expression of the receptor 
protein. For a long time, the only available approach was the 
pharmacological one: Using agonists one could determine 
which type of responses might be elicited and using antago-
nists which of these, in fact, did occur and under which cir-
cumstances. Over the years, several very useful pharmacol-
ogical tools have been developed as presented in several 
reviews [1, 40-47]. Nevertheless, their specificity is rarely 
complete and most of the selective compounds have phys-
icochemical properties that limit their usefulness, especially 
for in vivo studies. Of particular interest is of course caffeine, 
the most widely used of all psychoactive drugs, that in ha-
bitually used doses blocks the three first adenosine receptors, 
and this accounts for many of its effects [48].  

A more recent alternative is the use of genetically modi-
fied organisms [7, 49-52] and/or targeting with siRNA [53]. 
In many instances, the results obtained with drugs and those 
observed in the genetically modified animals are entirely 

consistent. However, this is not always the case. One reason 
is that the drugs may not be as selective as was thought, and 
indeed the use of genetically modified animals to test the 
specificity of drugs is becoming a more and more established 
practice. Another reason for the discrepancy is that drugs 
rarely achieve a complete blockade of an adenosine receptor 
for any length of time and complete elimination of a re-
sponse and partial blockade may have different conse-
quences. A third possibility is that the genetic modification 
has resulted in major adaptive changes.  

There is a common misconception that genetic elimina-
tion of one of the adenosine receptors should lead to up regu-
lations of one or more of the other adenosine receptors. 
There are really few, if any, examples of this type of adapta-
tion. Alternatively, completely different processes may show 
adaptive changes. However, this also appears to occur only 
rarely [e.g. 7, 8]. Perhaps one should expect only such proc-
esses that are physiologically regulated by an adenosine re-
ceptor to be compensated for in a targeted receptor deletion. 
There is little pressure to induce adaptations of processes 
that occurs rarely in a life time. Furthermore, not all physio-
logical processes need to or can be compensated for. It is 

Table 1. Selected Effects Mediated by Adenosine via the Four Adenosine Receptors. For this Table I have Predominantly Used Data 

from Genetically Modified Organisms. The Column Labelled “Adaptation” Refers to Known (or Presumed/Possible?) adaptive 

Reactions Obvious in the Phenotype of Knock-Out Animals 

Receptor Effect Physiology/Pathophysiology Adaptation Reference 

Decreased renal blood flow, Tubuloglomerular  

feedback 

Phys No [51, 54] 

Inhibition of lipolysis Phys No [55] 

Inhibition of neurotransmitter release Extreme phys No? [7] 

Inhibition of insulin/glucagon release Phys No [56] 

Reduced heart rate Phys No? [57] 

Sleep Phys Yes [58, 59] 

Analgesia Extreme phys No [7, 60] 

A1 

Preconditioning Path No [61] 

Wakefulness, locomotion Phys No [49, 62-64] 

Neurodegeneration (including Parkinson´s disease and 

Alzheimer´s disease) 

Path No [65-67] 

Immunosuppression Extreme/Path No? [68-70] 

Vasodilatation Phys/Extreme No? [49] 

Inhibition of platelet aggregation Extreme No? [49] 

A2A 

Angiogenesis Extreme No? [71] 

Vascular integrity Phys/Extreme No [72, 73] A2B 

Preconditioning Extreme No [74] 

Increased mast cell activation Extreme/Path No? [50, 75] 

Airway contraction Path No? [76] 

Inflammatory pain Extreme/Path No? [77] 

A3 

White cell chemotaxis Extreme/Path No? [78] 
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therefore, of some interest that I have found very few exam-
ples of adaptive compensations the in receptor knock-out 
mice, but several examples of where possible adaptations 
have been insufficiently studied (Table 1). 

In summary, adenosine receptors are involved in many 
different processes, both physiological and pathophysiologi-
cal. The fact that they are doing so many things, not only 
offering therapeutic opportunities, but also providing limita-
tions for future drug development.  
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