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Abstract: Based on the rules of designing high performance shale inhibitors, bis- (hexamethylene)- triamine was 
introduced as a potential shale inhibitor in water-based drilling fluid. The inhibitive properties were evaluated through 
bentonite inhibition test, cuttings hot-rolling dispersion test and particle distribution measurement. The compatibility with 
common drilling fluid additives was investigated. Bis- (hexamethylene)- triamine effectively inhibited shale swelling and 
dispersion, superior to potassium chloride and polyetherdiamine POP230, and was compatible with normal additives in 
drilling fluid. The inhibitive mechanism was analyzed via XRD, zeta potential measurement, FT-IR, water adsorption test 
and TGA. The results showed that electrostatic interaction, hydrogen bonding and hydrophobic shielding effect 
contributed to the inhibition with synergetic effects, whereas the protonation of multi-amine groups played a vital role in 
the action. 
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1. INTRODUCTION 

 In the drilling process, borehole stability problems such 
as bit balling, disintegration of cuttings, borehole wash-out 
and stuck pipe mostly occur in shale formations due to shale 
hydration and swelling [1-3]. Oil-based drilling fluids exhibit 
outstanding inhibitive performance because of the inherent 
advantages of excluding water from the wellbore. However, 
the increasingly stringent environmental requirements 
restrict their wide application. Therefore, tremendous 
researches have been carried out to develop an environment 
friendly water-based drilling fluid with performance similar 
to those of oil-based drilling fluids. Over the past years, 
many solutions have been proposed to inhibit clay hydration 
and dispersion through a variety of mechanisms, such as 
inorganic salts of potassium chloride and sodium chloride, 
formates, polymers, asphaltenes, sugars and sugar 
derivatives, polyglycerols and glycols, silicates [4-7]. 
However, these approaches bring only marginal success [8]. 
Among these solutions, KCl with high concentration 
probably is the mostly applied solution due to its effective 
inhibition performance. Nevertheless, the high concentration 
salts adversely affect the environment and logging. Thus, the 
industry searches for other alternative options that promise to 
be effective inhibitors of shale swelling, with their abilities 
to rival with potassium based salts. Then nitrogen-centered 
derivatives such as amine compounds are developed [9, 10]. 
Low molecular weight polyetheramines are introduced as 
clay swelling inhibitors and considered to be the current best 
available technology to inhibit shale hydration [11-13]. 
Based on this polyetheramine, high performance water-based 
 
*Address correspondence to this author at the School of Petroleum 
Engineering, China University of Petroleum, Qingdao, 266580, China;  
Tel: 0086-532-86981705; Fax: 0086-532-86981936;  
E-mail: zhonghanyi@126.com 

drilling fluids have been developed and applied successfully 
around the world [14-17]. 
 With the development of molecular modeling techniques 
in recent years, the combination of molecular simulation and 
experimental study offers an improved insight into clay 
swelling inhibition and a better understanding of the 
underlying mechanisms at the molecular level, which also 
assist in the design and improvement of more environment-
friendly clay swelling inhibitors. With a range of 
computational techniques and, well-known experimental 
results, a “rule-based” criteria for designing clay-swelling 
inhibitors has been established [18, 19]. According to the 
criteria which illustrates the structural characteristics high 
performance inhibitors must possess, a low molecular weight 
compound, bis(hexamethylene) triamine (BHMT), is 
introduced as a potential clay hydration inhibitor. The 
inhibitive properties were evaluated through bentonite 
inhibition test, cuttings hot-rolling dispersion test and 
particle distribution measurement, and the compatibility with 
common additives in drilling fluid was investigated. 
Meanwhile, the inhibitive mechanism was investigated via 
several methods, including XRD, zeta potential 
measurement, FT-IR, water adsorption test and TGA. 

2. EXPERIMENT 

2.1. Materials 

 The sodium montmorillonite (Na-MMT) SD-1005 was 
obtained from Zhejiang Sanding Technology Co., LTD. The 
chemical compositions of the sample were: SiO2, 64.07%; 
Al2O3, 19.11%; CaO, 4.48%; MgO, 3.61%; Na2O, 3.07%; 
Fe2O3, 2.64%; P2O5, 1.71%; K2O, 0.72%. The cationic 
exchange capacity was 95 mmol/100g measured by the 
ammonium acetate method. Drilling fluid bentonite was 
provided by Weifang Huawei Bentonite Group Co., Ltd, 
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China, according to the API standard. Bis(hexamethylene) 
triamine (BHMT) was purchased from Tokyo Chemical In-
dustry Co., LTD, with the chemical formula of H2N(CH2)6-
NH(CH2)6NH2. Polyetherdiamine (POP230), with the chemi-
cal formula of H2NCH(CH3)CH2[OCH2(CH3)CH]2.6NH2, 
was obtained from Huntsman Chemical Co., USA. KCl was 
provided by Sinopharm Chemical Reagent Co., Ltd, China. 
All the reagents were used without further purification. 

2.2. Methods 

2.2.1. Bentonite Inhibition Test 

 400 mL of water containing 12g inhibitor was treated by 
5w/v% drilling fluid bentonite. After stirring for 30min, the 
dispersion was hot rolled at 70oC for 16h. Then the rheologi-
cal properties were measured after the samples were cooled 
to the room temperature. After that the equivalent amount of 
drilling fluid bentonite was added and the procedure was 
repeated until the dispersion became too viscous to be 
measured. 
2.2.2. Cuttings Hot-Rolling Dispersion Test 

 350 mL of solution with inhibitors of various concentra-
tions and 50g of shale cuttings (2-5 mm) obtained from the 
upper layer of Shahejie formation in Dagang oil field were 
added into sealed cells. After hot rolling at 77oC for 16h, the 
cuttings were washed with 10% KCl solution and screened 
through 40-mesh sieve. The recovered cuttings were dried at 
105oC for 4 hours and the percentage of recovery was 
determined. 
2.2.3. Particle Distribution Test 

 4w/v% Na-MMT dispersion was prepared and prehydra-
ted for 24 hours. Inhibitors with certain concentrations were 
added into the dispersion and stirred vigorously for 24 hours. 
Then the size distribution of the particles was measured with 
Rise-2006 laser particle size analyzer (Jinan Runzhi 
Technical Company, China). 
2.2.4. Interaction Between Na-MMT and BHMT 

 BHMT with a range of concentrations was added into 
2w/v% prehydrated Na-MMT dispersions and shaken for 24 
h to reach adsorption equilibrium. The dispersion was 
centrifuged and washed with deionized water several times. 
One part of the sediment was prepared for XRD measure-
ments directly. The other part was dried at 105oC and ground 
to powders for XRD measurements, FT-IR analysis, water 
adsorption test and TGA. The powders were pressed into 
KBr pellets for FT-IR analysis. FT-IR absorption was 
recorded by a NEXUS FT-IR spectrometer (Thermo Nicolet 
Corporation), scanning from 4000 to 400 cm-1, with a 4 cm-1 
resolution in transmission. The test procedure of zeta 
potential was reported previously and measured at room 
temperature using the Zetasizer 3000 electric potential and 
granularity meter (Malvern instrument, United Kingdom) 
[20]. The water adsorption test is shown as follows, 1 g of 
modified MMT powders was placed in a sealed glass 
desiccator with water at the bottom. The amount of water 
adsorbed was calculated from the mass gain. XRD analysis 
was performed by using an X’pert PRO MPD diffractometer 
with Cu target at a generator voltage of 45 kV, current of 50 
mA. Samples were measured scanning 2θ angle from 2o to 
15o. The basal spacing was analyzed by using Bragg’s 

equation. The value for n=1 is calculated from 2dsinθ=nλ. 
Thermal gravimetric analysis (TGA) was performed on a 
WCT-2D (Beijing Optical Instrument Factory) instruments 
thermal analyzer at a scan rate of 20oC/min under nitrogen 
flow. The surface tension of aqueous solution was measured 
at 25oC with DCAT21 surface/interface tensiometer (Beijing 
Eastern-Dataphy Instruments Co., Ltd). 

3. RESULTS AND DISCUSSIONS 

3.1. Inhibitive Properties Evaluation 

3.1.1. Bentonite Inhibition Test 

 The test was designed to simulate the relatively slow 
incorporation of yielding clays into a drilling fluid. This 
simulated process usually happens when drilling active sha-
les in the field. As shown in Fig. (1), the apparent viscosity 
(Fig. 1a) and yield point (Fig. (1b) increased sharply with 
the addition of bentonite in fresh water system due to the 
hydration and dispersion of clay. On the contrary, the 
apparent viscosity and yield point increased slowly in the 
inhibitor systems. Comparing to POP230 and KCl, the lower 
rheological profile of BHMT proved that it performed a 
better inhibitive capacity. 
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Fig. (1). Bentonite inhibition test comparing the rheological profile 
of different shale inhibitors (3%w/v) with the base fluid. Note: (a) 
Apparent viscosity; (b) Yield point. 

3.1.2. Cuttings Hot-Rolling Dispersion Test 
 For cuttings hot-rolling dispersion test, higher recovery 
and lower dispersion indicated better shale inhibition. 
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BHMT and POP230 exhibited excellent inhibitive proper-
ties, and the cuttings recovery was increased from 40.7% to 
84.3% and 80.1% respectively at the concentration of 0.5w/-
v% (Fig. 2). At higher loadings the cuttings recovery 
changed little. In the case of KCl, the cuttings recovery 
increased almost linearly with the increasing concentration. 
When the concentration was 7w/v%, the recovery was 
79.5%. It can be seen that, BHMT and POP230 effectively 
reduced the dispersion of shale with relatively low concen-
tration, superior to KCl. Fig. (3) illustrated the cuttings 
recoveries at various temperatures. In KCl solution system, 
the recovery decreased greatly with increasing temperature, 
when the temperature was as high as 200oC, the recovery 
was reduced from 79.5% to 58.3%. For BHMT and POP230, 
the cuttings recovery was dropped from 89.6% to 77.6% and 
85.2% to 72.1% respectively. Generally, high temperature 
promotes the hydration and dispersion of shale and results in 
thermal degradation of polymer molecules. The two effects 
contribute to the decrease of cuttings recovery. However, the 
cuttings recovery was still high for BHMT and POP230 at 
high temperatures, indicating that BHMT and POP230 are 
high temperature resistant. 
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Fig. (2). Cuttings recovery of various inhibitor systems. 
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Fig. (3). Cuttings recovery of different temperatures. 

3.1.3. Particle Size Distribution Test 

 Fig. (4) depicts the differential distribution (Fig. 4a) and 
cumulative distribution (Fig. 4b) curves of the Na-MMT 
dispersions treated with 3.0w/v% KCl, 0.5w/v% POP230 
and 0.5w/v% BHMT, respectively. Compared to the sample 
without inhibitor, the average size of Na-MMT particle was 

1.46 µm, and the specific surface area was 4.95 m2/cm3. The 
addition of inhibitor changed the particle size with the seque-
nce of KCl<POP230<BHMT, with the average particle size 
of 43.93, 50.06 and 75.76µm and the specific surface area of 
0.16, 0.14 and 0.10 m2/cm3 respectively. The larger particle 
size and less specific surface area reduced the sensibility of 
the clay minerals to water. BHMT was more effective than 
KCl and POP230 in inhibiting clay hydration and swelling. 

3.2. Compatibility Test 

 Several traditional additives including anionic and non-
ionic polymers were selected to verify their compatibility 
with BHMT. Pure polymer solutions were prepared with 
deionized water at concentration of 0.5w/v%. Equivalent 
amount of BHMT was added into the solution and stirred for 
30 minutes. Then the rheological properties were measured. 
As shown in (Table 1), the apparent viscosity, plastic 
viscosity and yield point changed a little in solutions of 
polyanionic cellulosic polymer with high viscosity (PAC-H), 
xanthan gum (XC), amphoteric polymer encapsulator 
(FA367), par-tially hydrolyzed polyacrylonitrile (PHPA) and 
Polyacryl-amide (PAM) after BHMT addition, neither 
apparent preci-pitation was observed, indicating that BHMT 
was compati-ble with these additives. 
 For amine compounds, dissociation equilibrium exists 
when dissolved in water, which is as follows, 

RNH2+H2O RNH3
+
+OH

-

 
 Because of the alkalescent property of the amine 
compounds, when dissociation equilibrium was reached, the 
concentration of protonated ammonium ions in solution was 
relatively low, and intensive interaction between ammonium 
ions and negative charged polymers would not occur. 
Therefore favorable compatibility was observed between 
BHTM and common polymer additives used in drilling fluid. 

3.3. Inhibitive Properties Analysis 

3.3.1. XRD Test 

 Figs. (5) and (6) compare the XRD patterns of MMT and 
intercalated by BHMT at various contents with both dry and 
wet samples. The basal spacing of virgin MMT was 1.25 nm, 
responding to a typical characteristic of sodium montmoril-
lonite. After intercalation by BHMT at content of 0.002-
mol/L, the basal spacing increased to 1.32 nm. Then the 
basal spacing changed a little irrespective of the increasing 
concentration, suggesting that BHMT molecules lay parallel 
to the clay layer forming monolayer arrangement in the 
gallery of MMT. This tendency was also observed in wet 
samples. The uptake of water molecules resulted in the 
dramatic increase of basal spacing as high as 1.87 nm for 
pure MMT. The incorporation of BHMT exchanged the 
hydrated sodium ions and their associated hydration shells, 
and the positively protonated ammonium ions neutralized the 
negative charges with multi-sites, pulling or “pining” the 
adjacent layers together and leading to the collapse of 
structure with decreased interlayer space of 1.36 nm. 
Compared with KCl [21], BHMT reduced the interlayer 
space with relatively lower concentration and reduced the 
interlayer space to the minimum. Because of multi-sites 
adsorption, it is difficult for BHMT to desorb from clay 
surface, therefore it can stabilize clay for a long time effect. 
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3.3.2. Zeta Potential Measurement 

 Fig. (7) shows the effect of the two amine compounds on 
the zeta potential values of MMT dispersions. The zeta 
potential value of pure MMT-water dispersion was -33.4mV. 
After the addition of 0.2w/v% amine, a sharp increase from -
33.4 to -5.1mV and -33.4 to -2.3mV was observed for 
POP230 and BHMT respectively. At higher loadings, the 
zeta potential became less negative. The protonated ammo- 
nium ions neutralized the negative charge of clay surface. In 

other words, the main driving force for the adsorption was 
electrostatic force. However, over the whole concentration 
range, no charge reversal was observed, which was attributed 
to the alkalescent property of the amine [22]. Because of 
higher ratio of amine groups, BHMT reduced the zeta 
potential to a higher degree than POP230, resulting in clay 
particles less water sensitive. The decrease of clay layer 
charge results in clay less water sensitive. 
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Fig. (4). Effect of inhibitors on particle size distribution of montmorillonite with various concentrations. Note: (a) Differential distribution; 
(b) Cumulative distribution. 

Table 1. Compatibility of BHMT with Common Additives in Drilling Fluid 

Sample AV(mPa.s) PV(mPa.s) YP(Pa) 

0.5w/v%PAC-H 25 16 9 

0.5w/v%PAC-H+0.5w/v%BHMT 25.5 16 9.5 

0.5 w/v %XC 29.5 15 14.5 

0.5 w/v %XC+0.5 w/v %BHMT 29 15 14 

0.5 w/v %FA367 14 9 5 

0.5 w/v %FA367+0.5 w/v %BHMT 13.5 9 4.5 

0.5 w/v %PHPA 5 4 1 

0.5 w/v %PHPA+0.5 w/v %BHMT 5 4 1 

0.5 w/v %PAM 10 7 3 

0.5 w/v %PAM+0.5 w/v %BHMT 10 8 2 
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Fig. (5). X-ray diffraction patterns of MMT-BHMT samples at 
various concentrations (mol/L) with dry sample. Note: (A):0; 
(B):0.002; (C):0.005; (D): 0.01; (E):0.02; (F):0.05. 

3.3.3. FT-IR Spectra Measurement 

 To further confirm the adsorption of BHMT on MMT, 
FT-IR spectra were measured for pure BHMT, MMT and 
MMT modified with BHMT (Fig. 8). For MMT, the peaks 
recorded at 3440 and 1640 cm-1 are attributed to the stretch-
ing and bending vibrations of physically adsorbed water on 
the clay particles, respectively. The appearance of new bands 
such as 3260, 2940 and 2870 cm-1 in the FT-IR spectrum  
of MMT modified with BHMT proved the adsorption  
of BHMT. The adsorption of BHMT showed N-H bending 
vibrations at 1590 cm-1 with a shoulder at 1650 cm-1, and the 
characteristic N-H stretching vibrations of 3280 cm-1. After 
the intercalation of BHMT into the interlayer space, the shift 
of adsorption at 1590 cm-1 to 1630 cm-1 in the modified com-
posite implied substantial hydrogen bonds occurring. This 
change of N-H bending vibration demonstrated that BHMT 
intercalated in the interlayer with both protonated and unpro-
tonated -NH2 species [23]. Because amine groups dissociate 
in aqueous solution, the ratio of protonated ammonium ions 
to amine groups will reach a dynamic equilibrium, which 
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Fig. (6). X-ray diffraction patterns of Na-MMT/BHMT samples at various concentrations with wet sam 
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Fig. (7). Zeta potential variations as a function of inhibitor concentrations. 
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depends on the pH value, concentration and so on. Ammon-
ium ions can establish several hydrogen bonds with oxygen 
atoms from the surface of the clay mineral layers [24]. Thus, 
it could be assumed that, except for electrostatic interaction, 
hydrogen bonding between amine group and siloxane of clay 
existed in the interlayer, which may further restrict the 
swelling and hydration of clay minerals. 
3.3.4. Water Adsorption Test 

 Displacement of inorganic exchangeable cations by 
organic cations renders the bentonite from hydrophilic to 
hydrophobic [25-27]. Hence, water adsorption experiment 
was performed to characterize the water affinity of bentonite 
surface after modified by BHMT. Adsorption curves were 
calculated using the relationship between the amount of 
water adsorbed and the time. As shown in Fig. (9), the water 
adsorption rate increased dramatically at the initial 48 hours, 
followed by slow increase. Compared with virgin MMT, the 

amount of adsorbed water for modified composite was much 
lower, indicating that the water affinity of the MMT was 
reduced after polymer modification. Generally, the higher 
concentration of the polymer, the lower water adsorption rate 
was obtained. The water affinity of MMT-BHMT was higher 
than that of MMT-POP230 when modified with equal conce-
ntration, which was attributed to the surface activity differe-
nce of the two compounds. BHMT was less surface active 
compared to POP230 (Fig. 10). The conversion of MMT 
surface from highly hydrophilic to relatively hydrophobic 
after polymer intercalation prevented the ingress of water, 
which was favor of clay stability. Although BHMT exhibited 
less surface activity and changed the MMT surface less 
hydrophobic, the above inhibitive evaluation experiments 
indicated that BHMT was superior to POP230 in inhibiting 
the hydration and swelling of clay. Electrostatic force 
dominated in the hydration inhibition action, whereas the 
hydrophobic effect played a smaller and compensating role. 

 
 

 

 
Fig. (8). Comparisons of FT-IR results. Note: (A) pure BHMT; (B) MMT; (C) MMT-BHMT 
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Fig. (9). Water adsorption rate as a function of time 
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3.3.5. TGA Analysis 

Thermogravimetric analysis was used to probe the thermal 
stability of organic clay and the microenvironment of 
intercalated organic molecules. Generally, several mass loss 
steps are observed in the process of decomposition of Na-
MMT modified by organic compounds [28]. Before 200oC 
the mass loss is assigned to the dehydration of physically 
adsorbed water and water molecules around metal cations 
such as Na+ and Ca2+ on exchangeable sites in MMT [29]. 
Therefore in this study, the mass loss below 200oC was 
investigated because water content was of vital importance 
to clay reactivity. As shown in Fig. (11), from ambient tem-
perature to 200oC, the weight loss of Na-MMT was 6.35%, 
while the weight loss of BHMT modified MMT was 0.25%, 
much lower than that of Na-MMT, indicating that the inter-
calation of BHMT reduced the water content of mon-
tmorillonite, in agreement with the results of XRD patterns 
of wet samples. 
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Fig. (11). TGA curves of MMT and MMT modified with BHMT at 
concentrations of 0.5w/v%. Note: (A) Na-MMT; (B) MMT-BHMT. 

4. CONCLUSION 

 BHMT was selected as a potential shale inhibitor 
according to the rules of molecular structure design. The 
inhibitive evaluation showed that significant reduction in 
clay hydration and dispersion was obtained by BHMT 
compared to existing inhibitors. Also BHMT was high 
temperature resistant and was compatible with other 
common additives used in water-based drilling fluid. BHMT 
intercalated into the clay gallery with monolayer 
arrangement. The positively protonated ammonium ions 
neutralized the negative sites of clay surface. Meanwhile 
hydrogen bonds between amine groups and siloxane of clay 
were formed. The coordination of electrostatic interaction 
and hydrogen bonding collapsed the hydrated structure of 
clay minerals. The multi-site adsorption pulled the adjacent 
layers together and prevented the ingress of water, resulting 
in a long time effect. The adsorption of BHMT rendered the 
clay surface more hydrophobic and less affinity to water. 
However, the hydrophobic shielding effect only played a 
secondary role in inhibition. 

NOMENCLATURE 

BHMT = Bis-(hexamethylene)- triamine 
FA367 = Amphoteric polymer encapsulator 
FT-IR = Fourier transform infrared spectroscopy 
Na-MMT = Sodium montmorillonite 
PAC-H = Polyanionic cellulosic polymer with high 

viscosity 
PAM = Polyacrylamide 
PHPA = Partially hydrolyzed polyacrylonitrile 
POP230 = Polyetherdiamine with molecular weight of 

230 
TGA = Thermogravimetric analysis 
XC = Xanthan gum 
XRD = X-ray diffraction 

 

Fig. (10). Surface tension as a function of concentration. 
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