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Abstract: Members of the Gp85/trans-sialidase (Gp85/TS) superfamily and mucins play an essential role in the invasion 

of host cells by T. cruzi trypomastigotes. Together, they constitute a large portion of the genome; approximately 700 and 

433 genes encode Gp85/TS glycoproteins and mucins (as do a similar amount of pseudogenes), respectively. Gp85/TS 

proteins bind to a variety of host cell receptors and extracellular matrix components and binding of TS to host cells is in-

dependent of their enzymatic activity. Because mucins are the main substrate for TS, their interaction with host cells has 

been described as carbohydrate-dependent. Complex signaling cascades operate during the infection process within both 

parasite and host cells, but most research into signaling events has been limited to those of host cells. Much less informa-

tion about the parasitic side is available; these pathways will be the subjects of intense research in the near future. Analy-

ses of protein kinases and phosphatases in the parasite genome show pathways common to other organisms, but also para-

site-specific pathways that should be exploited as candidates for drug targeting. 
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1. INTRODUCTION 

 Trypanosoma cruzi, the etiological agent of Chagas dis-
ease, exhibits biological, immunological and pathological 
diversity. Since the initial identification of the parasite and 
description of the disease by Carlos Chagas in 1909 [1], a 
large spectrum of clinical manifestations have been de-
scribed, ranging from cases that are asymptomatic to those 
with severe cardiac or digestive complications. Efforts have 
been made to correlate clinical manifestations with distinct 
biological T. cruzi strains and different parameters have been 
proposed for classifying the parasite. Recently, two groups, 
T. cruzi I and II, (with 5 sublineages in group II), associated 
with the sylvatic and domestic cycles of the parasite, respec-
tively, were identified. However, an analysis of a larger 
number of samples has pointed to the need for further revi-
sion [2]. Clear associations between biological and patho-
logical parameters and genetic classification have not yet 
been determined. Drawing these types of correlations for a 
protozoan like T. cruzi (which reproduces clonally rather 
than sexually) has proven to be complicated. 

 The life cycle of T. cruzi includes vertebrate and inverte-
brate hosts (reduviid insects such as Triatoma infestans, 
Rhodnius prolixus, Panstrongilus megistus), with an obliga-
tory intracellular stage in the vertebrate. The trypomastigote 
is the classical non-replicating infective form; metacyclic 
trypomastigotes (MT) are found in the invertebrate host, and 
blood trypomastigotes are present in the mammalian host. 
More than a hundred species of mammals are infected by T. 
cruzi. In humans, an acute phase that may last for 2 months 
is followed by a long chronic phase, which is asymptomatic 
in the majority of cases. After several years, 20-35% of the  
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infected individuals will develop irreversible lesions in the 
heart, intestine or peripheral nervous system [3].  

 Whereas the basis for this manifestational diversity is not 
clear, both the host genetic background [4, 5] and the capac-
ity of the parasite to deal with the host immune system con-
tribute to the disease outcome. In a typical infection, macro-
phages are one of the first cells to be infected following 
phagocytosis of the parasite. Some of the trypomastigotes 
survive the oxidative burst, in contrast to engulfed epimas-
tigotes, which are normally killed. Interestingly, during the 
differentiation process of epimastigotes into trypomastigotes, 
several antioxidant defense proteins are up-regulated [6]. In 
addition, when 10 strains of T. cruzi were compared, a good 
correlation was found between antioxidant enzyme contents 
and parasitemia levels; apparently, high antioxidant levels 
may contribute to the virulence of the parasite [7].  

 In order to establish a successful infection, trypomas-
tigotes must adhere to the host cell surface and trigger events 
required for cell entry. These steps are followed by the for-
mation of the parasitophorous vacuole and the escape of the 
parasite to the cytoplasm of the host cell. Two mechanisms, 
either dependent or independent on membrane-recruited 
lysosomes, have been described [8, 9]. In both, fusion of the 
lysosomes with the parasitophorous vacuole is essential. The 
observation that some trypomastigotes can cross host cells 
without establishing an infection adds a new level of com-
plexity to the biology of the invasion process [10].  

 After a variable period of time, trypomastigotes escape to 
the cytoplasm and differentiate to amastigotes. The desialy-
lation of lysosome membrane glycoproteins by the enzyme 
trans-sialidase, a member of the gp85/TS gene superfamily is 
important for this escape because it facilitates pore formation 
by the trypomastigote-secreted protein Tc-Tox [11]. Amas-
tigotes in the cytoplasm divide for the next 4-5 days and then 
differentiate back into trypomastigotes, passing through a 
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transient [12], proline-dependent, intracellular epimastigote 
form [13]. It should be mentioned that intracellular forms of 
T. cruzi have a capacity to transport proline or glucose that 
fluctuates with the intracellular levels of the metabolite. 
Amastigotes are the exception; they possess the highest 
amount of proline despite a barely detectable level of glucose 
or proline transport [14], which suggests that endogenous 
protein is the source of the amino acid. Certainly, the meta-
bolic condition of the host cell is important for parasite sur-
vival, as the parasite, a purine auxotroph, is unable to syn-
thesize amino acids such as leucine, isoleucine and valine 
[15]. Although the host cell nucleus does not seem to play an 
essential role in parasite development and differentiation 
[16], the necessity of soluble factors secreted by infected or 
non-infected neighbor cells cannot be ruled out. In fact, a 
lower number of trypomastigotes was obtained in the enu-
cleated cells when compared to the nucleated cells, reflecting 
a less favorable environment for nutrient acquisition. Gene 
expression in the host cell, including metabolic and signaling 
genes in fibroblast, endothelial and smooth muscle cells, is 
altered 24 hours post-infection by T. cruzi. Interestingly, 
down-regulation of genes involved in mitotic cell cycle and 
cell division was also observed, suggesting that infection by 
T. cruzi may impede host cell cycle progression at late [17], 
but not early, stages of infection (see T. cruzi cell movie at 
www.sbpz.com.br).  

2. ROLE OF THE T. CRUZI LARGEST GENE FAMI-
LIES IN HOST CELL INVASION  

 Host cell invasion by T. cruzi is the result of multiple 
molecular interactions, with the consequent activation of a 
number of signaling pathways, probably involving redundant 
mechanisms. The invasion mechanisms of extracellular 
amastigotes appear to differ from those of trypomastigotes 
and have been a subject of recent review [18]. Therefore, 
only trypomastigotes will be focused herein.  

 The role of calcium in the process of T. cruzi invasion is 
supported by data from different laboratories, with an in-
crease in intracellular free calcium concentration detected in 
the parasite [19] and host cells within 200 s of interaction 
with trypomastigotes; a reduction in host cell calcium is cor-
related with a decrease in the number of parasites in the in-
fected cells [8, 19]. Calcium is essential for the recruitment 
and fusion of lysosomes with the plasma membrane; it is 
also required for the rearrangement of actin microfilaments 
that may facilitate T. cruzi invasion by one of several pro-
posed mechanisms [8, 20-23]. The other mechanism of en-
try, which is lysosome- and actin-independent, occurs with 
invagination of the host cell plasma membrane [22] and in-
volves the PI3K signaling pathway. Trypomastigote mem-
branes and, to a lesser extent, material constitutively released 
by trypomastigotes also induced intracellular calcium tran-
sients in the host cell. Membrane vesicles shed by trypomas-
tigotes [24] somehow prime host cells for invasion, as they 
are able to enhance parasite entry into epithelial cells or 
macrophages and increase the number of amastigote nests in 
heart tissues [25]. Other molecules also enhance invasion of 
host cells, such as the glycoprotein Gp83 (released into the 
matrix by the action of glycosylphosphatidylinositol-
phospholipase C following activation of the macrophage 
MAP kinase pathway) and PKC [23], or members of the 

Gp85/trans-sialidase (Gp85/TS) superfamily described be-
low. It should be mentioned that Gp85/TS proteins are re-
leased in soluble or membrane-bound forms (vesicles) [24].  

 Many of the important studies characterizing the interac-
tion of T. cruzi trypomastigotes with host cell receptors in-
cluding bradykinin, thromboxane and protease receptors 
have recently been reviewed [23]. Only some of them will be 
highlighted here.  

2.1. Gp85/Trans-Sialidase (Gp85/TS) 

 The Gp85/trans-sialidase (Gp85/TS) superfamily of GPI-
anchored glycoproteins that are present on the parasite sur-
face is subdivided into groups with and without trans-
sialidase activity [26, 27]. Gp85/TS is the largest gene fam-
ily described in the T. cruzi genome (CL Brener strain), con-
stituted by more than 700 genes and almost 700 pseudogenes 
[28]. Approximately 140 genes encode trans-sialidase pro-
teins. Of these, 70 genes code for enzymatically active pro-
teins and the other half for inactive forms. These proteins are 
inactive owing to the mutation of a key tyrosine residue, but 
they still bind sialic acid and galactose substrates [27, 29]. 

 TS proteins are capable of transferring sialic acid from 
host glycoconjugates to parasite macromolecules [27, 29, 
30], such as the mucins that are abundant on the surface of T. 
cruzi. Enzymatic activity does not seem to be important for 
the invasion step; both active and inactive TS bind to a vari-
ety of host cells, mediating parasite entry [21]. Some forms 
are expressed only in trypomastigotes [21, 30]; the relation-
ship between the levels of a few highly expressed TS mem-
bers and infectivity of the parasite has been established [21, 
23, 30]; sialylation of T. cruzi surface molecules confers 
resistance to complement [31]; sialylated compounds interact 
with the inhibitory sialic acid-binding protein Siglec-E 
(sialic acid-binding Ig-like lectin-E) predominantly ex-
pressed on cells of the immune system, inhibiting the activa-
tion of immune cells [32] TS induces apoptosis in cells of 
the immune system due to acquisition of sialic acid [33].  

 Tc85 proteins, a subgroup of Gp85/TS, are mainly ex-
pressed in tissue-cultured trypomastigotes (TCT); an equiva-
lent GP82 was described in metacyclic trypomastigotes. 
Both are devoid of trans-sialidase activity and are transcribed 
in infective and non-infective stages. Expression of GP82 
and Tc85, as described for other genes in trypanosomatids 
[34, 35] is regulated by post-transcriptional mechanisms [36, 
37]. In fact, the mobilization of GP82 mRNA to the 
polysomes is positively or negatively regulated by proteins 
whose levels can themselves be mediated by an element pre-
sent in the 3´-UTR of the transcripts [37].  

 At least some proteins behave as multi-adhesion mole-
cules, as has been shown for Tc85-11, a cloned member of 
the Tc85 subset, which binds to laminin by the N-terminal 
domain [38, 39] and to cytokeratin-18 by the carboxyl sub-
terminal VTV motif of the Gp85/TS superfamily (herein 
called FLY domain) [40]. FLY also binds to other uncharac-
terized molecules on both epithelial and non-epithelial cells 
[41]. A FLY-containing synthetic peptide activates the 
ERK1/2 signaling pathway, which Gp85/TS proteins partici-
pate in [42, 43] and also induces cytoskeleton rearrangement 
in the host cell, enhancing invasion by T. cruzi [41]. Up-
regulation of T. cruzi entry into endothelial cells through a 
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FLY-independent region has also been described for one 
inactive TS protein, but the specific sequence involved was 
not identified [42]. 

 In addition to participating in the invasion of host cells, 
non-catalytic regions of TS exert other effects, for example 
the activation of survival signal pathways including MAPK 
and PI3K/Akt signaling in neurons, glial, dendritic or epithe-
lial cells [43-46]. TS binds to sialic acid-containing mole-
cules on the surface of endothelial cells leading to NF- B 
activation, expression of adhesion molecules (ICAM-1, 
VCAM-1 and E-selectin) and blockage of cell apoptosis 
normally induced by growth factor deprivation [42]. 

 Gp82 is the principal member of the Gp85/TS superfa-
mily involved in MT invasion of host cells, and its expres-
sion has been correlated with invasion capacity [31]. Gp82 
binds to gastric mucin and seems to be an important element 
in infection by the oral route [31], wherein food contami-
nated with the insect stages of T. cruzi is ingested. This 
manner of transmission is responsible for the occurrence of 
recent microepidemics in Brazil and other American coun-
tries [47]. Gp82 triggers calcium mobilization in the host cell 
and Ca

2+
-dependent cytoskeletal disorganization, which fa-

cilitates parasite invasion [31]. In MT, phosphorylation of a 
175-kDa protein by a protein kinase activated during parasite 
invasion, and the generation of inositol 1, 4, 5-triphosphate 
(IP3) by phospholipase C (which promotes calcium release 
from IP3-sensitive stores), have been described [31]. Meta-
cyclic trypomastigotes from distinct strains express different 
amounts of GP82, GP30 and GP90. It is claimed that GP82 
(and GP 30) is the principal actor in the invasion process. 
Since strains that express high levels of GP82 and GP90 are 
poor invaders, the latter was proposed to be a negative 
modulator of the invasion. Eventually, the strain expressing 
high levels of GP90 would become infective provided that 
this protein is digested in the intestinal tract, thus explaining 
the relative effectiveness of the oral infection route [31]. 

2.2. Mucins  

 The second largest family of genes in the parasite en-
codes T. cruzi mucins, which are also GPI-anchored surface 
glycoproteins. Approximately 4 x 10

6
 mucins cover the para-

site surface [26-29]. The small core polypeptide (50 to 200 
amino acids length) is rich in carbohydrates O-linked to ser-
ine and threonine [see 27, 29, 48] for a detailed review on 
the structure and function of mucins]. In the insect-derived 
stages (epimastigotes and MT), mucins have a more homo-
geneous polypeptide composition, showing a double or triple 
band in the 35 to 50 kDa range in electrophoretic separa-
tions, as compared to TCT mucins, which on PAGE reveal 
as a smear from 60 to 200 kDa. TCT – and other intermedi-
ate mammalian stages – express a third group of mucins, 
called small surface antigens [29], which increase the mucin 
heterogeneity present in trypomastigotes. 

 Other stage-dependent differences in mucin structure 
have described, such as the presence in trypomastigote 
mucins of the epitope Gal ( -1,3) Gal, the main target of 
antibodies response in Chagasic patients [49], or the lipid 
composition of the GPI-anchor that induces a proinflamma-
tory response via MAPK and NF- B cascades through acti-
vation of Toll-receptors [50]. 

 In addition to the protective role of T. cruzi mucins play 
against the proteases of the insect digestive tract, they have 
been implicated in attachment to, and invasion of, the host. 
Galactofuranose, which mainly decorates oligosaccharide 
chains in mucins from epimastigotes [27, 48], is responsible 
for adhesion of epimastigotes to the intestinal tract. This ad-
hesion step is implicated in the differentiation to MT, as has 
been shown for T. cruzi GIPL-1, a galactofuranose-rich gly-
cophosphoceramide [51]. Several pieces of evidence support 
a role for carbohydrates such as mannose or galactose in the 
invasion of T. cruzi [23]. Carbohydrates from the 35-50 kDa 
mucins are important for invasion of various cell types [52, 
53] and removal of sialic acid from the surface of the para-
site by sialidase treatment enhances the invasion capacity of 
T. cruzi [54]. In addition, mucins from trypomastigotes trig-
ger calcium mobilization, an essential step in the invasion 
mechanism.  

 It has been proposed that galectin-3 establishes a bridge 
between mucins and laminin, thus recruiting trypomastigotes 
to the extracellular matrix and increasing adhesion of trypo-
mastigotes to cells. Interestingly, galectin-3 expression is up-
regulated during infection [55]. 

 GPI-mucin-like proteins from trypomastigotes, but not 
from epimastigotes, trigger MAPK and NF- B cascades 
through Toll-like receptor activation [49, 50] and are there-
fore responsible for the recognition of microbial and viral 
molecules and the induction of tolerance by macrophages. 

3. T. CRUZI AND INTERACTION WITH EXTRACEL-
LULAR MATRIX 

 Binding of trypomastigotes to elements of the extracellu-
lar matrix such as laminin, fibronectin, heparan sulphate, 
thrombospondin, galectin-3 or collagen IV is partially, but 
not exclusively, achieved by mucins and members of the 
Gp85/TS family. In most cases, the T. cruzi ligand was not 
characterized [21, 56]. The interaction of a trypomastigote 
85-kDa surface protein with the RGD sequence of fi-
bronectin was one of the first descriptions of the binding of 
T. cruzi to extracellular elements [57]. The role of throm-
bospondin A and galectin-3 [58, 59], as well as laminin 1 
[60], in the invasion by T. cruzi was shown using RNAi, 
confirming previous observations [38]. Binding of T. cruzi to 
heparan sulfate proteoglycans through a 60-kDa heparin-
binding protein known as penetrin [61, 62] was characterized 
as N-sulfation and glucuronic acid-dependent; heparin inhib-
ited the invasion of cardiomyocytes by T. cruzi by 84% [63]. 
To our knowledge, neither the 60-kDa protein nor its signal-
ing pathway was further characterized. It should be kept in 
mind that sequential changes to connective matrix compo-
nents lead not only to parasite binding, but also to the heart 
tissue fibrosis characteristic of Chagas disease [55, 64, 65]. 
In vitro studies focusing on the remodeling of extracellular 
matrix proteins have had contradictory results, apparently 
dependent on experimental conditions [66, 67]. 

 Transforming growth factor  (TGF- ) has been impli-
cated in stimulation of fibrosis and parasitic cellular invasion 
and growth in Chagas disease, as well as in host immunity 
down-regulation [68]. Interestingly, the parasite is able to 
capture TGF-  from the host, an essential step for the differ-
entiation of amastigotes to trypomastigotes [69]. The interac-
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tion of TGF-  with its receptors on the host cell membrane 
leads to the phosphorylation of Smad-2 and Smad-3 in the 
cytoplasm, which subsequently form a complex with Smad-
4. This complex translocates to the nucleus, inducing tran-
scription of different genes such as those encoding for fi-
bronectin, thrombospondin and collagen I, and probably con-
tributing to heart fibrosis. Interestingly, a small inhibitor of 
TGF-  signaling (SB-431542) administered to experimental 
animals in the acute phase of infection was a potent inhibitor 
of parasitemia and heart injury and is being proposed for 
clinical use [70-72]. 

4. SIGNALING PATHWAYS IN T. CRUZI DURING 
HOST CELL INVASION  

   Until recently, knowledge of the signaling pathways 
activated during invasion by T. cruzi has been limited to 
those of the host cell. This scenario should change rapidly 
due to genome sequencing of trypanosomatids. In the par-
ticular case of the T. cruzi genome, genes encoding 190 pro-
tein kinases (19 being atypical protein kinases) and 86 phos-
phatases [72, 73] have been identified.  

 A detailed comparative analysis of the kinomes of T. 
cruzi, T. brucei and L. major showed the presence of a group 
of proteins involved in numerous pathways well established 
in other organisms, as well as key differences, as the lack of 
tyrosine kinases and tyrosine kinase-like groups in trypano-
somatids. However, because protein tyrosine phosphoryla-
tion is described as a common modification of parasite pro-
teins, activity of atypical tyrosine kinases or dual-specificity 
kinases have been proposed. Absence of common accessory 
domains present on human protein kinases (Ig, fn3, SH2 and 
SH3) or the lack of guanylyl cyclase receptor proteins in 
trypanosomatids are examples of other differences pointed 
out when trypanosomatids and human genomes are com-
pared, regarding protein kinases.  

 The majority of the phosphatases in T. cruzi belong to the 
serine/threonine family; the parasite has a lower proportion 
of tyrosine phosphatases than other eukaryotic genomes [73]. 
This reduced number of tyrosine phosphatases is consistent 
with the lack of tyrosine kinases also observed.  

 Extensive reviews on protozoan MAP kinases [74], PI3-
kinases [75] protein serine/threonine phosphatases [76], ty-
rosine phosphatases [77] and cyclic nucleotide signaling 
mechanisms [78] have been published recently. It should be 
pointed out that in contrast to the large number of kinases 
and phosphatases, only a restricted number of GTPase fami-
lies are present in trypanosomes, with a complete absence of 
the heterotrimeric GTPases that are key elements in the sig-
naling processes of other eukaryotes. So far, little is known 
about the contribution of small GTPases [79].  

 It is interesting to consider the idea that the flagel-
lum may act as a sensory organ in the MAP kinase pathway 
[80]. This suggestion was based on the observations that 
various kinases are involved in the control of the flagellum 
length, and that a sensory function has been attributed to 
cilia and flagella in other organisms. Glycosomes and acido-
calcisomes, which play important role in energy metabolism 
in trypanosomatids, are involved in the cellular responses 
triggered by nutrients. Differentiation in T. brucei is regu-
lated by a phosphatase cascade, with the localization of a key 

unusual type of Ser/Thr phosphatase in the glycosome [81]. 
The role of acidocalcisomes is coupled to TOR (the target of 
rapamycin), an evolutionarily conserved atypical protein 
kinase that belongs to the phosphoinositide 3-kinase-related 
kinase family. In mammals, TOR signal pathway integrates 
intracellular and extracellular signals and is activated during 
various cellular processes [82]. TOR3, one of the three TOR 
kinases identified in Leishmania major is involved in the 
acidocalcisome biogenesis and infectivity, since Tor3

- 
null 

mutants are unable to survive in macrophages and infectivity 
to mice is highly attenuated [83]. Two TOR kinases control 
cell growth in Trypanosoma brucei [84] and one of the two 
unusual TOR-like kinases identified, the cytosolic protein 
TOR-like 1 kinase, is involved in polyphosphate level and 
acidocalcisome maintenance [85]. 

 Despite the annotation of a great number of kinases and 
phosphatases in the genome, very little is known about their 
role in T. cruzi signaling during invasion. One of the few 
examples is the phosphorylation of a 175-kDa protein during 
the invasion of MT into host cells by a protein kinase, as 
pointed out above. Recently, it was shown that treating T. 
cruzi metacyclic or tissue culture trypomastigotes with in-
hibitors or with specific anti-sense oligonucleotides of cal-
cineurin B inhibits parasite invasion. Although no elucida-
tion of the enzyme-mediated signaling pathways has yet 
been achieved, this observation points to the relevance of 
phosphatases in parasite internalization [86]. Interestingly, 
the parasitic enzyme, in contrast to its human counterpart, 
lacks calmodulin-binding and auto-inhibitory domains [87].  

5. CONCLUDING REMARKS 

 A plethora of molecules that pass between the parasite 
and the host are responsible for the establishment of infec-
tion. Of these, molecules involved in the adhesion step and 
the ensuing signaling pathways are particularly being con-
sidered as possible drug-target candidates. In addition to 
more classical approaches, the SELEX method (Systematic 
Evolution of Ligands by Exponential Enrichment), an oli-
gonucleotide-based combinatorial library approach can be 
used to isolate high-affinity ligands (aptamers) for a wide 
variety of molecules, as was done for proteins from the ex-
tracellular matrix that interact with T. cruzi [88] and could be 
used as potential targets.  

 The genomic sequences of Trypanosoma and Leishmania 
species reveal protein kinases and phosphatases with pecu-
liar characteristics, such as a paucity or absence of tyrosine 
kinases and phosphatases, or of the accessory domains typi-
cally responsible for protein-protein interaction (IgG, fn3, 
SH3 or SH2 domains) in mammalian signaling pathways. As 
in other human diseases, differences like these between para-
sitic and mammalian signaling point to good targets for drug 
discovery. In addition to the target-base approach employed 
for drug discovery, the high-throughput drug screening can 
provide new chemical structures on which to base an effec-
tive compound . Interestingly, the majority of 4,205 com-
pounds selected from the almost 2 million tested against 
asexual blood stage of P. falciparum, might target kinases of 
the parasite [89]. If they are directed to a small number or to 
a large spectrum of kinases is, as yet, unknown. Although 
the criteria to select a good inhibitor of kinases or phospha-
tases is not under discussion here, it should be recalled that 
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specific modulation of enzymes or protein-protein interac-
tions by small peptides is one possibility. Small peptides 
bind more specifically, can target more than one interaction 
site, are effective at lower concentrations and can be deliv-
ered as prodrugs by coupling to other molecules. However, 
rapid turnover due to low stability and high susceptibility to 
intracellular protease degradation may be disadvantageous, 
as pointed out in a recent review [90].  

 In summary, the differences in signal cascades between 
the parasite and the host ought to be exploited as a probable 
locale for drug targeting. 
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