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Abstract: Many orthopaedic implants are composed of alloys containing chromium. Of particular relevance is the in-

creasing number of Cobalt Chromium bearing arthroplasies being inserted into young patients with osteoarthritis. Such 

implants will release chromium ions. These patients will be exposed to the released chromium for over 50 years in some 

cases. The subsequent chromium ion metabolism and redistribution in fluid and tissue compartments is complex. In addi-

tion, the potential biological effects of chromium are also controversial, including DNA and chromosomal damage, reduc-

tion in CD8 lymphocyte levels and possible hypersensitivity reactions (ALVAL). The establishment of these issues and 

the measurement of chromium in biological fluids is the subject of this review. 

INTRODUCTION 

 Orthopaedic arthroplasties are artificial devices which are 
used to replace damaged joints in the body, e.g. hip, knee, 
finger and shoulder. They were initially mainly used by the 
elderly but, are now used in increasing numbers across the 
populace. About 0.16-0.2% of population per year in indus-
trial countries undergo total hip joint arthroplasty and the 
recipients are from all age groups ranging from 20-80 years 
of age. More than 50,000 total hip replacements (THRs) are 
implanted in the United Kingdom per year [1]. 

BIOMATERIALS IN ORTHOPAEDIC IMPLANTS 

 Biomaterials are materials which are either natural or 
man made and which are used to aid or totally replace the 
functions of living tissues. A bone implant should have an 
identical loading response to natural bone. The average load 
on a hip bone has been estimated to be thrice the body 
weight and this may increase to as high as ten times the body 
weight during strenuous exercise. An ideal bone implant 
should therefore exhibit good and appropriate mechanical 
properties identical to natural bones and be highly biocom-
patible with existing tissues [2]. 

 Various biomaterials have been used in the design of the 
elements of THR. Polymeric materials, as a result of their 
mechanical weakness, have been considered unsuitable for 
meeting the stress deformation requirements in THR compo-
nents while ceramics are biocompatible with existing tissues 
but are brittle and designs must take this into account. Metals 
have good mechanical properties, but poor biocompatibility 
properties, cause stress shielding and a systemic release of 
ions [2]. 

 A hip arthroplasty in most cases is made up of a metallic 
or ceramic component articulating with a metal, ceramic or 
polyethylene surface [3]. The combinations possible include 
metal [stainless steel or cobalt Chromium (CoCr)) on- ultra 
high molecular weight polyethylene (UHMWPE)], metal-on- 
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metal (CoCr), ceramic on polyethylene, ceramic on ceramic 
or more recently ceramic on CoCr [4,5]. 

 Many types of metal-on-metal (M/M) hip implants were 
developed and implanted in significant numbers in the 
1960s. They were however mainly replaced in the UK by the 
metal on polyethylene implants in the mid 1970s as a result 
of early reports of seizing and loosening and the success of 
the Charnley and Exeter hip arthroplasties. The seizing and 
loosening of M/M arthroplasties was associated with metal 
staining due to wear and corrosion of the metal-on-metal 
articulating bearing surfaces [6]. However, the success of the 
metal on polyethylene implant has been tempered in more 
active patients as UHMWPE wear debris generated at its 
articulating surfaces is believed to play an important role in 
periprosthetic osteolysis which leads ultimately to aseptic 
loosening. In genetically susceptible patients inflammation 
and bone resorption occurs at the implant-bone interface as a 
result of the release of cytokines for example, (interleukin 
1 , interleukin-6 and tumour necrosis factor ) caused by an 
active phagocytosis of the generated UHMWPE wear parti-
cles by macrophages [7]. Metal-on-metal total hip replace-
ment (M/M THRs) staged a comeback in the 1990s when 
THRs made from cobalt-chromium alloy were introduced to 
overcome the problem of polyethylene wear induced oste-
olysis. The reintroduction was based on good long term re-
sults associated with Mckee-Farrar THRs (M/M coupling 
used in 1960s) which achieved excellent results even at 20 
years follow up [6,8-10]. 

 The modern M/M prostheses are slightly different in de-
sign from the 1960s M/M. The latter were crude in design 
while the modern day M/M implants have a great range of 
sizes and are finished with a greater accuracy. Extremely low 
linear and volumetric wear rates have been reported [1,5,10-
12] and osteolysis as seen with polyethylene particles is con-
sidered to be relatively rare in M/M joints. Extremely low 
linear wear rate of 4-12 m/year in M/M implants compared 
with a linear wear rate of 100-300 m/year in polyethylene 
cups have been reported [12]. Doorn and colleagues reported 
that metal wear particles from M/M implants were of smaller 
diameter (<0.1 m) compared to polyethylene wear particles 
(0.5 m) from conventional implants [11]. Green and co-
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workers reported that only polyethylene particles of size 0.3-
10 m induced the release of cytokines by macrophages with 
subsequent osteolysis [7]. 

 After a rapid wear rate for the first year after implanta-
tion, as a result of an initial conditioning phase, most M/M 
arthroplasties have a constant low wear rate [12]. This is 
considered particularly important for young and physically
active patients who otherwise may have to undergo several 
revision surgeries in their lifetime [13]. 

METAL ORTHOPAEDIC IMPLANTS 

 Stainless steel, cobalt-chromium and titanium alloys are 
used in various orthopaedic implants. The compositions of 
the main alloys used, are outlined by the International Or-
ganisation for Standardisation, published by British Stan-
dards [14] and shown in Table 1.

METAL IONS FROM ORTHOPAEDIC IMPLANTS 

 Corrosion is an electrochemical reaction which all metals 
in contact with biological systems undergo. It leads to the 
formation of metal ions and these metal ions may trigger 
hypersensitivity reactions and affect the immune response 
system.

 Metal ions and debris have been shown to be released from 
orthopedic implants which are made of stainless steel and co-
balt -chrome alloys [11,16,17]. Chromium, molybdenum, sili-
con, iron, and manganese are the ions released from stainless 
steel implants while titanium, aluminium, vanadium, and nio-
bium are released from implants that are made of titanium 
alloys [3]. This in-situ degradation of an implant is undesirable 
since it decreases the structural integrity of the implant and 
also releases products which may elicit an adverse biological 
reaction in the host [18]. 

Table 1. Compositional Limits % (m/m) of Elements in the Main Alloys Used in Orthopaedic Prostheses (British Standard Metal-

lic Materials for Surgical Implants http://bsonline.bsi-global.com) [14] 

Group C Si Mn P S N Cr Co Mo Ni Cu Fe Ti H O Al V W Be Nb Ta

ISO 5832-1 
Wrought stainless  
steel 

0.03 1.0 2.0 0.025 0.01 0.1 17-19 - 2.25-3.5 13-15 0.5 Bal - - - - - - - - - 

ISO 5832-2 
Unalloyed  
titanium 

0.03 - - - - 0.012 - - - - - 0.1 Bal 0.01250.1 - - - - - - 

ISO 5832-3 
Wrought  
Ti 6-Al-4 V alloy 

0.08 - - - - 0.05 - - - - - 0.3 Bal .015 0.2 5.5-6.75 3.5-4.5 - - - - 

ISO 5832-4 
Co-Cr-Mo  

casting alloy 

0.35 1.0 1.0 - - - 26.5-30 Bal 4.5-7.0 1.0 - 1.0 - - - - - - - - - 

ISO 5832-5 
Co-Cr-W-Ni  
alloy 

0.15 1.0 2.0 - - - 19-21 Bal - 9-11 - 3.0 - - - - - 14-16 - - - 

ISO 5832-6 
Wrought  

Co-Ni-Cr-Mo  
alloy 

0.025 0.15 0.15 0.015 0.01 - 19-21 Bal 9-10.5 33-37 -- 1.0 1.0 - - - - - - - - 

ISO 5832-7 
Co-Cr-Ni-Mo-Fe  

alloy 

0.15 1 1-2.5 0.015 0.015 - 18.5-21.5 39-42 6.5-8.0 14-18 - Bal 0.5-3.5 - - - - - 0.001 - - 

ISO 5832-8 
Wrought  

Co-Ni-Cr-Mo-T-Fe
alloy 

0.05 0.5 1.0 - 0.01 - 18-22 Bal 3-4.0 15-25 - 4-6.0 - - - - - 3-4.0 - - - 

ISO 5832-9 
High nitrogen  

stainless steel 

0.08 0.0752-4.25 0.025 0.01 0.25-0.5 19.5-22 - 2-3.0 9-11 0.25 Bal - - - - - - - 0.25-0.8 -

ISO 5832-10 
Wrought Ti 5-Al,  
2,5 Fe alloy 

0.08 - - - - 0.05 - -  - - 2-3.0 Bal 0.015 0.2 4.5-5.5 4.5-5.5 - - - - 

ISO 5832-11 
Wrought Ti 6- Al,  

7-Nb alloy 

0.08 - - - - 0.05 -   - - 0.25 Bal 0.009 0.2 5.5-6.5 - - - 6.5-7.5 0.5

ISO 5832-12 
Wrought  
Co-Cr-Mo alloy 

0.35 1 1 - - 0.25 26-30 Bal 5-7 1 - 0.75 - - -  - - - - - 

Carbon (C), Silicon (Si), Manganese (Mn), Phosphorus (P), Sulfur (S), Nitrogen (N), Chromium (Cr), Cobalt (Co), Molybdenum (Mo), Nickel (Ni), Copper (Cu), Iron (Fe), Titanium 
(Ti), Hydrogen (H), Oxygen (O), Aluminum (Al), Vanadium (V), Tungsten (W), Beryllium (Be), Niobium (Nb), Tantalum (Ta), Balance (Bal). 
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 Biological risks associated with the released metal ions 
have been identified to include those from wear debris, col-
loidal organometallic complexes, free metal ions and inor-
ganic metal salts or oxides formed [19]. Theoretically, high 
ion levels have been implicated in delayed-type hypersensi-
tivity, organ toxicity and carcinogenesis and are associated 
with dermatitis, urticaria and vasculitis. The presence of a 
joint replacement device, especially a failed metal implant, 
has been shown to predispose patients to dermal sensitivity 
when compared with the general population [15]. Evans and 
coworkers in 1974 [20] identified metal sensitivity as a cause 
of bone necrosis and implant failure but it remains unclear 
either metal sensitivity occurs in patients as a result of im-
plant failure or the implant failed because of a preexisting 
metal sensitivity in the patients [15, 21]. Aseptic lympho-
cytic vasculitic associated lesions (ALVAL) which may rep-
resent immunological response to metal wear debris [22,23] 
has been documented in tissues around M/M implants, this 
lymphocytic infiltration was absent in control group of tis-
sues obtained at revisions of implants without cobalt, chro-
mium and nickel [22] and in metal-on-polyethylene implants 
[24]. Cells and tissues around and distant from the implant 
are exposed to the toxic effects of the released metal ions and 
wear debris. Areas of tissue necrosis with associated visible 
metal particles have been identified from histological studies 
of tissues retrieved from revised metal prostheses [11,16]. 
Metal ion concentrations have been measured in patients 
with implants. Elevated metal ion concentrations in serum 
[9, 13,25-27], erythrocytes [19, 28], urine [9, 26, 28], whole 
blood [29-31], tissue [32, 33] and organs [34] have all been 
reported. Merritt & Rodrigo in 1996 observed that longer 
implant time in situ is associated with increased implant deg-
radation products which would theoretically predispose to an 
increased metal sensitivity [35]. 

 The published reports on the modern, second-generation 
M/M bearings to date have uniformly shown substantial ele-
vations in serum, blood, erythrocyte, and/or urine Co and Cr 
ion levels in comparison with control patients without im-
plants and/or in comparison with patients with metal-on-
polyethylene bearings [28, 36]. It has been confirmed that 
the increased ion level is due to the presence of a M/M im-
plant since ion levels showed a decline following the re-
moval of the M/M implant [13]. The migration of these 
metal ions and wear particles to distant sites is of potential 
concern, considering the highly toxic and carcinogenic na-
ture of these metal ions. Of particular relevance to M/M 
CoCr hip arthroplasties is the Chromium (Cr) ion. Several 
investigators have measured the concentrations of Cr ions 
following hip replacement. These findings including the lev-
els of ions in normal healthy controls are summarized in  
Table 2.

CHROMIUM 

 Chromium, the 24th element in the periodic table, is 
mainly used as an alloying element in steels where it con-
tributes to hardness, tempering and resistance to oxidation. It 
is naturally occurring and is found in soil, plants and ani-
mals. It occurs in various valences, including chromium (0), 
chromium (III) and chromium (VI). Chromium (III), which 
is the most stable form, occurs naturally in the environment 
whereas industrial processes produce chromium (0) and 

chromium (VI). Chromium occurs primarily as chromium 
(III) or as chromium (VI) which is a strong oxidizing agent. 

 The form of chromium found in foods is Cr (III) and it is 
essential for maintaining normal glucose tolerance factor and 
metabolism. Its deficiency in humans will lead to impaired 
glucose tolerance, glycosuria, fasting hyperglycemia, and 
elevated circulating insulin and glucagon [43]. Bran break-
fast cereals, broccoli, green beans and some brands of beer 
and wine are all high in trivalent chromium [44]. Trivalent 
chromium has a large safety range and no documented signs 
of its toxicity in any of the nutritional studies at levels up to 
1mg per day have been reported [43]. However, Cr (VI) is a 
strong oxidizing agent, is toxic and crosses cell membranes. 
Cr (VI) is classified by WHO as a class 1 human carcinogen 
[45]. 

DISTRIBUTION OF CHROMIUM IN BLOOD 

 Hexavalent chromium compounds that enter the blood-
stream are actively transported into red blood cells (RBC) 
via non specific anionic channels like the sulphate and phos-
phate anion channels [46, 47] (Fig. 1). Once inside the RBC, 
the Cr (VI) is rapidly reduced to unstable intermediates (i.e.,
short-lived Cr (V) and Cr (IV) species) and ultimately to Cr 
(III) which becomes bound to haemoglobin and other intra-
cellular proteins [46-50] resulting in increased total chro-
mium levels that remain elevated in the RBC fraction of 
blood for several weeks, while plasma chromium levels re-
turn rapidly to background. Gray & Sterling in 1950 reported 
that on incubation of RBCs with sodium chromate labelled 
with chromium-51, the chromium-51 enters the RBCs and 
after reduction to the cationic trivalent state becomes firmly 
bound to the globin portion of the haemoglobin molecules 
within the cell [48]. This tagging eventually became the ba-
sis for in vivo studies of red cell volume and estimation of 
red cell life span [51]. Cr binds preferentially to the beta 
chain of the human haemoglobin and also to non-
haemoglobin proteins [52] and glutathione [53]. RBC mem-
branes are however relatively impermeable to the cationic 
trivalent chromium and when varying amounts of radioactive 
Cr (III) were added to whole blood in vitro, almost all of the 
radioactivity (94-99%) remained in the plasma with an in-
significant count retained in the RBC after saline washing. 
Similar results were obtained in vivo [48]. 

CHROMIUM (VI) AND TOXICITY 

 Merritt & Brown in 1995 reported that Cr (VI) is the pre-
dominant species of chromium released during corrosion of 
stainless steel and cobalt chrome alloy [38]. Cr (VI) itself 
does not react with DNA in vitro in isolated nuclei but it 
causes many DNA lesions which include DNA-DNA cross 
links, DNA-protein cross links and oxidative damage once 
inside the cell and in the presence of cellular reductants [55, 
56]. A reduction-uptake model has been described for Cr 
(VI)-induced carcinogenesis (Fig. 2) [56, 57]. Cr (VI) is 
highly water-soluble and it easily permeates the cell mem-
brane through the physiological anion transport channels. 
Once inside the cell, reducing enzymes such as NADPH cy-
tochrome c reductase, DT-diaphorase, glutathione reductase 
and cellular reductants such as cytochrome P450, reduced 
glutathione (GSH) and vitamin C reduce it to reactive inter-
mediates, such as Cr (V) and Cr (IV) [58-61]. During its  
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reduction, reactive oxygen species are produced. These reac-
tive intermediates generated from the in vivo reduction of Cr 
(VI) and reactive oxygen species are thought to be responsi-
ble for many of the toxic effects caused by Cr (VI). One of 
the major intracellular reductants of Cr (VI) is the ubiquitous 
tripeptide ( - glutamylcysteinylglycine). Cr (VI) forms a 
complex with GSH and is subsequently reduced to Cr (V) 

through a one electron reduction process. The Cr (V) species 
formed can react via the Fenton reaction with hydrogen per-
oxide to form the DNA damaging hydroxyl radical. Further 
hydroxyl radical is generated via the Fenton mechanism by 
Cr (IV) formed by the reduction of Cr (V) by cellular reduc-
tants like GSH and ascorbate [62]. Several studies support-
ing the formation of a Cr (V) intermediate in the reaction of 

Table 2. Concentrations of Chromium g/L in the Biological Samples of Patients Following Ion Release from Different Models of 

Metal-On-Metal Orthopaedic Implants 

Study Follow Up Years Model Serum Control (Serum) 

[37] 2.5 Co-Cr 0.10* ± 0.02 0.1*± 0.04 

[38] > 1 Co-Cr Plasma RBC 8.31 14.83 Plasma & RBC 0.01 

[9] 25 Mckee -Farrar 1.28*  0.14*  

 1 Surface replacement 3.86* 0.14* 

[40] 2.2 Metasul 1.72* ± 0.33 0.25* ± 0.05 

[41] 0.25 Conserve plus  1.88* ± 0.48 0.08* ± 0.04 

 0.5  2.02* ± 0.98  

 1  1.80* ± 0.45  

[25] 1.33 Ultima (CoCrMo) 0.99* 0.26*

 1.33 Ultima (CoCrMo) resurfaced 2.77* 0.26*

[30] Imm postop metasul 7.78*** ± 2.92  

 0.25-0.5  16.79*** ± 5.9  

 1-1.25  34.75*** ± 7.85  

 3  48.04*** ± 14.08  

 3.5-4  25.62*** ± 19.37 0.21*** 

[30] Imm postop Sikomet 14.27***± 6.46 0.21*** 

 0.25-0.5  22.19*** ± 10.44  

 1-1.25  30.81*** ± 16.09  

 3  22.24 ***± 9.47  

 3.5-4  36.35*** ± 19.40  

[19] 2 CoCrMo 2.50** 1.09** 

[39] 0.5 metasul 0.73* ± 0.76  

 1  1.05* ± 0.76  

 1.5  1.37* ± 090  

[31] 1 Metasul THR 1.7***  

 1 BHR 2.4***  

[29] 0.5-3.5 M/M resurfacing 1.78*** 0.28*** 

[26] 1.28 Conserve Plus 2.88* ± 2.22 1.47* ± 0.37 

[27] 6 M/M 3.48*± 2.67 0.92* ± 0.89 

[42] 4.5 Metasul 2.1* ± 0.35 0.28* ± 0.04 

[13] 5 (retrospective) Sikomet 1.31* ± 1.37 0.3*± 0.05 

 0.4 (Prospective) Sikomet 1.12* ± 0.54 0.67* ± 0.25 

 1.6 (Prospective) Sikomet  1.30* ± 0.3 0.67* ± 0.25 

 0.41(Revision) Sikomet 0.63*±0.28 Prior to revision 0.79* 

 1.28 (Revision) Sikomet 0.45*±0.148 Prior to revision 0.79* 

* Serum (mean values) ** Erythrocyte (median Values) *** whole blood (mean values). 
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Cr (VI) with GSH have been reported [63, 64]. Liu and co-
workers [65] reported the synthesis of Cr (IV)-GSH and 
demonstrated that it can generate hydroxyl radicals in the 
presence of H2O2. 

 The complex formed by GSH and Cr (VI) and those 
formed between GSH and the reduced intermediates of Cr 
(VI) undergo cyclical oxidation and reduction reactions (Fig. 
3) and thus contribute to the redox reactions that mediate the 
toxicity of the free metal. The serum and tissue concentration 
of the toxic chromium species may therefore be higher than 
previously thought when only free chromium was measured 
by either atomic absorption spectrometry or by inductively 
coupled plasma-mass spectrometry. It may be necessary to 
determine the extent of chromium conjugation with GSH in 
exposed patients and to measure both the free and conju-
gated chromium ions in serum and tissues in order to have a 
more realistic idea of the amount of chromium ion released 
from a M/M implant. 

 Gunaratnam & Grant in 2004 reported that Cr (VI) in-
duces cell death by apoptosis at low concentrations 
(260 g/L), and by necrosis at higher concentrations (1300 
and 2600 g/L) [66]. The in vitro effects of Cr (VI) on the 
function and viability of osteoblasts have been examined at 
concentrations that have been earlier reported in vivo in pa-
tients’ serum. Osteoblasts lose viability after exposure to Cr 
(VI) at a concentration of 26 g/L for 48hours. Protein, RNA 

and DNA synthesis are inhibited after exposure to 5.2 g/L 
for 48 hours. Cr (VI) inhibits collagenase activity and it is 
thought to inhibit osteoblast collagen fibre synthesis at an 
intracellular post translational modification stage [67]. Cr 
(VI) therefore interferes with normal bone turnover and its 
release from chromium containing alloys would promote 
implant loosening, both by destroying osteoblasts and by 
reducing their bone matrix synthesis ability. Cr (VI) has also 
been shown to cause direct toxicity to the cells of the im-
mune system in vitro. It induces oxidative stress and apopto-
sis in lymphocytes and in mouse macrophages [68-71]. Al-
terations observed in the cells of the immune system in vivo
in patients with M/M implants have been attributed to high 
circulating Cr levels [29]. For example, Hart and colleagues 
[29] found a 30% decrease in circulating CD8 T-
lymphocytes in patients 20 months after implantation, and 
Savarino and coworkers [72] reported a decrease in CD4 and 
CD16 positive cells. The consequence of these alterations is 
unclear. 

EPIDEMIOLOGICAL STUDIES INVOLVING THE 
INCIDENCE OF CANCER FOLLOWING IMPLAN-

TATION 

 Cr (VI) has been labeled as a class-1 human carcinogen 
by the International Agency for Research on Cancer [45] 
signifying carcinogenesis as a potential long term biological  

Fig. (1). Cr (VI) and Cr (III) uptake in red blood cells adapted from [54]. This schematic depicts how Cr (VI) enters the RBC readily, while 

chromium (III) on the other hand moves across the cell membrane via much slower diffusion and through other processes related to the 

chemical structure of the attached ligands [54]. 
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Fig. (2). The uptake-reduction model for Cr (VI)-induced carcino-

genesis adapted from [57]. 

effect in patients with M/M hip replacements [73]. Sunder-
man [37] suggested that sarcoma at the implantation site of 
an orthopaedic prosthesis is a complication (though very 
rare) of metal orthopaedic implants. Onega and coworkers 
[74] reported an increase in melanoma, which became evi-
dent 10 years after arthroplasty. A similar delayed emer-
gence of increased risk of bladder and ureter cancers was 
also reported. A possible mechanism for these site specific 
cancers is urinary excretion of metals [28]. However all risks 
currently remain theoretical as no data have been published 
to suggest any definite pathological effects. Despite the con-
cern about possible carcinogenicity from chromium and co-
balt ion exposure no epidemiological evidence has yet, at 
this early stage, suggested any associated increase in inci-
dence of any neoplastic disease in arthroplasty related expo-
sure [74, 75]. However, a number of studies have noted 
chromosomal damage in lymphocytes and bone marrow in 

patients with metal orthopaedic implants [76-79]. Although 
such effects do not necessarily mean there is a risk of cancer, 
it should be borne in mind that similar damage has led to 
carcinogenesis with other unrelated chemical exposures. It is 
probable that any pathological effect of metal ion release 
would take a long time to manifest clinically. It is important 
to note that the McKee-Farrar prosthesis, a M/M THR pros-
thesis which was widely used in the 1960s, has not been 
found to be associated with any pathological effects of 
chromium or cobalt ion release. 

THE USE OF METAL LEVELS TO MONITOR 
METAL-ON-METAL IMPLANTS 

 Several studies have reported a run-in period during the 
first 2 years after surgery during which metal ion concentra-
tions are significantly elevated. After this run-in period, a 
steady-state develops in which the ion concentration is con-
stant until the implant begins to fail and the ion concentra-
tions begin to rise again. Ion levels have therefore been sug-
gested as a possible indicator for monitoring implant surface 
wear and clinical performance of M/M bearings since the 
predominant source of metal debris in these hips is the ar-
ticulating M/M surface [80]. Blood and/or urine metal ion 
analyses have the possibility of providing early confirmation 
of failure and aid in the timing of a revision operation for a 
patient with a symptomatic or failed device [34]. This will 
however become clinically useful after extensive correlative 
studies establishing the precise relationship between implant 
performance and ion concentration have been published. 
Other than the articulating bearing surfaces of the implant 
other potential sources of metal debris exist and to interpret 
blood, serum and/or urine levels in patients these sources 
should be carefully considered. Sources of metal debris like 
corrosion of fixation screws, non orthopaedic metal devices 
like heart mechanical valves and environmental sources of 
metal contamination [34] should all be considered. Care 
should also be taken to avoid sample contamination during 
collection since metal ions can be introduced from collection 

Fig. (3). Reduction of Cr (VI) by cellular reductants adapted from [62]. 
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needles. Altered renal function may bias the result and cause 
an increase in circulating metal levels. This was demon-
strated by Brodner and colleagues who reported over 100-
fold elevated Co and Cr levels in two patients with renal 
failure in comparison with individuals with similar implants 
and normal renal function [81]. The effect of activity level 
on the extent of metal debris production has been a major 
controversy. Brodner and colleagues have shown that as the 
activity level increases, implant wear rate, serum, urine, and 
blood metal ion levels also increase [81]. They demonstrated 
this, by reporting the case of a long-distance runner whose 
Co ion levels increased following a marathon. However, 
these levels reportedly returned to the baseline after 4 weeks. 
Contrary to this, Heisel and coworkers reported that the 
steady-state metal ion level is a function of the amount of 
debris produced during the initial wear-in period and not 
dependent on short-term changes in activity level [82]. They 
reported a constant serum ion level for a given patient with 
M/M bearing hip prostheses and found no correlation be-
tween patient activity and ion levels. 

 Amstutz and colleagues reported a consensus meeting 
held in 1996 on the past performance and future directions 
for M/M implants which discussed extensively the use of ion 
measurements as a potential means of monitoring M/M wear 
[6]. It was agreed that sample collection protocol will be 
prospective and the samples would ideally include serum, 
red blood cells, urine, and joint fluid. The collection of a 
synovial biopsy is considered desirable but difficult and 
probably not practical. Ideal sampling times were determined 
to be preoperative, immediate postoperative (in hospital); 
and at 1, 3, 6 months and 1 year, 2 years. Patient demograph-
ics, activity and general health will be taken into considera-
tion and kept constant with only the bearing couple; stem 
fixation type being a variable [6]. MacDonald and coworkers 
reported that ease of specimen acquisition has made blood 
and urine the most common samples in trace metal analyses. 
Good correlation exists between blood and 24-hr urine val-
ues but urine samples have a higher likelihood of contamina-
tion by the patient. A variation in hydration that may occur 
throughout the day causes variable metal concentrations in 
spot urine samples and blood is therefore often the specimen 
of choice for trace metal analysis. The complexity of matrix 
components tends to make blood analysis that includes cells 
(whole blood or erythrocytes) more difficult. Digestion pro-
tocols which may theoretically introduce contaminants are 
necessarily employed to improve the recovery of the metal 
from whole blood and erythrocytes. The large quantity of 
iron in the erythrocytes is an additional source of interfer-
ence [83]. Serum analysis does not have these problems but 
it gives less characterization of the actual blood level since 
some metals (particularly chromium) tend to concentrate in 
erythrocytes. Chromium determination in erythrocytes at a 
single moment represents a longitudinal result for either the 
whole lifespan or part of it. This allows the assessment of the 
stress sustained during the period and it is therefore a supe-
rior method compared to determinations in the urine or the 
plasma which merely represent a snapshot of the situation 
[49]. To date a comparison of whole blood, serum and eryth-
rocytes on the same specimens in patients with M/M bear-
ings has not been reported [83]. 

 The lack of an established toxicity threshold for the deg-
radation products of cobalt-chrome alloy implants has made 

monitoring of serum metal levels of little or no use clini-
cally. Occupational safety standards exist, but it is difficult 
to apply such safety standards to clinical situations of pa-
tients with metal implants since they are derived primarily 
from inhalational exposure to these metal ions rather than a 
blood-borne route seen in patients with M/M implants. Dif-
ferent routes of exposure would be expected to result in dif-
ferent risk profiles [28, 84]. 

MEASUREMENT OF CHROMIUM LEVELS IN BIO-
LOGICAL FLUIDS 

 Elemental specific analytic techniques like atomic ab-
sorption spectrometry (AAS) have been used for chromium 
determination in biological materials. Flame atomic absorp-
tion spectroscopy (FAAS) was used for quantification of 
elements in samples in the 1970s. The technology has 
evolved with the introduction of graphite furnace to atomize 
the sample. Graphite furnace atomic absorption spectroscopy 
(GFAAS) allows greater sensitivity of detection and the use 
of smaller quantities of samples. Inductively coupled 
plasma-mass spectrometry (ICP-MS) has an exceptional sen-
sitivity combined with high analysis speed. It has a better 
throughput compared with GFAAS and for most elements, 
achieves detection limits which are comparable to or better 
than those of GFAAS. The methods of choice in life sciences 
must have a high power of detection since the determination 
of the chromium species in biological samples has to be per-
formed at ultra trace concentration levels. The methods of 
choice now include GFAAS [9, 13, 25, 40, 81] and ICP-MS 
[19, 26]. The determination of chromium levels in biological 
samples is however difficult because of matrix interference 
and the very low concentrations present in these samples 
[83]. 

CONCLUSIONS 

 Metal alloy implants are employed in many aspects of 
modern orthopaedic surgery. Most recently CoCr has been 
increasingly used in M/M articulating bearings. Elevated Cr 
levels have been reported to cause DNA and chromosomal 
damage, reduction in CD8 lymphocyte levels and possibly 
hypersensitivity reactions (ALVAL). However, to date there 
has been no significant epidemiological evidence to link any 
of these changes with an increased incidence in any reported 
disease. To establish what might be an acceptable level of 
chromium, guidelines require to be established to standardize 
measurement of ion concentration and bioavailability in this 
complex subject. 
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