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Abstract: Sand fly and Leishmania are one of the best studied vector-parasite models. Much is known about the devel-

opment of these parasites within the sand fly, and how transmission to a suitable vertebrate host takes place. Various mol-

ecules secreted by the vector assist the establishment of the infection in a vertebrate, and changes to the vector are pro-

moted by the parasites in order to facilitate or enhance transmission. Despite a generally accepted view that sand flies and 

Leishmania are also one of the oldest vector-pathogen pairs known, such long history has not been translated into a har-

monic relationship. Leishmania are faced with many barriers to the establishment of a successful infection within the sand 

fly vector, and specific associations have been developed which are thought to represent aspects of a co-evolution between 

the parasite and its vectors. In this review, we highlight the journey taken by Leishmania during its development within 

the vector, and describe the issues associated with the natural barriers encountered by the parasite. Recent data revealed 

sexual replication of Leishmania within the sand fly, but it is yet unknown if such reproduction affects disease outcome. 

New approaches targeting sand fly molecules to prevent parasite transmission are being sought, and various techniques re-

lated to genetic manipulation of sand flies are being utilized. 
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INTRODUCTION 

 Sand flies (Diptera: Psychodidae: Phlebotominae) are the 
main vectors of leishmaniasis, a multi-spectrum disease 
ranging from self-healing skin lesions to fatal visceral ill-
ness. Approximately 40 species of Leishmania have been 
described [1], and different species are associated with dis-
tinct disease outcomes. In parallel, over 900 species and sub-
species of sand flies have been identified to date (from a 
recent compilation of all sand fly species, E. Galati personal 
communication), but only a limited number have been 
proven or incriminated as vectors of Leishmania [1]. A spe-
cific relationship exists between sand flies and Leishmania 
such that, in nature, only certain species of sand flies are able 
to transmit certain species of Leishmania [2]. This species-
specificity is driven by several molecular factors that allow 
the parasite to infect, survive and multiply within the midgut 
of the sand fly and be transmitted to a suitable vertebrate 
host during a blood meal. Some sand fly species are con-
sidered permissive (or non specific) as they are able to har-
bor experimental infections of several Leishmania species 
(e.g. Lutzomyia longipalpis and Leishmania (L.) infantum 
chagasi or Leishmania (L.) mexicana); other sand fly species 
are considered restrictive (or specific) as they only can be 
infected with the Leishmania species that they carry in na-
ture (e.g. Phlebotomus papatasi and Leishmania major).  
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However, the precise interactions that lead to this vectorial 
capacity in sand flies, whether for permissive or restrictive 
vectors, remain to be fully elucidated. 

 During its life within the sand fly vector, Leishmania 
undergo a complex developmental process, mainly restricted 
to the midgut, in which the parasites must overcome several 
documented difficulties. Both parasite and vector achieve a 
balance which involves significant interplay. In one end, for 
its survival, Leishmania strives to manipulate aspects of the 
physiology of the sand fly, interfering with digestive prote-
ases [3-5], secreting a myoinhibitory peptide that arrests 
hindgut peristalsis [6] and causing significant damage to the 
stomodeal valve (or cardia) of the fly [7, 8]. 

 In contrast, sand flies probably recognize the presence of 
Leishmania and likely mount an immune response to the 
infection [9]. In L. longipalpis, defensin, glycine-rich pro-
teins (GRP), which are transcripts associated with the innate 
immunity of insects, are up-regulated following a blood meal 
[9]. Serine protease inhibitors (serpins) also are up-regulated 
following a blood meal and possibly also by Leishmania [9], 
while digestive enzymes may be regulated at the level of 
transcription and/or activity by the parasite [10, 11]. Sand 
flies also seem to induce programmed cell death (apoptosis) 
of midgut cells following infection [9, 12]. Apoptosis is an 
innate defense mechanism in insects and known to be used 
by mosquitoes to eliminate Plasmodium-infected midgut 
cells [13]. Although Leishmania do not invade the midgut 
cells, close contact between the parasites and these cells i.e., 
adhesion to epithelial cells through the parasite surface, is 
well documented [14]. Thus, despite their long evolutionary 
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history (fossil records indicate the presence of flagellates, 
possibly trypanosomatids, within sand flies in the Early Cre-
taceous [15]) the relationship between Leishmania and sand 
flies can be considered an active and intense evolutionary 
arms-race. In this review we highlight some of the most im-
portant events during the development of Leishmania in a 
suitable sand fly vector, and discuss issues associated with 
Leishmania-sand fly specificity, metacyclogenesis, and sand 
fly midgut responses to Leishmania. Additional themes re-
lated to current and future strategies to prevent transmission 
of Leishmania parasites targeting the vector are also dis-
cussed. 

THE INFECTION PROCESS 

 The infection of sand flies with Leishmania starts upon 
the release of amastigotes from infected macrophages in-
gested by the fly during the blood meal, and culminates with 
the injection of metacyclic promastigotes into a vertebrate 
host during the fly’s next attempt to blood feed. The ap-
proximate 4-5 days that will take Leishmania to develop 
from amastigotes to infective metacyclics are met with many 
formidable barriers that the parasite must overcome in order 
to survive and establish an infection in the sand fly (Fig. 1). 
Digestive proteases pose the first and one of the most sig-
nificant barriers to the parasite survival. Within the first 6-

12h following the infection, most Leishmania are killed, pos-
sibly by the action of such proteases. Parasites in the transi-
tional stage between amastigotes and promastigotes (procyc-
lic) are most vulnerable to this proteolytic attack, and be-
come less susceptible as they fully mature into the next stage 
of development, the procyclic promastigote. This was dem-
onstrated by assessing L. major survival after P. papatasi 
artificial feeding on blood containing exogenous chitinase 
[17], which led to the absence of the peritrophic matrix 
(PM), and prevented parasites from colonizing the midgut. A 
faster diffusion of digestive enzymes killing the Leishmania 
before they were able to transform into the more resistant 
promastigote forms was likely the reason. This was con-
firmed by the addition of protease inhibitors to the blood 
meal, which allowed the parasites to survive in the midgut 
[17]. Further support for the role of digestive enzymes in 
Leishmania killing was obtained using P. papatasi-L. dono-
vani (a non-natural parasite-sand fly pair) [3]. In this case, 
only 5% of parasites survived within the midgut when whole 
blood was used in artificial feeding, but this number in-
creased to 70% when blood was combined with trypsin in-
hibitors or when the insects were fed erythrocytes plus sa-
line. 

 In Leishmania, protection against proteolytic attack has 
been attributed to phosphoglycan (PG)-containing mol-

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Leishmania life cycle within the sand fly vector midgut (modified from [16]). Barriers faced by Leishmania during its development 

are illustrated. The first barrier is mounted by a proteolytic attack by digestive proteases secreted immediately following a blood meal. A 

second barrier is posed by the peritrophic matrix (PM) from which parasites must escape, and believed to be accomplished between days 2 

and 3 post infection (PI). The third barrier is the required midgut attachment to prevent excretion of parasites with the remnants of the blood 

meal, which in general occurs 3-5 days PI. Finally, parasites must detach from the midgut and migrate towards the thoracic midgut. Secretion 

of parasite secretory gel (PSG) together with a destruction of the stomodeal valve produces the “blocked” sand fly. Blocked sand flies are 

unable to complete a full blood meal and thus attempt to feed with greater frequency, increasing the chance of parasite transmission. Meta-

cyclics either expressing (PS+) or not expressing (PS-) phosphatidylserine are found within the sand fly and are probably injected in the 

mammalian host. Both forms are essential for lesion development (see text). 
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ecules, either released or surface-bound (reviewed in [2]), 
possibly acting through the inhibition of the proteolytic en-
zymes released in the sand fly midgut following a blood 
meal. Additionally, secreted PG-containing products, by 
virtue of their negative charge, might protect the promastig-
ote by acting as a transient barrier against digestive enzymes 
in the vicinity of the parasite [18], and the surface LPG 
might further protect the cell from the digestive proteases. 
Nevertheless, these hypotheses remain to be tested. 

 Enzymes such as trypsins and chymotrypsins are respon-
sible for the bulk of the blood digestion in sand flies. Con-
sidering the importance of these enzymes in digestion and 
parasite survival, trypsin and chymotrypsin-like expression 
and activity were investigated during sand fly infection with 
Leishmania [3-5]. Both the type of meal ingested and the 
presence of Leishmania were linked to distinct levels of pro-
teolytic enzymes in P. papatasi [3, 5], and the authors sug-
gested that a specific component of the trypsin-like activity 
within the P. papatasi gut prevents L. donovani from surviv-
ing in this vector. In contrast, the ability of L. major to sur-
vive and thrive was correlated with the modulation of such 
component [5]. Accordingly, the use of trypsin inhibitor en-
abled L. donovani to successfully infect P. papatasi [3, 5]. 

 Similar experiments [11] showed significant decrease in 

activity of alkaline protease, trypsin and aminopeptidase in 

P. papatasi infected by L. major. However, in the non-

natural P. langeroni-L. major pair the situation was some-

what different, with an apparent delay of the (blood) diges-

tion process, and persistence of high levels of digestive en-

zymes. Extending the digestion period might bring some 

advantage for the survival of the parasites. Serine protease 

inhibitors (SPI) with inhibitory effect over vertebrate macro-

phage serine proteases, such as neutrophil elastase, trypsin 

and chymotrypsin were found in L. major [19]. The possi-

bility raised by these authors, of SPI having an effect on in-
sect midgut proteases, remains to be demonstrated.  

 For L. longipalpis, there is less information on the corre-

lation of parasite presence and midgut enzymatic activity, 

although new data suggest a reduced trypsin activity related 

to the presence of L. i. chagasi [20]. Also, inhibition of tryp-

sin expression in L. longipalpis through RNAi caused an 
increased survival of Leishmania in the vector [21]. 

 Recent studies have relied on assessment of transcription 
profiles of digestive proteases in sand flies. In L. longipalpis, 
the transcription pattern of two trypsin genes was deter-
mined. One (Lltryp2) showed a constitutive transcription 
pattern, only marginally reduced when blood ingestion oc-
curred, while the other (Lltryp1) was induced by blood in-
take, with a peak of transcription at 12h to 24h after blood 
feeding. Although differences were not observed (by RT-
PCR) in the expression profiles of both transcripts at 72h 
after a blood meal containing L. i. chagasi [22], Lltryp2 ex-
pression differ between infected and non infected flies 5 to 7 
days post blood digestion by comparing transcripts from 
cDNA libraries [23]. Modulation of expression before and 
after completion of the blood digestion is presently being 
investigated. For P. papatasi, proteases have been charac-
terized [24] but studies to show the effect of infective blood 

meals on the transcription of these enzymes are yet to be 
performed. 

 Modulation of transcription of digestive enzymes genes 
was reported through extensive EST sequencing of libraries 
constructed from blood fed and Leishmania infected sand 
flies. In cDNA libraries from L. i. chagasi-infected L. longi-
palpis, transcripts of Lltryp1, a blood-modulated trypsin 
gene, were less abundant while transcripts for a constitutive 
trypsin (Lltryp2) were more abundant in relation to libraries 
from uninfected flies [23]. In P. papatasi, a down regulation 
was observed for the chymotrypsin transcript PpChym2, a 
gene expressed only following a blood meal, in a cDNA li-
brary constructed from L. major infected flies (Table 1 and 
[10]). Increased expression for the trypsin PpTryp1 also was 
detected in the same library (Table 1 and [10]).  

 Interestingly, the sand fly peritrophic matrix (PM) which 
constitutes the second barrier to Leishmania development 
(see below), also serves to protect the parasites from an on-
slaught of digestive proteases [25]. Leishmania that survive 
the proteolytic attack must exit the endoperitrophic space to 
continue their development. At the end of blood digestion, 
the PM is probably degraded by a midgut-secreted chitinase, 
as suggested by data demonstrating that the transcription of 
chitinase genes is modulated by blood ingestion both in L. 
longipalpis [26] and P. papatasi [27]. Chitinases, both from 
the insect and the parasite, seem to be important molecules 
involved in many aspects of the sand fly-Leishmania interac-
tion. Escaping from the endoperitrophic space, a necessary 
step for Leishmania attachment to the sand fly midgut epi-
thelia was shown to be aided by a parasite secreted chitinase. 
Histological sections of infected flies provided evidence for 
the degradation of the chitin layer in the anterior region of 
the PM that allowed the forward migration of a large number 
of parasites [28], which was attributed to the parasite chiti-
nase activity. Later work identified genes coding for secreted 
chitinases in many Leishmania species [29, 30]. One such 
gene was identified and overexpressed in L. mexicana [31] 
used to infect L. longipalpis. Overexpression of this L. mexi-
cana chitinase within the midgut of the sand fly allowed the 
parasites to escape from the PM and arrive at the stomodeal 
valve sooner than wild type parasites [32]. It also led to an 
increased number of parasites per fly. Nevertheless, the fact 
that a significant chitinolytic activity was later detected 
within sand fly midguts following a blood meal [27] also 
suggests that Leishmania may take advantage of this natural 
physiological condition of sand flies in order to trespass the 
PM. The coincidence of the timing of escape with high lev-
els of chitinolytic activity in the sand fly gut is also relevant. 
Thus, it is possible that the parasite escape from the PM is 
facilitated by the effects of the two chitinases (from the 
Leishmania and from the sand fly) acting upon the chitin 
fibers of the PM. Such action may be synergistic, but formal 
demonstration of such an effect is still required. 

 Following the crossing of the PM, the next step for 
Leishmania is to attach to the midgut epithelia of the sand fly 
when the blood meal remains are passed to the hindgut at the 
completion of the digestive process. Attachment can be pro-
moted by LPG, as in the case of restrictive vectors such as P. 
papatasi, or via a LPG-independent mechanism [33], dis-
cussed below.  
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 As the last step in the development of the parasites and 
prior to the sand fly attempting to feed on another host, 
metacyclic Leishmania migrate to the thoracic midgut area 
of the stomodeal valve. According to observations [28], 
chitinases secreted by Leishmania also attack the lining of 
this valve, which contains chitin, irreparably damaging the 
valve impeding its proper function.  

 Additionally, the parasite secretory gel (PSG) forms a 
plug that prevents or significantly reduces the influx of blood 
into the midgut [34, 35]. Combined, the PSG plug and the 
lack of a functioning stomodeal valve create a mechanism 
that facilitates expelling (or regurgitation) of parasites lo-
cated in front of or within the plug onto the skin of the verte-
brate host. It was suggested that another round of parasite 
replication takes place following the parasite migration to-
wards the stomodeal valve area [36]. In this case, lepto-
monad forms of Leishmania multiply and develop into more 
metacyclics, increasing the number of infectious forms be-
hind the PSG plug, and enhancing the plug’s effect on the 
blocked fly. 

METACYCLOGENESIS 

 Leishmania undergoes a differentiation process within 
the sand fly vector from non-infective to infective promas-
tigotes, a phenomenon known as metacyclogenesis. Amas-
tigotes taken up by the sand fly during a blood meal trans-
form into the procyclic promastigotes, a motile form that 
multiplies in the blood contained within the PM. Procyclics 
then develop into nectomonads, a large and slender form that 
crosses the PM, adheres to the gut epithelia and migrates 
towards the anterior gut. Nectomonads transform into lepto-
monads (smaller and dividing forms), that secrete PSG. At 
the stomodeal valve, haptomonads (precursor unknown), 
small leaf-like forms, are found adhered to the epithelia. 
Finally, metacyclics (short and slender cell body, with a fla-
gellum twice the size of the body that confers its character-
istic rapid motility) differentiate from leptomonads [16, 37-
39].  

 Metacyclogenesis, occurring either in the sand fly gut or 
in sterile culture, is associated with morphological alter-
ations, and also with regulated biochemical changes. One of 
the best described modifications occurs at the level of the 
lipophosphoglycan (LPG), an abundant glycoconjugate ex-
pressed on the promastigote surface membrane, which plays 
key roles in the host–parasite interactions. LPG is expressed 
by all Leishmania species and is composed of four domains: 
(a) a 1-O-alkyl-2-lysophosphatidylinositol lipid anchor 
linked to (b) a heptasaccharide core; (c) a long phosphogly-
can polymer of Gal( 1,4)Man( 1)-PO4 repeating units; and 
(d) a cap oligosaccharide structure. While the lipid anchor 
and saccharide core are conserved between species, there are 
intra- and interspecies polymorphisms in the disaccharide 
repeating units and in the cap structure [2, 39]. Variations in 
the LPG side chains linked to the Gal residues vary from 
almost completely substituted by a variety of saccharides as 
in L. major and L. tropica, to un-substituted as in L. dono-
vani from Sudan and L. i. chagasi, or partially substituted as 
in L. mexicana and L. donovani from India (reviewed in 
[39]). 

 Metacyclics can be purified from in vitro stationary cul-
ture or from sand fly gut by specific lectins and/or monoclo-
nal antibodies according to their LPG composition, or by a 
LPG-independent Ficoll gradient [40, 41]. These forms can 
be also detected in a mixed population by flow cytometry 
[42]. 

 In the best characterized metacyclogenesis model, the L. 
major Friedlin strain, LPG undergoes several molecular 
modifications initially detected using peanut lectin and 
stage-specific monoclonal antibodies [43, 44]. Metacyclic 
LPG increases its length by 2 to 3 fold due to an increment 
in the number of phosphorylated saccharide repeated units; it 
also changes its side-chain terminal carbohydrates compo-
sition by capping the terminal galactose with arabinose 
residues [45]. Interestingly, the galactose capping allows the 
release of parasites tethered to the midgut by the LPG inter-
action with a P. papatasi galectin [46]. Also, the size incre-
ment of metacyclic LPG correlates with an increase in the 
thickness of the L. major surface glycocalyx [47]. Remark-
able heterogeneity has been reported in the nature of carbo-
hydrate substitutions in LPG of L. major from different 
countries, probably reflecting the pattern of galactosyl trans-
ferases expression [39, 48]. 

 A slightly different mechanism was described for LPG 
alterations during metacyclogenesis of the Sudanese L. 
donovani, in which a similar elongation in the phosphogly-
can chain of metacyclic LPG increases the thickness of the 
metacyclic glycocalyx. However, procyclic and metacyclic 
LPGs are structurally similar, expressing the same sugars. 
Clustering and folding of the terminal capping carbohydrates 
of the elongated L. donovani LPG may be responsible for the 
loss of metacyclic binding to the insect midgut [49]. This 
same folding masks sugars recognized by lectins, allowing 
negative selection of metacyclic forms [49]. In procyclic 
LPG from an Indian strain of L. donovani, side-chains and 
cap structures consist of 1,3-linked glucose residues, which 
are down regulated in the elongated chain of the metacyclic 
LPG resulting in failure of the metacyclics to adhere to P. 
argentipes midgut [50]. Likewise, metacyclogenesis of L. i. 
chagasi, the agent of visceral leishmaniasis in the New 
World, is also associated with lack of 1,3-linked glucose 
residues resulting in loss of metacyclic’s ability to bind L. 
longipalpis midgut [51].  

 It was recently demonstrated that L. braziliensis LPG 
elongates during metacyclogenesis, and that procyclic LPG 
lacks side chain sugar substitutions [52]. However, in con-
trast to LPG of other Leishmania species, metacyclics of L. 
braziliensis make less LPG and add 1,3-glucose residues 
that branch off the disaccharide-phosphate repeat units of 
LPG. Metacyclics of L. braziliensis are selectively aggluti-
nated by the mannose specific lentil lectin [53], and are not 
recognized by Bauhinia purpurea lectin, which has affinity 
by -Gal(1,3)-GalNAc residues [54].  

 These inter- and intra-specific structural polymorphisms 
in the LPG molecule are probably responsible for the sand 
fly vectorial competence for different Leishmania species, 
mediating attachment to the midgut epithelium, and, in this 
way, avoiding excretion of the parasite with the remnants of 
the digested blood meal [16, 39]. Evidence supporting this 
role was reported in studies in vitro using explanted midguts, 
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demonstrating that procyclic LPG binds to the epithelia and 
inhibits the attachment of procyclic promastigotes [46, 55, 
56]. These studies were later confirmed with the use of mu-
tants deficient in LPG expression, which fail both to adhere 
to explanted midguts in vitro, as well as to persist in vivo 
after the blood meal elimination [57]. In a seminal work, a 
galectin expressed in the midgut of P. papatasi and P. dubo-
scqi (two restrictive sand flies) was identified as a receptor 
for L. major procyclic LPG, supporting the vectorial capacity 
idea [46].  

 Although LPG expression explains some of the restric-
tive vectorial capacity (such as in the L. major-P. papatasi 
pair), LPG-independent interactions were reported associated 
with permissive sand fly species, including L. longipalpis in 
the New World and P. arabicus in the Old World [33, 58]. 
One interesting possibility is that permissive sand fly species 
express more than one midgut receptor able to bind different 
glycoconjugates from the parasite cell surface. 

 Interestingly, phosphoglycan repeat units similar to those 
from LPG are present in other promastigote molecules, such 
as proteophosphoglycan and acid phosphatase, but the role 
of these molecules has not been investigated during metacyc-
logenesis.  

 Although the modifications that occur in the LPG of 
some Leishmania species during metacyclogenesis are well 
described, the signals that trigger these changes are un-
known. Similarly, the role each morphological form of the 
parasite plays in the development of metacyclics is puzzling. 
LPG and other morphological changes occur upon parasite’s 
sensing and transduction of stimuli from the surrounding 
microenvironment. Thus, signals for promastigote differenti-
ation include acidic pH [59], decreased levels of tetrahydro-
biopterin [60], absence of hemoglobin [61] or oxygen [62], 
and exposure to sand fly saliva [63]. It is possible that some 
or all of these stimuli act in concert to promote metacyclo-
genesis within the vector. In vitro, metacyclogenesis is asso-
ciated with autophagy, since a mutant that lacks a functional 
autophagic pathway, is unable to differentiate into metacyc-
lic [64]. Indeed, nutritional starvation and high population 
density seem to occur in the infected sand flies, and these 
two conditions are strong inducers of autophagy [64]. Since 
autophagic and apoptotic cell death mechanisms can be re-
dundant, it is interesting to note that phosphatidylserine (PS), 
an apoptotic marker, is expressed by metacyclics during their 
development within the sand fly [65, 66]. Apoptotic, annexin 
V-positive metacyclics increase in the sand fly gut over time 
following infection and tunnel-positive parasites are seen 
associated with the stomodeal valve, suggesting that PS ex-
posure is part of the metacyclic differentiation process. Inter-
estingly, mammalian host infection occurs only when the 
metacyclic population is composed by PS-positive and PS-
negative forms (Fig. 1), and the former is essential for the 
infectivity of the latter [65, 66].  

 During metacyclogenesis, the parasite’s cell body grows 
to its maximum length (reached during the nectomonad 
stage), and then shrinks to the slender, shorter metacyclic. In 
contrast, the flagellum positioned in the anterior extremity of 
the parasite grows continually, reaching its maximum length 
in the metacyclic stage. Flagellum movement propels the 
parasite forward, and is the first parasite structure to contact 

the sand fly midgut epithelia. The importance of the flagel-
lum for parasite adhesion to the midgut was suggested be-
cause an L. amazonensis mutant with a short flagellum is 
excreted from L. longipalpis together with the undigested 
blood meal [67]. Elimination of this mutant might be due to 
its inability to move and bind to midgut receptors after cross-
ing the PM. However, considering the extremely short dis-
tance between the PM and midgut epithelium, it is unclear 
why these mutants are unable to reach and bind to the epi-
thelial cell receptors after escaping the PM. Since this mutant 
expresses normal levels of LPG, the LPG-midgut receptor 
interaction is probably not sufficient to hold the promastig-
otes and, thus, prevent its excretion. In Leishmania promas-
tigotes, LPG is expressed throughout the flagellar and cell 
body membranes [68]. Nevertheless, it seems that flagellar 
insertion in the epithelial microvilli is also important to 
avoid parasite excretion.  

 Recent results show that the flagellum is critical not only 
for parasite motility, but also for flagellar pocket organiza-
tion, exo- and endocytosis, and cell size regulation and divi-
sion [69]. The idea of a flagellum functioning as a sensory 
organ was proposed based on the flagellar localization and 
function of proteins such as, kinesin, thymidine kinase and 
mitogen-activated protein (MAP) kinase [69]. Indeed, since 
promastigotes move from the midgut towards the anterior 
end of the sand fly during metacyclogenesis and the flagel-
lum in the anterior portion of the parasite, the hypothesis that 
the flagellum touches, senses and is responsible for signal 
transduction is very appealing. 

TRANSMISSION OF LEISHMANIA TO THE MAM-
MALIAN HOST  

 The number of metacyclics inoculated during the sand fly 
bite was first estimated to range from 10

3
 to 10

4
 using an 

artificial feeding system [58, 70]. With a natural transmis-
sion model using P. duboscqi and L. major (naturally occur-
ring sand fly-Leishmania pair) new data suggest a much 
wider range from 10 to 100,000 parasites deposited per sand 
fly bite into mouse ears [71]. Here, high-dose parasite in-
ocula correlated with larger, more severe lesions, which de-
veloped earlier, whereas low-dose inocula produced smaller 
lesions that developed later. These results suggest that para-
site inoculation dose can be a potential factor determining 
the clinical outcome of Leishmania infection [71]. 

 Leishmania metacyclics are inoculated into the skin to- 
gether with the sand fly saliva (Fig. 1), and in a pioneering  
work, it was demonstrated that saliva, besides circumventing  
the host haemostatic system, also enhanced Leishmania in- 
fection [72]. Thus, suggesting for the first time that immuni- 
zation with saliva could protect against parasite infection.  
This possibility has been proven feasible in subsequent  
works [73-78]. Besides saliva, metacyclics are also inocu- 
lated with the promastigote secretory gel (PSG) produced by  
the parasites (Fig. 1). PSG obstructs the stomodeal valve  
facilitating metacyclic transmission, and also exacerbates the  
disease in the mammalian host [71]. Considering the com- 
plexity of metacyclogenesis and Leishmania transmission,  
further studies are needed to understand how saliva, PSG,  
metacyclic phosphatidylserine expression, and/or inoculums  
load contribute for disease development. Most likely, a re- 
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dundancy of all these factors is relevant for the establishment 
of leishmaniasis. 

GENETIC EXCHANGE IN LEISHMANIA 

 One of the most significant recent findings regarding 
Leishmania development was the demonstration of chromo-
somal exchange in L. major during development within the 
sand fly midgut. The ability to obtain sexual crosses of 
Leishmania will provide a significant step forward on the 
genetics of these parasites, and is an important tool to iden-
tify relevant genes in the parasite that may impact pathogen-
esis. Nevertheless, important questions as to when during 
parasite development within the sand fly midgut such mating 
between Leishmania occurs, and why were these genetic 
hybrids only detected within the sand flies and not in the 
vertebrate remain unanswered. 

 Previous studies indicated the presence of L. major-L. 
infantum hybrids in P. papatasi [79, 80], suggesting that 
hybrids (and sex) are fairly common within Leishmania 
parasites. This being the case, perhaps the presence of hybrid 
forms would in part account for some of the different out-
comes observed for the disease. These novel findings regard-
ing how Leishmania can exchange chromosomes even be-
tween distinct species should bring renewed interest regard-
ing field samples of infected sand flies from endemic areas. 
Beyond the realization that at least in L. major chromosome 
exchange does occur, the formation of hybrids through ge-
netic crosses can be used to identify parasite genes important 
for development within the sand fly vector. These studies 
will likely be facilitated by our current knowledge of this 
parasite’s genome. 

COMPARATIVE TRANSCRIPTOME ANALYSES 
AND FUNCTIONAL GENOMICS IN SAND FLIES  

 Studies on differential expression in sand fly midguts 
were first performed by comparing L. longipalpis midguts 
from flies that were either sugar fed, blood fed or infected 
with L. i. chagasi [81]. These studies led to the identification 
and characterization of several transcripts that are up-
regulated during blood feeding and possibly linked to para-
site presence. More recently, greater throughput transcrip-
tome analyses of sand flies have produced relevant data to-
wards the understanding of the interplay between the sand 
fly vector and the infecting Leishmania [9, 10, 23, 82, 83]. 
Among such findings were the characterization of several 

molecules, including some associated with specific sand fly-
Leishmania pairs, such as PpGalec [46]. Moreover, these 
analyses also provided significant clues on the gene expres-
sion within the sand fly midgut. For instance, in P. papatasi, 
transcripts coding for midgut proteins believed to participate 
in some aspect of L. major development, and only expressed 
following a blood meal, were identified [10]. Subsequent 
comparative transcriptome analyses of sugar fed, blood fed 
and L. i. chagasi-infected L. longipalpis led to similar con-
clusions regarding midgut transcripts regulated by blood 
feeding [9, 23]. Among the most abundant midgut transcripts 
identified in the studies done with P. papatasi and L. longi-
palpis were transcripts coding for microvilli associated pro-
teins, peritrophins, chymotrypsin, trypsin and others. 

 Table 1 (modified from [10]) summarizes the data ob-
tained through comparative transcriptome analyses of P. 
papatasi cDNA libraries established from midguts dissected 
from flies that artificially fed on blood or on blood infected 
with L. major parasites (4x10

6
 amastigotes/ml). Columns 1 

and 2 represent the transcripts identified and their putative 
function based on sequence data analyses. Numbers in col-
umns 3 and 4 indicate the number of transcripts for each of 
the contigs listed found in the two cDNA libraries analyzed. 
P values were determined for the differences found in tran-
script abundance per treatment (non-infected vs. L. major-
infected). P. papatasi sand flies were artificially fed on non-
infected (column 3) or L. major-infected (column 4) mouse 
blood.  

 Many transcripts identified from such studies appear to 
be regulated during the infection with Leishmania (Tables 1 
and 2), and thus may be directly involved in parasite devel-
opment. More importantly, these analyses also suggested 
that similar transcripts (orthologs or paralogs) from these 
two distantly related sand fly species were regulated in a 
similar fashion by the parasites used to infect them, possibly 
indicating similar strategies used by Leishmania to overcome 
barriers of defense mechanisms put forth by the sand flies. 
The data collected from the comparative transcriptome ana-
lyses of sand flies is now being applied towards reverse ge-
netic studies of these vectors. 

 Studies on sand fly-Leishmania interaction are beginning 
a new chapter with significant insights achieved through the 
application of various molecular techniques to identify and 
characterize sand fly molecules possibly involved in 

Table 1. P. papatasi Selected Midgut Transcript Abundance 

Transcript name Putative function Blood-fed P. papatasi L. major-infected P. papatasi P value 

PpMVP1 Microvilli protein 134 70 5.8x10-7 

PpMVP2 Microvilli protein 60 42 4.1x10-2 

PpPer1 Peritrophin 54 16 1.7x10-6 

PpPer2 Peritrophin 45 35 1.8x10-2 

PpFLC Ferritin light chain 18 3 7.1x10-4 

PpChym2 Chymotrypsin 36 8 1.1x10-5 

PpTryp1 Trypsin 10 82 1.0x10-13 
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Leishmania development. Functional (reverse genomics) 
studies on sand flies utilizing RNAi are beginning to take 
hold. From studies performed using sand fly cell lines [84], 
as well as from the identification of cDNA transcripts [9], it 
is clear that the RNAi machinery is present and functional in 
sand flies. Recently, xanthine dehydrogenase (XDH) was 
knocked down in L. longipalpis [85] causing a 40% reduc-
tion of XDH transcripts and a reduction in the levels of urate. 
The dsRNA targeting XDH also led to a reduction of the life 
span of the flies. Also, treatment of adult L. longipalpis with 
dsRNA for trypsin caused a decreased in the expression and 
activity of this digestive enzyme and increased the survival 
of L. mexicana [21]. 

 RNAi effects may vary depending on the targeted tran-
script. Sand flies RNAi silencing is achievable whether tran-
scripts are expressed in sugar fed flies, or if the transcripts 
are only expressed after blood feeding (MRO unpublished 
observations). The ability to obtain viable sand flies with 
targeted transcript reduction (and reduced protein level) will 
provide an important tool to address questions associated 
with the physiology of sand flies, prior and after a blood 
meal. Such approaches will also contribute towards assessing 
the role of sand fly molecules in Leishmania development 
within the vector. 

TRANSLATIONAL RESEARCH AND FUTURE AP-
PLICATIONS  

 As with other disease vectors, sand fly molecules that 
may directly or indirectly interfere with Leishmania devel-
opment are being screened for their potential application as 
transmission blocking vaccines (TBV) [86]. Currently, sev-
eral P. papatasi midgut molecules that are modulated by or 
associated with Leishmania development within the sand fly 
vector are under investigation by different groups. TBV 
against Leishmania was first proposed for PpGalec, a L. ma-
jor LPG receptor expressed in the midgut of P. papatasi 
[46]. Blockage of PpGalec using specific antisera led to a 10 
fold reduction of L. major in the gut of P. papatasi. Thus, 
targeting sand fly molecules that are directly or indirectly 
related to Leishmania within the sand fly vector may lead to 
the disruption of parasite development preventing transmis-
sion of infective metacyclics, or to the elimination of para-

sites during sand fly defecation after the blood meal is di-
gested. 

 Recently, Leishmune
®

 a vaccine against L. i. chagasi 
based on the L. donovani fucose-mannose ligand (FML) in 
combination with saponin (adjuvant) was shown to prevent 
infection of sand flies, thus functioning as a TBV [86]. Al-
though the surface molecule FML was isolated from L. 
donovani, Leishmune

®
 exhibited transmission blocking ac-

tivity in the New World sand fly L. longipalpis when in-
fected with L. i. chagasi [87], suggesting that cross-species 
effects from TBVs (either pathogen-based or insect-based) 
are possible. Concurrent with this idea, mouse antisera raised 
against the P. papatasi midgut chitinase PpChit1 reduced 
midgut chitinolytic activity in vitro from this vector, but 
also, from P. duboscqi and P. argentipes [27]. Moreover, the 
antibodies produced in dogs following Leishmune

®
 injection 

reduced L. longipalpis infectivity by 79.3% and parasite load 
by 74.3% even after 12 months of immunization [87], point-
ing to the possible long term effects of TBVs. 

 The use of sand fly midgut symbionts to express mol-
ecules targeting Leishmania is being considered. The use of 
symbiotic organisms such as bacteria from disease vectors to 
express molecules toxic to pathogens they transmit are col-
lectively referred to as paratransgenesis, and was first dem-
onstrated in triatomines [88]. For sand flies, midgut bacterial 
symbionts have been identified in New and Old World vec-
tors [89-91], and the data suggest that the adult sand fly mid-
gut microbiota vary according to the substrate in which the 
larvae develop [89]. Moreover, insect midgut microbiota 
may also directly influence how a disease vector respond to 
infection with a pathogen [92]. Whether sand fly symbionts 
affect Leishmania development is not clear.  

 Other symbiotic bacteria such as Wolbachia also have 
been selected based on their capacity to reduce the lifespan 
of disease vectors, thus reducing vector competence without 
the use of molecular genetics techniques [93, 94]. Poten-
tially, such Wolbachia strains may also be used on sand flies 
to reduce disease transmission. 

 Regarding direct genetic manipulation (or vector trans-
genesis) of sand flies, to date no genetically modified sand 
fly line is available. Towards this, heterologous promoters 

Table 2. L. longipalpis Selected Midgut Transcript Abundance 

Transcript name Putative function Blood-fed L. longipalpis L. chagasi-infected L. longipalpis  P value 

LuloMVP1 Microvilli protein 109 55 2.0x10-4 

LuloMVP2 Microvilli protein 87 40 2.0x10-4 

LuloMVP3 Microvilli protein 24 7 4.9x10-3 

LuloMVP4 Microvilli protein 60 27 1.6x10-3 

LuloPer1 Peritrophin 6 22 1.0x10-3 

Lltryp2 Trypsin 6 15 2.9x10-2 

LuloChym1A Chymotrypsin 51 22 2.4x10-3 

LuloCpepA1 Carboxypeptidase 14 3 1.3x10-2 

Column information is similar to legend on Table 1, except that sand flies used here were L. longipalpis artificially fed on blood (column 3) or L. i. chagasi containing (column 4) 
blood. Table 2 was modified from [22]. 
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have been identified using sand fly cell lines [95], and with 
the significant advancement of our understanding of gene 
expression and the characterization of many sand fly genes, 
some of which presenting tissue specific expression, trans-
genesis may soon be realized for these vectors. Many under-
lying aspects of sand fly genome organization and regulation 
of gene expression are expected to be identified through the 
ongoing genome projects of two sand fly species, P. pa-
patasi and L. longipalpis [96]. With such information at 
hand, it will be possible to utilize transformation tools, such 
as those provided by the use of alphaviruses [97-99] to 
genetically transform sand flies. Already, microinjection of 
adult flies with dsRNA for targeted mRNA silencing via 
RNAi is commonplace in several laboratories. With specific 
training, these techniques can easily be transferred to other 
laboratories, in a fashion similar to that employed for mos-
quito researchers. Possibly, stable transgenic sand flies will 
also become available in the near future, and the contribution 
transgenic sand fly lines would have on the sand fly research 
community can be significant. Many theories related to vec-
torial capacity and to Leishmania-sand fly interaction can be 
tested, bringing sand fly basic research to a new level of in-
vestigation.  
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