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Abstract: Adenosine has long been considered an endogenous anti-epileptic compound. This concept was based on the 
widespread distribution of adenosine A1 receptors (A1R), which are mostly located in excitatory synapses; here, A1R in-
hibit glutamate release, decrease glutamatergic responsiveness and hyperpolarise neurons. However, the combined obser-
vation that synaptic A1R undergo desensitisation in chronic noxious situations whereas the activation of A1R still prevents 
seizure activity suggests that the A1R anti-epileptic action may involve non-synaptic mechanisms. Two alternative 
mechanisms can be considered to explain the ability of A1R to control seizure activity and resulting neurodegeneration: 1) 
the possible role of A1R-mediated control of metabolism; 2) the A1R-mediated preconditioning involving a coordinated 
control of neuron-glia communication. However, purinergic modulation of seizure activity is likely to involve other sys-
tems apart from A1R. Thus, the blockade of adenosine A2A receptors (A2AR), which density increases in animal models of 
epilepsy, can attenuate seizure activity and prevent seizure-induced neurodegeneration. Furthermore, ATP, which is the 
main source of the endogenous adenosine activating A2AR, also act as a general danger signal and may also directly con-
trol seizure activity through P2 receptors (P2R). Therefore, the purinergic control of epilepsy may actually involve differ-
ent parallel signalling arms, some beneficial and others deleterious, probably acting at different sites (in epileptic foci and 
in their neighbourhood) and at different times. It is likely that combined targeting of different purinergic receptors may be 
the most efficacious way to control seizure activity, its spreading and the resulting neurodegeneration. 
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1. SEIZURES, EPILEPSY – GENERAL FEATURES 

Seizures are identified by abnormal repetitive firing often 
with high coherency between different brain regions and are 
typically identified by characteristic perturbation of electro-
encephalographic activity, namely the presence of paroxys-
mal depolarisation shifts [1]. Seizures are the key signature 
of major syndromes collectively named ‘epilepsy’ that repre-
sent one of the heaviest burdens in medical care in the West-
ern world [2]. Although it should be made clear that seizures 
can occur independently of behaviourally noticeable modifi-
cations (i.e. subclinical seizures), seizures have nevertheless 
prognostic significance in epilepsy-related outcome studies 
[3]. Seizures have traditionally been viewed as an imbalance 
between excitatory and inhibitory transmission in brain cir-
cuits, where hyper-excitation or hypo-inhibition would result 
in an abnormal repetitive firing of affected brain circuits [4]. 
This key idea has been the driving force for the design of the 
majority of anti-epileptic drugs, which aim to target either 
excessive firing or hyper-excitation or hypo-inhibition [5]. 
Thus, the initial group of anti-epileptic drugs was barbitu-
rates, which bolster the inhibitory GABAergic system: they 
are effective to control seizures, but they also cause sedation 
[6]. This bolstering of inhibition was further aimed with the 
design of inhibitors of GABA transporters as candidate anti-
epileptic drugs [7,8]. Another family of anti-epileptic drugs, 
the family of carbamazepine and its derivatives, has a  
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fundamentally different mechanism of action, since they act 
as inhibitors of over-activated sodium channels: they have 
minor effects on low frequency neuronal firing but restrain 
excessive recruitment of sodium channels [7,8]. Finally, re-
cent efforts have been made to develop drugs to attenuate 
excessive glutamatergic activation [7,8].  

The fact that these drugs have successfully been used to 
manage epilepsy for several years clearly shows that the 
simple rationale of hyper-excitation/hypo-inhibition as a 
mechanism for seizure generation proved correct [5]. Never-
theless, clinical practice also makes it evident that these 
drugs are mostly effective when seizure activity is secondary 
to other conditions; in contrast, primary epilepsy syndromes, 
amongst which stems temporal lobe epilepsy, are notoriously 
less successfully managed by the current anti-epileptic drugs 
[9]. This should make us look at more detail into other modi-
fications associated with seizures to attempt understanding if 
the imbalanced excitation/inhibition characteristic of seizures 
is not a consequence of other primary modifications. We will 
now briefly discuss two types of modifications that have 
been argued to be associated with seizures, namely the dis-
ruption of astrocytic networks and modifications of primary 
metabolism. 

1a. Seizures and Epilepsy – A Role for Astrocytes? 

There is now growing evidence indicating that astrocytes 
play a major role in the coordination of neuronal networks 
[10-13]. Astrocytes can sense a variety of active substances 
(neurotransmitters and neuromodulators), in fact, most of 
them [10-13]. Astrocytes can also release different neuroac-
tive substances, tentatively named gliotransmitters [10-13], 
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which can recruit other astrocytes or modify neuronal func-
tion. Actually, most of these gliotransmitters (but not all, e.g. 
D-serine) can also be considered neurotransmitters or neu-
romodulators, such as glutamate, ATP, NO or adenosine. 
Most importantly, astrocytes are connected forming a syn-
cytium that covers large areas (up to 100 m2 [14]). This 
means that changes of activity in a particular point of a neu-
ronal network can be transmitted over wide ranges to other 
points of the circuit through calcium waves in this astrocytic 
syncytium. This allows an effective coordination of neuronal 
networks in an integrative manner in view of the longer time 
course of astrocytic versus neuronal communication. Astro-
cytes are modified in conditions of epilepsy, both in terms of 
their enzymatic set-up, morphology or the extent of their 
syncytium [15-18], named astrocytic domain. However, it is 
currently unclear if episodic seizure activity is effectively 
accompanied by immediate reactive changes in astrocytes. 
Also, although provocative evidence has recently allowed 
proposing that epilepsy may be a primarily astrocytic rather 
than neuronal dysfunction [19], it has still not been demon-
strated that a modification of astrocytic function can actually 
trigger seizures. Nevertheless, it is clear that astrocytes can 
potentially play a role in controlling seizure activity, making 
astrocytes a major player in the realm of epilepsy. 

1b. Seizures and Epilepsy – is Primary Metabolism  
Imbalance Involved? 

Primary metabolism is another key feature closely asso-
ciated with seizures and epilepsy. In fact, maintaining neu-
ronal activity represents a heavy metabolic burden to such an 
extent that it is calculated that circa 25% of the energy spent 
by the human body at rest is solely used to maintain the neu-
ronal resting membrane potential [20]. The sudden en-
hancement of brain activity is only possible if it is sustained 
by an adequate metabolic support [21]. This enhancement of 
energetic recruitment during seizure activity is so evident 
that it constitutes a signature of brain imaging techniques 
aimed at locating epileptic foci [22]. There is clear evidence 
that epileptic conditions are accompanied by marked meta-
bolic adaptation [23,24]. Also, there is (surprisingly) old 
evidence (first reported last century in the 20’s, [25]) that 
fasting or ketogenic diets (which can be viewed as a con-
trolled form of dietetic fasting [26]) can control seizure ac-
tivity [27-29], being at least as effective as anti-epileptic 
drugs [30]. As was previously discussed for the case of as-
trocytic modifications, although it seems clear that modifica-
tions of primary metabolism are a key element controlling 
seizures, it still remains to be demonstrated if changes of 
primary metabolism can precipitate seizure activity or if in-
stead these changes in primary metabolism represent a cru-
cial adaptation to sustain a new imposed firing pattern. 

1c. Seizures and Epilepsy – Neurodegenerative Disor-
ders? 

The presentation of these mechanistic features related to 
seizure activity has purposely been confused with the pur-
ported etiology of epilepsy. It was initially stated that sei-
zures represented a key signature of ‘epilepsy’ [2], while it 
was also stated that seizure activity can be subclinical and be 
clearly distinguished from an epileptic condition [3]. This 
allows introducing a concept that emerges as evident in 
clinical practice, but has been repeatedly disputed in the lit-

erature: the concept of seizure-beget-seizure [31]. In fact, the 
transition from normal brain functioning to an epileptic con-
dition (named epileptogenesis) is accompanied by a series of 
modification, namely metabolic, morphological as well as in 
the set-up of different key proteins controlling excitability 
[15-18,32,33]. This clearly adds a further dimension to the 
relation between seizures and epilepsy: time, implying evo-
lution and adaptation of the nervous system therein. The ex-
istence of a long period of adaptation between a precipitating 
factor and the occurrence of phenotypic modifications re-
lated to brain function is the seminal characteristic of neu-
rodegenerative diseases. Furthermore, there is clear evidence 
of neuronal damage in different forms of epilepsy [34,35]. 
The extent might not be exuberant [36], but is similar to that 
found in other neurodegenerative diseases. Thus, epileptic 
syndromes should indeed be considered as neurodegenera-
tive diseases. It is also important to consider neuronal dam-
age as a key feature of ‘epilepsies’ that should be targeted by 
novel candidate anti-epileptic strategies. 

2. PHYSIOLOGICAL ROLES OF THE ADENOSINE 
NEUROMODULATION SYSTEM 

In view of this conception of seizure activity and epilepsy 
as a result of imbalanced excitation and inhibition in brain 
circuits as well as modified glial reactivity, modification of 
primary metabolism and neurodegeneration, the major goal 
of this review is to discuss the role and potential therapeutic 
interest of the purinergic system to manage seizure activity 
and convulsions. This will first require a short presentation 
of the purinergic system. 

Purines are an often overlooked class of molecules. 
However, they integrate the constitution of the most funda-
mental systems regulating primary metabolism: thus, ATP, 
ADP and AMP are the key energetic determinants of me-
tabolism and the energy charge is one of the major regulators 
of cell metabolism; the other major metabolic regulatory 
system is the redox system, which is mainly defined by the 
NADH/NAD+ ratio, both integrating a purine in their consti-
tution; on the other hand, the hardware of the cell is actually 
defined by the ability to read DNA (also constituted by 
purines), which accessibility is controlled by histone methy-
lation controlled by the ratio of SAM/SAH, again purine-
based substances. Apart from these key intracellular regula-
tory functions, purines are also utilised as extracellular sig-
nalling molecules; thus, there is a controlled release of ATP 
and/or adenosine, both signalling through different types of 
receptors (P2 and P1 receptors, respectively).  

2a. Adenosine A1 Receptor Neuromodulation System 

Although the release of ATP and adenosine was first re- 
ported simultaneously [37], the role of adenosine as an ex- 
tracellular signalling molecule was advanced first; this  
probably resulted from the finding that methylxanthines  
could prevent effects operated by adenosine [38], thus pav- 
ing the way for a pharmacological characterization of adeno- 
sine (P1) receptors. The active provision of different adeno- 
sine and methylxanthine analogues initiated by John Daly  
allowed proposing the existence of two classes of adenosine  
receptors, A1 and A2 receptors [39]. Apart from their differ- 
ent pharmacological profiles, these two classes of receptors  
were proposed to fulfil opposite signalling properties: A1  
receptors would display an inhibitory action, whereas A2  
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receptors would be facilitatory receptors (based on their abil- 
ity to modify cAMP levels, long though to be the main  
transducing system operated by adenosine receptors). Inter- 
estingly, in spite of the present evidence that the control of  
cAMP levels is only one of the different transducing systems  
operated by adenosine receptors, the notion that the actions  
of extracellular adenosine result from a balanced activation  
of inhibitory A1 and facilitatory A2 receptors still globally  
captures the functioning of the adenosine neuromodulation  
system in the central nervous system [40]. It is now estab- 
lished that there are 4 different adenosine receptors (all me- 
tabotropic receptors): A1, A2A, A2B and A3 receptors [41].  
However, in the brain, the role of extracellular adenosine has  
mostly been ascribed to the activation of inhibitory A1 and  
facilitatory A2A receptors [40].  

Adenosine A1 receptors (A1R) are the most abundant 
adenosine receptor in the brain, displaying a widespread dis-
tribution [42]. They are most abundantly located in synapses 
[43,44], mainly in glutamatergic rather than GABAergic 
synapses [45,46]. Thus, A1R are powerful and effective 
modulators mainly of excitatory rather than inhibitory 
transmission (but see [47-50]), where they exert combined 
pre-, post- and non-synaptic effect to decrease synaptic 
transmission and excitability [40]. Presynaptic A1R are lo-
cated in the active zone [44], where they control the influx of 
calcium through inhibition of N- and P-type voltage sensitive 
calcium channels [51] thus inhibiting the evoked release of 
glutamate [52]. Postsynaptic A1R decrease the responsive-
ness of glutamatergic synapses through a combined inhibi-
tion of N-type voltage sensitive calcium channels and of 
NMDA receptor function [53,54]. Neuronal non-synaptic 
A1R are particularly effective to control potassium channel 
conductances, thus hyperpolarising glutamatergic neurons 
[55]. The particular effect of A1R on AHPs (after-
hyperpolarising potentials) [56] makes them potentially im-
portant targets to decrease integrative capacities of glutama-
tergic neurons, albeit this awaits experimental confirmation. 
The importance of this A1R neuromodulation system in glu-
tamatergic synapses is best exemplified by two parallel ob-
servations: 1) there is an endogenous inhibitory tonus oper-
ated by the tonic activation of A1R by endogenous extracel-
lular adenosine, indicating that this system is permanently 
active to restrain excitatory synaptic transmission [57]; 2) the 
supra-maximal activation of A1R can block excitatory synap-
tic transmission (see e.g. [58]). In fact, seminal work by Tom 
Dunwiddie showed that synaptic A1R are activated propor-
tionally to on-going synaptic transmission [59]. Also, the 
pioneering work of Olivier Manzoni [60] paved the way to 
demonstrate the key role of A1R as final effectors of hetero-
synaptic depression in hippocampal circuits [61], which pri-
marily involves the activation of the astrocytic syncytium 
triggering a long-distance ATP release yielding enhanced 
levels of extracellular adenosine in synapses distally located 
from that undergoing changes in activity [62]. But apart from 
these synaptic roles, A1R also play other roles in neuronal 
circuits, most of which are still poorly characterised. First, 
A1R have a marked impact on primary metabolism [63], 
which relevance for A1R-mediated effects still remains to be 
tested. A1R can also impose prolonged modifications of mi-
tochondria function through control of KATP activity, which 
is particularly relevant for the involvement of A1R in pre-

conditioning [64]. Finally, although A1R are more abun-
dantly located in neurons, they are also present at lower den-
sity in astrocytes [65], microglia [66] and oligodendrocytes 
[67], where their function is still ill-defined (reviewed in 
[68]). 

2b. Adenosine A2A Receptor Neuromodulation System 

The role of adenosine A2A receptors (A2AR) is globally 
less explored than that of A1R. This probably results from 
the traditional view that A2AR were restricted to the striatum, 
where they have a particularly high density in enkephaliner-
gic medium spiny neurons of the indirect pathway [69]. 
However, A2AR are widespread throughout the brain [70-72], 
where they have a predominant presynaptic localization [73]. 
In accordance with their localization in the presynaptic ac-
tive zone [73,74], some studies have defined the ability of 
A2AR to enhance the evoked release of glutamate in different 
brain areas [74-77]. A2AR are also located postsynaptically 
where they facilitate the activation of NMDA receptors [78] 
(but see [79]) and might also affect the resting membrane 
potential [80,81]. Interestingly, most electrophysiological 
studies were unable to demonstrate an ability of endogenous 
extracellular adenosine acting on A2AR to control excitatory 
synaptic transmission under conditions of basal (low fre-
quency) stimulation [78,82,83]. In contrast, a tonic activation 
of A2AR seems required to assist the implementation of LTP 
[78,84], suggesting that this A2AR neuromodulation system 
is selectively involved in the control of synaptic plasticity 
[85]. A2AR have also been proposed as fine-tuners of other 
neuromodulation systems [86], based on the requirement of 
their activation to observe synaptic effects of growth factors 
[87] or neuropeptides [88,89]. In parallel, A2AR are also able 
to switch off presynaptic inhibitory systems, namely can-
nabinoid CB1 receptors [90] and A1R [77,91], either through 
a PKC-mediated desensitisation [91] or through formation of 
heteromers [77]. This makes A2AR a hub, switching presyn-
aptic modulation from inhibitory to facilitatory (see Fig. 1). 
Apart from these predominant synaptic effects, it has also 
been reported that A2AR can impact on neuronal metabolism 
[92] but the functional relevance of this finding remains to 
be explored. Finally, A2AR are also located in astrocytes and 
microglia cells [68,93], where they control the uptake of 
glutamate [94] and the expression of cytokines [68,93].  

2c. Dynamics of the Extracellular Levels of Adenosine 

An aspect of uppermost importance that still awaits to be 
solved is the dynamics of the extracellular metabolism of 
adenosine. The traditional view argues that adenosine could 
be released through two main mechanisms: either released as 
such through non-concentrative nucleoside transporters or 
formed extracellularly upon release of ATP (either vesicular 
or non-vesicular, see [95-98]) and its catabolism through an 
ecto-nucleotidase pathway (see [99,100]). However, this 
view has numerous caveats. Certainly, solid work has al-
lowed the cloning of different adenosine transporters, some 
equilibrative others concentrative [101]; also, the elegant 
work of Simon Robson and Herbert Zimmermann allowed a 
molecular characterization of the different families of ecto- 
nucleotidases, both ecto-nucleotides pyro-phosphatases  
(eNPP1-3) and ecto-nucleoside tri- and di-phosphatases  
(eNTPDase1-8) [102]. However, with respect to the pre- 
dominant site of action of adenosine in the brain (i.e. in syn- 
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apses), there is simply no information about which nucleo-
side transporters (see [103]) or which ecto-nucleotidases 
might be present in different types of nerve terminals (see 
[104]). Also, only the few studies that used isolated nerve 
terminals [98,105-107], or fine electrophysiological tech-
niques able to study individual synapses [78,108] or higher 
frequencies of stimulation [78,108-110], were able to docu-
ment the importance of ATP-derived adenosine as a main 
source of endogenous extracellular adenosine. In contrast, 
several careful studies using different methodologies have 
largely failed to document that activity-dependent ATP re-
lease could be a major source of synaptic adenosine [111-
114]. This is probably due to the abnormally high catalytic 
efficiency of ecto-nucleotidases, which can convert ATP into 
adenosine within 50 ms [115] and are organised in a chan-
nelling manner with adenosine receptors [58]; thus, only 
genetic methods, for instance inactivating the vesicular re-
lease of ATP from astrocytes, have provided indirect support 
for the relevance of the ecto-nucleotidase pathway as a 
source of endogenous extracellular adenosine [62].  

The understanding of the role of nucleoside transporters 
(AdoT) in defining the extracellular levels of adenosine is 
even more poorly understood. Whereas it is (strangely) ac-
cepted that adenosine can be released through non-
concentrative and bi-directional adenosine transporters, the 
evidence available instead suggests that AdoT are effectively 

dedicated to the removal of extracellular adenosine; in fact, 
inhibitors of AdoT bolster synaptic A1R-mediated inhibition 
[58,59,116,117], which can only be interpreted as an en-
hancement of the extracellular levels of adenosine. In fact, 
basic questions such as to know the relative contribution of 
neurons (namely synapses) and astrocytes for the clearance 
of adenosine are still unknown. Also, the possibility that 
there might be micro-domains defined by AdoT to confine 
the action of adenosine over A1R or A2AR remains a tentative 
possibility that still awaits experimental confirmation. Great 
hope lies in the detailed characterization of a recent trans-
genic mouse line with a selective deletion of ENT1 [118]. 
Probably, mapping the cellular, synaptic and sub-synaptic 
relative localization of the different AdoT and ecto-
nucleotidases would provide an initial informative view of 
the organization of these metabolic pathways where adeno-
sine exerts its most evident effects, i.e. in synapses.  

It is not only with respect to extracellular metabolism of 
adenosine that the picture is blurred; the characterisation of 
the intracellular bio-availability of adenosine is still poorly 
understood. Since de novo synthesis of purines is energeti-
cally costly, cells have developed different salvage pathways 
to re-use purine moieties. In the case of adenosine, it can 
undergo two major metabolic routes: either re-
phosphorylation into AMP through the action of adenosine 
kinase (ADK) or deamination through the action of adeno-
sine deaminase (ADA) [119-122]. Initial studies suggested a 
simple picture: ADK was mainly a neuronal enzyme, 
whereas ADA was mainly an astrocytic enzyme [119-121]; 
furthermore, ADK has lower KM and Vmax values whereas 
ADA has higher KM and Vmax values [119,122]; this sug-
gested that extracellular adenosine should mainly be re-
utilised by neuronal ADK whereas astrocytic ADA would 
only come to play upon large variations of extracellular 
adenosine. Accordingly, functional studies indicate that 
ADK inhibitors have a more profound impact on A1R-
mediated synaptic transmission [112,123,124] than ADA 
inhibitors [116,124,125]. This simple picture has been called 
into question by the elegant and consistent work of Detlev 
Boison: while it confirmed the primordial role of ADK in the 
metabolisation of adenosine [19], it showed that this enzyme 
was mostly astrocytic [19,126-128], in clear contrast to pre-
vious observation [119-121]. This favours the view that the 
termination of adenosine signalling might be a predominant 
astrocytic function (see Fig. 2), as proposed for other neuro-
active substances such as glutamate [129]. However, it still 
remains to be understood what are the relative densities and 
activities of AdoT, ADK and ADA in nerve terminals, where 
adenosine receptors are enriched and where adenosine is 
mostly acting; this is not possible using brain sections or 
slices since nerve terminals only represent circa 1-2% of the 
total cortical volume in rodents [130]. Certainly, a careful 
characterization of the detailed synaptic action of adenosine 
under different stimulation conditions in different synapses 
in the transgenic mice with modified activity of ADA or of 
ADK (generated by Boison’s group) might provide impor-
tant insights into these questions. 

2d. Proposed Coordinated Role of A1 and A2A Receptors 
in Controlling Brain Circuits 

Obviously, the aim of a reader less familiarised with the 
adenosine neuromodulation system will be to find a simple 

 

Fig. (1). Adenosine A2A receptors act as a switch changing pre-

synaptic modulation from inhibitory to facilitatory. Different 
studies have shown that the activation of A2A receptors can de-
crease the signalling ability of presynaptic inhibitory neuromodula-
tion system in glutamatergic synapses, such as adenosine A1 recep-
tors or cannabinoid CB1 receptors. Conversely, the group of Alex-
andre Ribeiro in Lisbon has shown that the activation of A2A recep-
tors seem to be required for the ability of presynaptic facilitatory 
neuromodulation systems, such as TrkB receptors (operated mainly 
by BDNF) or peptidergic receptors such as CGRP, to enhance the 
release of glutamate. Hence, as proposed initially by Paulo Correia-
de-Sá at the neuromuscular junction, A2A receptors seem to act as a 
selection device to change the sensitivity of glutamatergic terminals 
from mainly responsive to inhibitory signals (when A2A receptors 
are not activated) to mainly responsive to facilitatory signals (when 
A2A receptors are activated). This ability of A2A receptors to control 
both inhibitory and facilitatory systems has been proposed to be 
due either to the recruitment of intracellular transducing pathways 
(mainly protein kinases A or C) or to depend on the formation of 
heteromers between A2A receptors and other receptors. 
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and coherent scenario explaining the physiological function 
of this system. This is what will be attempted subsequently. 
However, it was felt that a summary of some of the questions 
waiting to be experimentally tackled would emphasise the 
numerous caveats of this proposed hypothetic role of the 
adenosine neuromodulation system.  

First, let’s look at the role of A1R and A2AR, both of 
which are now clearly identified as being co-located in corti-
cal glutamatergic nerve terminals [131]. Here it is becoming 

evident that A1R are a constantly working gate keeper of 
excessive excitatory transmission: there is an endogenous 
A1R-mediated inhibitory tonus under most experimental 
conditions. This is not the case for A2AR, which do not seem 
to be tonically activated at lower frequencies of stimulation; 
A2AR are only tonically activated at higher frequencies of 
nerve stimulation. Under such conditions of higher stimula-
tion aimed at triggering plastic changes of synaptic effi-
ciency (e.g. LTP), the A1R system poses a problem: since the 

 

Fig. (2). Different putative role of astrocytes and nerve terminals in the recycling of adenosine at low and high frequency of stimula-

tion. The available evidence by the group of Detlev Boison make it evident that under conditions of functioning that do not trigger synaptic 
plasticity, most of the scavenging and re-utilization of purine moities depends on astrocytic metabolism mainly through adenosine kinase 
(ADK) and eventually through adenosine deaminase (ADA), after the uptake of extracellular adenosine through nucleoside transporters (T), 
as shown in the upper panel. This would allow the preservation of the energetically-‘expensive’ purine moities by astrocytes, which also 
seem to be the main source of extracellular adenosine; thus under conditions of functioning that do not trigger synaptic plasticity, adenosine 
is formed by volume transmission-like release of ATP from astrocytes followed by extracellular catabolism by ecto-nucletidases (eN) to 
form extracellular adenosine mainly activating inhibitory A1 receptors in presynaptic glutamatergic nerve terminals. The situation might be 
different in conditions of functioning designed to trigger synaptic plasticity, such as upon high frequency stimulation. Now, there is a sub-
stantial increase in the release of ATP from nerve terminals; this ATP is extracellularly degraded by synaptic ecto-nucleotidases (eN) into 
adenosine, which is directed towards the activation of A2A receptors (expected to blunt inhibitory responses when activated, thus allowing 
implementation of synaptic potentiation). Since purines are released by nerve terminals, we now postulate (bottom panel) that the re-uptake 
and salvage of purines should mainly be carried by nerve terminals. This would allow understanding the reason why both nucleoside trans-
porters (T), adenosine kinase (ADK) and adenosine deaminase (ADA) have also been identified in non-astrocytic compartments, mainly in 
nerve terminals. Furthermore, it would satisfy the energetic requirement to preserve purine moieties in the same compartments. 
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higher the frequency (or intensity) of stimulation the larger 
the extracellular levels of adenosine [59,110] and since su-
pra-maximal activation of A1R can BLOCK synaptic trans-
mission, the implementation of LTP makes it mandatory to 
switch off A1R. This is one of the roles of A2AR, which de-
sensitises A1R either through intracellular PKC-mediated 
pathways [76] or through the formation of A1-A2AR hetero-
mers [77]. 

But how is it possible to selectively activate A2AR only 
upon LTP-like conditions? The answer seems to rely on the 
organization of the extracellular metabolism of adenosine. 
Higher frequencies (or intensities) of nerve stimulation are 
required to trigger the release of ATP within activated syn-
apses, whereas lower frequencies of nerve stimulation are 
unable to trigger a robust release of synaptic ATP (see 
[109,110]). This extracellular catabolism of this synaptic 
ATP (selectively in the activated synapses) is crucial to form 
the synaptically-localised and transient high concentrations 
of adenosine required to activate A2AR [132].  

In parallel, the activated synapse will also begin a proc-
ess of hetero-synaptic depression involving the bolstering of 
A1R in neighbouring synapses (with respect to this activated 
synapse): the enhanced activity of the activated synapse (i.e. 
the synapse undergoing a plastic change) will trigger the 
activation of the astrocytic syncytium [61]; within the do-
main covered by this syncytium, there will be a greater as-
trocytic release of ATP (i.e. non-synaptic), which will be 
degraded by ecto-nucleotidases (probably different from the 
synaptic ecto-nucleotidases responsible for generating the 
adenosine required for activation of A2AR) degrading ATP 
into the adenosine which is channelled into A1R [58], further 
depressing the activity of neighbouring synapses.  

Thus, the concerted activation of A1R and A2AR can en-
code information salience in brain circuits: the selective re-
lease of synaptic ATP in the activated synapse allows a se-
lective engagement of A2AR, which switch off A1R (and 
CB1R) allowing implementation of potentiation in the acti-
vated synapse; simultaneously, this activated synapse re-
cruits the astrocytic syncytium to enhance A1R mediated 
inhibition in all neighbouring (non-activated) synapses 
(where A2AR is not engaged). Thus, the combined and coor-
dinated function of A2AR only in the activated synapse and 
of A1R in all other surrounding synapses, allows enhancing 
the signal to noise ratio in the activated synapse versus sur-
rounding background, i.e. salience (see Fig. 3). 

A final word to discuss the termination of the signal: 
here, we hypothesise that there is a tight interaction between 
receptors and transporters (e.g. [133]). Since most of the 
adenosine probably originates from astrocytic-derived ATP 
[62], metabolic saving and compartmentalization makes it 
logical that the clearance should be made by astrocytic 
AdoT; then, it would be expected that ADK should play a 
major role, since deamination of adenosine yields ammonia, 
one of the strongest toxins for brain functioning. The situa-
tion might be slightly different in the activated synapse: here 
ATP is released mostly from nerve terminals, so metabolic 
saving and compartmentalization (in the absence of a docu-
mented purine shuttling between astrocytes and neurons) 
dictates that adenosine should be re-uptaked by nerve termi-
nals. Ideally, one should expect that A2AR should also bolster 
the activity of synaptic AdoT, so that the uptake of adeno-

sine in nerve terminals is only engaged when A2AR are re-
cruited (to avoid diverting purines released from astrocytes 
into nerve terminals); interestingly, neurochemical studies 
[133] support this scenario (see Fig. 2), which still waits for 
functional confirmation.  

3. CLASSICAL VIEW ON THE ABILITY OF 
PURINES TO CONTROL EPILEPSY 

Since the activation of A1R seems the most evident effect 
of adenosine and it selectively decreases excitatory rather 
than inhibitory transmission [45,46], inhibits calcium influx 
through voltage sensitive calcium channels and also inhibits 
NMDA responses, adenosine acting through A1R have long 
been considered an endogenous neuroprotective system 
[134]. Furthermore, the ability of A1R to hyperpolarise prin-
cipal neurons further suggests that adenosine acting through 
A1R should be a major anti-epileptic system [135]. In accor-
dance with this idea, numerous studies have documented that 
the acute administration of either agents enhancing the ex-
tracellular levels of adenosine (inhibitors of AdoT, inhibitors 
of ADA or inhibitors of ADK) or agonists of A1R curtail 
seizure and/or convulsive activity in different animal models 
(reviewed in [18,135-137]); conversely, the acute admini-
stration of either selective A1R antagonists or non-selective 
antagonists of adenosine receptors (such as caffeine or theo-
phylline) enhance the duration and severity of seizures 
and/or convulsions (reviewed in [18,135-137]). Furthermore, 
there is evidence that the levels of endogenous extracellular 
adenosine rise at the onset of seizure activity, both in animal 
models (e.g. [138]) as well as in humans [139]). Thus, it 
seems evident that in a naïve system, A1R effectively consti-
tute a hurdle curtailing seizure activity. This is confirmed by 
the ability of A1R to control the spreading of seizure activity 
[140] and the greater susceptibility of A1R knockout mice to 
epilepsy [140-142]. 

However, although it is generally assumed that the inhi-
bition of excitatory transmission and the hyperpolarisation of 
principal neurons might represent the mechanism of A1R-
mediated anti-epileptic-like effects, this has not been conclu-
sively demonstrated. The most perturbing evidence lies in 
the combined observation that there is a decreased density 
and efficiency of synaptic A1R in models of epilepsy [143-
146], whereas there is robust evidence showing that A1R are 
still able to efficiently control chronic epileptic-like condi-
tions [19] and even pharmaco-resistant forms of epilepsy 
[147]. Furthermore, there is direct evidence showing a disso-
ciation between the ability of A1R to control glutamatergic 
transmission and to prevent pilocarpine-induced seizures 
[148,149].  

Finally, the last set of data perturbing the long estab-
lished idea that adenosine is an endogenous anti-epileptic 
substance relies on the use of long term caffeine consump-
tion. Caffeine is a non-selective antagonist of A1R and A2AR 
(and likely of other adenosine receptors) and its established 
mechanism of action at non-toxic doses is the antagonism of 
these receptors [150]. The long term consumption of moder-
ate doses of caffeine (0.3 g/L) was found to prevent neuronal 
damage in different models of epilepsy [151-153]. Thus, in 
spite of the ability of chronic caffeine consumption to up-
regulate cortical A1R [154,155], the partial but chronic 
blockade of adenosine receptors by caffeine reveals a benefi-
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cial effect on seizure-induced neuronal damage. Altogether, 
these evidences warn for the need to re-evaluated different 
facets of the adenosine neuromodulation system in the realm 
of the control of convulsive activity and associated neurode-
generation. 

4. ALTERNATIVE MECHANISMS ASSOCIATED 
WITH THE CONTROL OF ‘EPILEPSY’ BY PURINES 

There are three situations that need to be clearly disen-
tangled: 1) on one hand, one needs to consider the role of the 

adenosine neuromodulation system in the control of the 
‘first’ seizure episode in an otherwise naïve animal; 2) there 
is also the need to consider the situation closer to that found 
in epileptic patients, i.e. individuals who already suffered 
several previous noxious insults (previous seizures, trauma 
or others) and who have already undergone an adaptive pe-
riod (of epileptogenesis) that renders them more susceptible 
for subsequent seizures; 3) finally, a particular focus will be 
dedicated to the neurodegeneration that can follow a severe 
period of convulsive activity; here the focus is not on the 

 

Fig. (3). Coordinated role of adenosine A1 and A2A receptors to assist encoding information salience in brain networks. At low fre-
quencies of stimulation (i.e. conditions of functioning of neuronal circuits that do not trigger synaptic plasticity), there is mostly a volume 
transmission-like release of ATP from astrocytes throughout the whole neuronal network covered by the astrocytic syncytium; this extracel-
lular ATP is catabolised by peri-synaptic (neuronal non-synaptic or astrocytic) ecto-nucletidases (eN) to form extracellular adenosine mainly 
activating inhibitory A1 receptors in all presynaptic glutamatergic nerve terminals covered by the astrocytic syncytium (upper panel). Thus, 
this global and homogenous inhibitory tonus imposed by the tonic activation of inhibitory A1 receptors can be viewed as a hurdle to restrain 
excessive activity in any particular excitatory synapse of the network. The situation is different when one particular excitatory synapse in the 
network undergoes a plastic change. For instance, if a synapse is undergoing the implementation of a long-term potentiation through high 
frequency firing, this activated synapse will release substantial amounts of ATP that are locally (only in the activated synapse) converted into 
adenosine, which is directed to the activation of facilitatory A2A receptors presynaptically blunting other inhibitory modulation systems (such 
as these operated by adenosine A1 or cannabinoid CB1 receptors) and postsynaptically facilitating the recruitment of NMDA receptors. This 
effectively allows the activated synapse to undergo potentiation (left synapse of bottom panel). In parallel, the activated synapse will trigger 
astrocytic activation (e.g. ‘Ca2+ waves’), which will enhance vesicular release of gliotransmitters, namely ATP, in all neighbouring synapses 
covered by the activated astrocytic syncytium. Thus, as described above, there will be a greater inhibitory tonus in all neighbouring synapses 
when the ‘activated’ synapse is undergoing potentiation. This simultaneous A2A receptor-mediated facilitation of potentiation in the ‘acti-
vated’ synapse with parallel enhanced A1 receptor-mediated inhibition through astrocytic-mediated heterosynaptic depression of all neigh-
bouring synapses allows proposing that the adenosine neuromodulation system is involved in the encoding of salience of information in neu-
ronal networks. 
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control of seizures themselves but rather of the ensuing 
mechanisms of neurodegeneration triggered by seizures.  

The answer to the first question seems well consolidated 
experimentally, as described in the first paragraph of the 
previous section. The A1R-operated inhibitory system seems 
to act as a continuously active gate-keeper or hurdle to avoid 
initiating a seizure-like event. We will now focus on the 
adaptive mechanisms suffered by the adenosine neuromodu-
lation system in ‘chronic’ models of epilepsy, before looking 
in a provocative manner at neurodegeneration in the next 
section.  

4a. How ‘Epilepsy’ Modifies the A1 Receptor Inhibitory 
System 

When considering the A1R-mediated inhibitory system, 
there seems to be a decreased density of A1R in chronic 
models of epilepsy [143-146]. This is particularly evident 
when looking at nerve terminals [143,156] and is accompa-
nied by a decreased ability of A1R to modulate excitatory 
synaptic transmission [143]. This decreased density and 
functioning of synaptic A1R contrasts with the observation 
that an experimentally imposed elevation of endogenous 
extracellular adenosine is still effective to control the spread-
ing of seizures [19,140], namely in pharmaco-resistant ani-
mal models of epilepsy [147]. This allows two conclusions: 
first, that there is indeed a long-term desensitization of A1R 
in chronic models of epilepsy, in line with the general desen-
sitization of A1R in chronic neurodegenerative disease (re-
viewed in [40]); the second conclusion is that this desensiti-
zation does not seem to completely abrogate the potential 
inhibitory action of A1R to control seizure activity. Probably, 
the greatest contributing factor for decreased function of the 

endogenous A1R-mediated inhibitory system might be the 
lack of adequate adenosine receptor tonus, which might be a 
result of the modified purinergic metabolism [19,157]. 

In fact, several modifications of purinergic metabolism 
have been reported to occur in chronic animal models of 
epilepsy. During seizure activity there is an increase in the 
extracellular levels of adenosine [138,139]. However, after 
the occurrence of repetitive periods of seizure activity and in 
the absence of seizure activity, there seems to be lower levels 
of extracellular adenosine [143]. This is probably due to the 
robust increase of the expression and activity of ADK 
mainly in astrocytes [126,127], which seems to be a key 
event in the re-adaptation of the adenosinergic system [19]. 
Therefore, albeit there is a decrease in the density of presyn-
aptic A1R, their activation may still be an attractive and ef-
fective manner to restrain subsequent seizure activity in 
models of chronic ‘epilepsy’; this might be better achieved 
by manipulating ADK rather than directly activating A1R 
using A1R agonists since the latter have profound cardiovas-
cular peripheral effects [158].  

4b. Possible Mechanisms Operated by A1 Receptors to 
Manage Chronic ‘Epilepsy’ 

The fact that indirectly targeting A1R through enhance-
ment of endogenous extracellular adenosine is remarkably 
effective to control seizure activity in animal models of 
chronic epilepsy, in spite of the decreased density and func-
tion of presynaptic A1R, strongly suggests that the ability of 
A1R to control seizures in epileptic conditions might be unre-
lated to the synaptic roles of A1R (see Fig. 4). In fact, it is 
conceivable that the ability of A1R to prevent seizure and 
convulsive activity might be related to non-synaptic A1R. 

 

Fig. (4). Possible candidate mechanisms operated by adenosine A1 receptors to control the spreading of seizure activity and associ-

ated neurodegeneration. Adenosine A1 receptors have been shown to act as hurdle preventing the spread of neuronal damage; this might be 
achieved through the ability of A1 receptors to affect mitochondrial function upon control of ATP-activated potassium channels (KATP). Ac-
cordingly, modifiers of KATP function or of their impact on mitochondria affect A1 receptor-mediated neuroprotection and also affect ‘epi-
lepsy’ and associated neurodegeneration. In parallel, other studies have shown the ability of A1 receptors to affect both neuronal and astro-
cytic metabolism. Accordingly, it has been proposed by Jonathan Geiger and Susan Masino that adenosine might be a key mediator of the 
impact of ketogenic diets on brain neurodegeneration and epilepsy. Thus, it is possible that A1 receptor-mediated metabolic adaptation may 
play a key role in the A1 receptor-mediated neuroprotection. Finally, there is solid electrophysiological evidence to sustain a direct A1 recep-
tor-mediated control of the release of glutamate and of the frequency of firing of principal neurons. Although this can potentially assist in 
controlling excitability, there is a lack of direct evidence showing that this direct control of transmission and excitability of glutamatergic 
neurons are actually the basis of A1 receptor-mediated control of seizure activity and associated neuroprotection. 
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One possibility is that A1R might control intermediary me-
tabolism, which is well known to be crucial to sustain sei-
zure activity [159] and is decisive to determine neuronal 
degeneration [160-162]. In fact, besides acting as a neuro-
modulator, adenosine also fulfils a general homeostatic role 
controlling intermediary metabolism, which is considered 
the basis of the non-brain tissue protective effects afforded 
by extracellular adenosine (reviewed in [104]): A1R activa-
tion is not only able to preserve the viability of the nervous 
system subject to insults, but can also afford protection of 
several other tissues to injury, such as the heart, kidney or 
liver [163-167]. This clearly indicates that A1R might protect 
eukaryotic cells through a common general mechanism 
which is obviously broader than synaptic effects, albeit these 
synaptic effects might also contribute to the protection of the 
nervous system.  

However, the way by which A1R might impact on me-
tabolism is still poorly characterised. For instance the car-
dioprotective effect of adenosine is related to the ability of 
A1R activation to control glucose and glycogen metabolism 
[168-171]. Adenosine also affects both brain neuronal and 
astrocytic intermediary metabolism [63,172-176]. In particu-
lar, A1R can affect AMPK [177], p38 MAPK [178-181] or 
preserve mitochondria function through control of KATP 
channels [182-186]; these are all pathways known to coordi-
nate primary metabolism and to have a profound impact on 
neuronal function and viability [187-189]. However, an inte-
grative picture relating A1R activation and the putative re-
cruitment of each of these candidate transducing pathways in 
the realm of neuroprotection has still not been put forward.  

The involvement of A1R in the phenomena of precondi- 
tioning of brain tissue [64] provides another hypothetic ave- 
nue to understand the impact of this modulation system in  
the control of epilepsy. Preconditioning is a process whereby  
a short sub-threshold (or mild noxious) insult affords a sus- 
tained protection against a subsequent more intense noxious  
stimulus. Brain preconditioning is receiving increasing clinical  
attention especially in the case of stroke [190], but it is also  
known that sustained epileptic seizures confer a substantial  
temporary protection against the cellular damage induced by  
subsequent epileptic challenge, a phenomena called 'epileptic  
tolerance' [191, 192]. Brain preconditioning involves a cas- 
cade of metabolic adaptive pathways which depends on a  
coordinated response at the genomic, molecular, cellular and  
tissue levels [193-196]. Preconditioning is associated with a  
metabolic down-regulation mainly orchestrated by modified  
mitochondrial functioning [197], which is known to afford a  
general better coping with insults [198]; in the nervous sys- 
tem, preconditioning involves coordinated modifications of  
neurons and astrocytes (see [199]) and modification of the  
signalling by inflammatory-related molecules (e.g. [200- 
201]) and neurotrophins (e.g. [202]). Interestingly, all these  
responses (KATP, mitochondria, metabolism, neuroinflamma- 
tion and neurotrophin actions) can potentially be controlled  
by the adenosine neuromodulation system (reviewed in  
[40]). Furthermore, A1R have been identified as a key signal- 
ling system to mediated brain preconditioning [64, 203-205],  
in particular epileptic preconditioning [206,207]. This paves  
the way to consider this A1R-mediated preconditioning as a  
likely candidate mechanism to understand the ‘anti-epileptic’  
potential of A1R. An hypothetic scenario can be advanced,  
based on a coordinated action between different adenosine  

receptors and between neurons and astrocytes (see Fig. 5):  
thus, the initiation of seizure activity increases the extracellu- 
lar levels of adenosine [138,139]; this adenosine can activate  
astrocytic adenosine receptors further increasing adenosine  
release through ATP-mediated spreading depression  
[174,208,209] and through increases of interleukin-6 mRNA  
expression and release [210,211]; spreading of this activation  
‘wave’ through the astrocytic syncytium would allow a si- 
multaneous increase of adenosine as well as a bolstering of  
A1R expression and density, promoted by interleukin-6  
[212,213] in neurons adjacent to the seizure foci. Overall,  
this should contribute to limit seizure spreading, through syn- 
aptic A1R and to allow neighbouring neurons to better cope  
with seizures through metabolic down-regulation. In case of  
astrocytic dysfunction, this preconditioning would be lost  
and spreading seizures and neurodegeneration could arise, as  
has been proposed to occur upon brain ischemia [199]. This  
places again astrocytes at the core of modifications in epi- 
lepsy, as tentatively proposed by Detlev Boison [19,157,214]  
(see also [15-17]). It is hoped that future studies may test the  
likeliness of this hypothetic scenario. 

4c. Possible Role of Adenosine A2A Receptors 

Although the major interest of the adenosine neuromodu-
lation system has been the inhibitory A1R system, an increas-
ingly number of studies are now focusing on facilitatory 
A2AR. In fact, these A2AR have received considerable atten-
tion in recent years since their pharmacological and genetic 
blockade confer neuroprotection against different noxious 
brain conditions [215,216]. Albeit A2AR have a discrete den-
sity in the non-injured cortex [217], their density increases 
considerably after noxious stimuli [40,215] for reasons and 
through mechanisms still to be clarified. In particular, upon 
chronic epilepsy there is a robust increase (over 200%) of the 
density of A2AR [156]. In accordance with this scenario, the 
impact of A2AR on the onset of seizure activity is still disput-
able [218-225]. However, recent elegant studies make it evi-
dent that the blockade of A2AR, either using genetic deletion 
of A2AR [226] or selective A2AR antagonists [225,227] or 
non-selective antagonists such as chronic caffeine admini-
stration [227] can afford robust protection against the seizure 
evolving severity. Furthermore, chronic caffeine administra-
tion or A2AR blockade effectively prevent neuronal damage 
following convulsions [151-153,228] and seem to be a gen-
eral indicator of favourable prognosis in diseases involving 
neurodegeneration [229,230]. Thus, A2AR seem to control 
the evolution and consequences of seizures, both seizure-
beget-seizure and seizure-induced neurodegeneration. 

It is currently not known the mechanisms by which A2AR 
blockade confers such a robust neuroprotection [215,216] 
(see Fig. 6). This has been proposed to result from the ability 
of A2AR to control the seizure-induced delayed outflow of 
glutamate [148,149]. Thus, given that A2AR are densely lo-
cated in glutamatergic synapses [131] where they control the 
release of glutamate [74-77] and the activation of NMDA 
receptors [78,231-233], one possibility would be that A2AR 
could control glutamate-mediated excitotoxicity. This has 
received indirect support from studies showing that A2AR 
blockade protects from: 1) the initial synaptotoxicity that 
occurs after exposure to -amyloid 1-42 peptide [234], a 
putative causative factor of Alzheimer’s disease [235];   2)   
the   initial   synaptotoxicity   that   accompanies 
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Fig. (5). Proposed central role of astrocytes in regulating the adaptive strength of the ‘anti-epileptic’ adenosine A1 receptor-mediated 

inhibitory system. There is increased evidence that astrocytes play a key role in formatting the adenosine neuromodulation system in epi-
lepsy. Detlev Boison championed the proposal that the enhanced activity of adenosine kinase in astrocytes was a key event contributing to the 
loss of A1 receptor-mediated neuroprotection. Here, we argue that astrocytes may also have a parallel role bolstering A1 receptor-mediated 
inhibition in the initial phases of spreading of seizure activity. This would rely on the known ability of A2 receptors to enhance the expression 
and release of interleukin 6 (IL-6) in astrocytes, which would be enhanced upon seizure activity by the higher levels of adenosine. Further-
more, the group of Knut Biber has shown that IL-6 can enhance the expression and synaptic function of A1 receptors, which would assist the 
control of spreading seizures. This hypothetic role of astrocytic-neuron communication involving both A1 and A2 receptors might also be 
applied in the case of glucorcorticoids, which expression is also enhanced upon seizures and which may bolster A1 receptor expression, as 
shown by Per Svenningsson and Bertil Fredholm. 

 

Fig. (6). Possible mechanisms operated by adenosine A2A receptors to control the spreading of seizure activity and resulting neurode-

generation. Adenosine A2A receptors are mostly located in synapses, namely in excitatory synapses of the limbic cortex. Their blockade has 
been shown to prevent the loss of synaptic markers in different models of neurodegeneration, suggesting that A2A receptors play a key role in 
controlling one of the early features found to depress the functioning of limbic circuits in different neurodegenerative diseases. A2A receptors 
have also been found to control the release of glutamate, the activity of glutamate transporters and the activation of NMDA receptors; these 
may be potential mechanisms explaining the ability of A2A receptors to control synaptic degeneration or may constitute a parallel mechanism 
by which A2A receptors control excessive glutamatergic transmission involved both in the spreading of seizures as well as on the associated 
neurodegeneration. Finally, A2A receptors also control neuroinflammation, another feature exacerbated by seizure activity and known to con-
tribute to the expression of neurodegeneration. Albeit not exclusive nor the only possible mechanisms, these are processes that allow under-
standing the effectiveness of A2A receptor antagonists (or of chronic caffeine consumption) to prevent neurodegeneration in different animal 
models of epilepsy. 

glu

post-synaptic

1A

KI

A R1
mRNA NMDAR

SEIZURE

pre-synaptic

post-synaptic

Ado

2AA

IL mRNA6

astrocyte

IL6

IL6

pre-synaptic

1A glu

A R1
mRNA

FIRING

glu

SPREADING

OF

SEIZURES

NEURO-

DEGENERATION

2ARA

S ynapse

M icroglia

A strocyte

SYNAPTO-DEGENERATION

NEURO-INFLAMMATION

GLUTAMATE RELEASE

GLUTAMATE REUPTAKE

S

M

AS



74    The Open Neuroscience Journal, 2010, Volume 4 Tomé et al. 

 
memory impairment in adult rats subject to a single convul-
sive period in their early life [236]. Also, studies in cultured 
neurons (i.e. essentially devoid of glial or vascular elements) 
also showed that A2AR blockade affords neuroprotection 
against A 1-42 or staurosporine [234,237]. Furthermore, A2AR 
blockade preserved the viability of purified nerve terminals 
directly exposed to either A 1-42 or staurosporine [234,237], 
which strongly supports a direct ability of synaptic A2AR to 
control synaptic viability. However, these studies do not rule 
out other non-synaptic mechanisms to explain the neuropro-
tection associated with A2AR blockade. Thus, A2AR are also 
located in astrocytes and microglia cells [238-240], where 
they can control glutamate clearance [94,241], the expression 
and action of trophic factors [242-245] and neuroinflamma-
tion [238,244,246,247]. Furthermore, A2AR were also re-
cently found to be present in oligodendrocytes, controlling 
their degeneration upon ischemia [248]. Probably both neu-
ronal and non-neuronal mechanisms contribute to the ability 
of A2AR to control neurodegeneration, according to their 
temporal pattern of recruitment: for instance, using the 
MPTP animal model of Parkinson’s disease, it has been 
shown that damage caused by administration of higher doses 
of MPTP (causing a rapid neurodegeneration) is prevented 
by non-neuronal A2AR blockade [240], whereas damage 
caused by administration of lower doses of MPTP (causing a 
slow and insidious neurodegeneration) is instead prevented 
by the genetic deletion of neuronal A2AR [249]. There might 
also be an additional contribution from A2AR in cells other 
than neurons or glia: for instance, in the case of ischemic 
models, there is a contribution of neuronal A2AR as well as 
of A2AR located in peripheral myeloid derived cells [250]. 
Recent studies also found a striking ability of caffeine to 
control the integrity and functionality of the blood brain bar-
rier [251,252], which is likely to be an effect operated by the 
abundant endothelial A2AR. Finally, given the role of A2AR 
in controlling cerebral vessels [253-258], it is possible that 
the A2AR-mediated vascular control might also contribute to 
neuroprotection.  

Interestingly, the source of the adenosine proposed to 
preferentially activate A2AR (ATP-derived adenosine formed 
through the ecto-nucleotidase pathway) is also modified in 
‘epileptic’ rodents: thus, there is a lower release of ATP and 
a modified extracellular catabolism of ATP [143,259-262]; 
but more importantly, there is an augmentation of the density 
and activity of ecto-5’-nucleotidase [143,261-264], which is 
often the rate-limiting step in the formation of adenosine 
from extracellular ATP [99,265]. Thus, on epilepsy there 
seems to be an up-regulation of A2AR as well as of the source 
of adenosine activating them and A2AR blockade seems to 
afford beneficial effects. 

4d. Possible Role of ATP and P2 Receptors in Epilepsy 

ATP was so far only considered as a source of adenosine. 
However, this is only one of its several possible roles since 
extracellular ATP is also a signalling molecule with diverse 
and important functions, which were elegantly reviewed by 
the ‘father’ of the purinergic field, Geoffrey Burnstock (e.g. 
[266]). Thus ATP can be released by virtually all cell types 
and can signal through a large family of receptors (P2 recep-
tors, P2R) encompassing both ionotropic P2XR and me-
tabotropic P2YR [266]. These receptors are located in most 

cell types in the brain, namely in neurons, astrocytes, micro-
glia and oligodendrocytes, which makes ATP a prototypical 
transcellular signalling molecule between all major cell 
types in the brain (see Fig. 7). Thus, ATP can fulfil a variety 
of functions in the central nervous system, such as neuro-
transmitter [267,268], neuromodulator [269,270], gliotrans-
mitter affecting neurons [271,272] and allowing propagation 
of astrocytic calcium waves [273,274], inflammatory media-
tor (trigger and amplifier) [275,276], trophic factor [277,278] 
and controller of stem cell migration, differentiation and 
neurogenesis [279,280]. Since each of these different roles 
ascribed to ATP is associated with different epileptic condi-
tions as well as with different neurodegenerative conditions, 
it is likely that an abnormal functioning of the ATP signal-
ling system might contribute to the development of brain 
dysfunction (reviewed in [266,272,281,282]).  

The loss of viability of eukaryotic cells results in rupture 
of its plasma membrane with the consequent release of its 
intracellular content; since ATP is one of the most abundant 
molecules in eukaryotic cells, the rupture of the plasma 
membrane will cause a massive increase in the extracellular 
levels of ATP. In contrast to the controlled release of ATP in 
physiological conditions, this large release of ATP is de-
signed to act as a main danger signal, i.e. as a molecule able 
to signal to neighbouring cells a situation of distress, a con-
cept first proposed by Francesco di Virgilio in the control of 
inflammation [283]. This role of ATP as a danger signal also 
seems to occur in the central nervous system where a large 
and sustained release of ATP is observed in the periphery of 
a lesioned region in the spinal cord [284,285]. It was also 
reported that ATP levels increase upon ischemia in the stria-
tum [286], but it was not made clear if this occurred in the 
infarcted or peri-infarcted region. Interestingly, some reports 
already indicate that general antagonists of P2R can attenuate 
both spinal cord injury [284,287] as well as ischemic damage 
[288,289]. Thus, ATP may also fulfil a double-edge sword-
like function in the brain, as it does in the inflammatory sys-
tem [283]: first to signal danger and orchestrating a series of 
adaptive responses designed to cope with the potential dam-
aging insult and to initiate tissue repair; however, this signal-
ling becomes deleterious if inappropriately sustained, thus 
contributing to amplify tissue damage. Thus, in the injured 
brain, the inappropriately large release of ATP and sustained 
activation of P2R can contribute to neurodegeneration 
through direct toxic actions to neurons, spreading of astro-
cytic calcium waves and triggering neuroinflammation 
[266,272,274,281,282]. In parallel, the modified expression 
and density of both P2XR and P2YR observed in different cell 
types in different noxious brain conditions might also con-
tribute to deregulate reparative processes (reviewed in 
[266,281,282]). Thus, as has been unravelled for the control 
of peripheral inflammation, it is becoming evident that the 
disruption of the ATP/P2R system in the central nervous sys-
tem may also contribute to impaired brain function and neu-
rodegeneration.  

In the particular case of epilepsy, there are still no direct 
reports of the role of the ATP/P2R system (see [290]), albeit 
it has been shown that there are modified levels of ATP 
[291], altered evoked release of ATP [143], different stabil-
ity of extracellular ATP (i.e. modification of the activity of 
ecto-nucleotidases) [143,261,262] and a modification of the 
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expression and density of P2R [292-294]. A recent elegant 
review hypothesised that ATP could play a key role in the 
control of epilepsy through its key control of astrocytic cal-
cium waves [295]. A role for ATP in the modified activation 
state of microglia cells upon status epilepticus was also re-
cently proposed [294]. Here, it will just be added that the 
ATP/P2R system may also directly modify neuronal func-
tion. Since the ATP/P2R system seems to be more relevant 
for the control of frequency-induced plastic changes of syn-
aptic efficiency rather than to sustain basal synaptic trans-
mission [296-300], it is possible that the ATP/P2R system 
may be particularly involved in the control of ripples of high 
frequency firing characteristic of paroxysmal activity. Inter-
estingly, it has been reported that the direct administration of 
ATP analogues into the piriform cortex triggers a generalised 
seizure activity [301]. Furthermore, the ATP/P2R system 
seems to be of particular importance to control synaptic 
transmission in more extreme conditions, such as upon pH 
drops [302], which are also characteristic of seizure activity. 
Thus, there are multiple mechanisms to sustain a possible 
role for the ATP/P2R system in the control of epilepsy. It is 

hoped that future studies will directly test the impact of P2R 
antagonists on the induction, propagation and consequences 
of seizure activity. 

CONCLUDING REMARKS 

Several take home messages, some more speculative than 
others, emerge from this brief overview of the putative role 
of purines in the control of seizure activity and resulting neu-
rodegeneration: 

1-First, A1R still emerge as the most efficacious puriner-
gic modulation system to control seizure activity. However, 
it is becoming increasingly clear that the anti-epileptic role 
of A1R is probably operated through non-synaptic mecha-
nisms: it may involve the ability of A1R to implement a state 
of lower susceptibility to insults (pre-conditioning) through 
their ability to control primary metabolism (see Fig. 4). 

2-In this respect, dysfunction of astrocytes may be a cru-
cial precipitating event determining the emergence of epi-
lepsy; in fact, astrocytes play a crucial and predominant role 

 

Fig. (7). The major cell types in brain tissue can release ATP and are subject to ATP (P2 receptor-mediated) control, which makes 

ATP a major trans-cellular signal in the brain. Albeit the possible role of ATP and P2 receptors in the control of epilepsy still remains 
unexplored, the ATPergic system is used as an extracellular signalling system by different sub-cellular compartments known to be affected 
upon seizure activity. Thus, both neurons (pre- and post-synaptically) as well as astrocytes and microglia can release ATP as a signalling 
molecule. Furthermore, all these compartments are equipped with ATP (P2 receptors), both ionotropic (P2X) and metabotropic (P2Y). Overall, 
ATP can act as a neurotransmitter (released pre-synaptically and acting post-synaptically), as a neuromodulator (released pre-, post and/or 
non-synaptically and acting pre-synaptically), as a gliotransmitter (released from astrocytes and acting on neurons or released from astrocytes 
acting autocrinally to sustain calcium wave propagation), as a neuron-glia messenger (released pre- and/or post-synaptically from neurons 
and acting on astrocytes, or vice-versa) and as an inflammatory mediator (released from microglia and/or astrocytes and acting on both glia 
cells). Since accumulating evidence supports that ATP acts as a danger signal, future work should address if and how ATP acting through P2 
receptors might control seizure activity and associated neurodegeneration.  
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in brain energetics and in the integrative ability of A1R to 
curtail excessive activity of brain circuits; thus, their disrup-
tion would blunt the gate-keeper role of the A1R neuromodu-
lation system (see Fig. 5). 

3-The accumulating evidence that A2AR are up-regulated 
in animal models of epilepsy and that the blockade of A2AR 
prevents seizure activity and the resulting neurodegeneration, 
prompts a novel key concept: adenosine can no longer be 
considered an anti-epileptic agent, since it can also contrib-
ute to worsen this conditions through A2AR-mediated actions 
(see Fig. 6). 

4-Finally, increased awareness is required to consider the 
ATP/P2R system as another possible major player in the con-
trol of seizure activity and epilepsy; in fact, ATP is increas-
ingly recognised as a danger signal in the central nervous 
system and its role in the control of epilepsy is still unex-
plored. 

This emerging scenario of multiple purinergic systems 
controlling seizure activity and epilepsy-related neurodegen-
eration unveils the need for future research to pinpoint the 
relative roles of A1R, A2AR and P2R. Particular care should 
be devoted to the understanding of: 1) different timings of 
action; 2) different roles in the continuum between seizure 
initiation, its propagation, epileptogenesis and 
neurodegeneration. If this is achieved, then one may hope to 
design combined therapeutic strategies targeting the different 
arms of the purinergic system to effectively control different 
features associated with epilepsy. 

ABBREVIATIONS 

A1R = adenosine A1 receptor 

A2AR = adenosine A2A receptor 

A 1-42 = -amyloid 1-42 peptide 

ADA = adenosine deaminase 

ADK = adenosine kinase 

AdoT = adenosine transporters 

AHP = after-hyperpolarising potential 

AMPK = AMP kinase 

eNPP = ecto-nucleotides pyro-phosphatases 

ENT 1 = equilibrative nucleoside transporters 
type 1 

eNTPDase = ecto-nucleoside tri- and di-
phosphatases 

KATP = ATP-sensitive potassium channels 

LTP = long term potentiation 

MAPK = microtubule-associated protein kinases 

NMDA = N-methyl-D-aspartate 

P2R = P2 receptors 

PKC = protein kinase C 

SAH = S-adenosylhomocysteine 

SAM = S-adenosylmethionine 
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