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Abstract: Recent advances in defining TGF-  signaling pathways have provided a new level of understanding of the role 

of this pleiotropic growth factor in the development of fibrosis. Here, we review selected topics related to the profibrotic 

role of TGF-  . We will discuss new insights into the mechanisms of ligand activation and the contribution of Erk1/2 

MAPK, PI3K/FAK, and Endoglin/Smad1 signaling pathways to the process of fibrosis. There is growing evidence of the 

disease-specific alterations of the downstream components of the TGF-  signaling pathway that may be explored for the 

future therapeutic interventions. 
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INTRODUCTION 

 Transforming Growth factor beta proteins (TGF- s) are a 
group of three structurally similar proteins, TGF- 1, TGF- 2 
and TGF- 3, that are the founding members of a larger 
family of proteins that comprise of BMPs (bone 
morphogenetic proteins), GDFs (growth and differentiation 
factors), activins, inhibins, and MIF (Müllerian inhibitory 
factor) [1]. TGF-  is an evolutionarily conserved 
multifunctional cytokine from invertebrates to human, with a 
diverse spectrum of biological activities ranging from the 
development of an embryo to the maintenance of tissue 
homeostasis [2]. Adding to the complexity, the functions of 
TGF-  are tissue specific and widely vary in a spatio-
temporal manner. While a key role of TGF-  signaling in 
organ fibrosis is supported by ample evidence, specific 
mechanisms involved in deregulation of this pathway 
towards fibrotic outcomes vary depending on the affected 
organ. This review will highlight recent developments in this 
field focusing on the aspects of TGF-  signaling with the 
relevance to the process of dermal fibrosis. 

ACTIVATION OF LATENT TGF-  

 During physiological tissue remodeling expression and 
activation of TGF-  is tightly controlled, however deregu-
lation of these processes is frequently associated with human 
fibrotic diseases. While many fibrotic disorders are 
characterized by the elevated levels of TGF- , additional 
mechanisms could also account for the increased TGF-  
signaling in fibrosis. High levels of TGF-  were observed in 
renal fibrosis where it was shown that all three TGF-  
isoforms were overexpressed in glomerular and tubulo-
interstitial compartments of patients with glomerular dis-
eases characterized by excessive extracellular matrix (ECM) 
deposition [3]. In addition, circulating and urinary levels of 
TGF-  were also highly elevated in patients with type II 
diabetes [4]. Elevated levels of TGF- 1 mRNA were found 
in fibrotic human lungs [5] and in BAL (bronchoalveolar 
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lavage) fluids from patients with scleroderma (SSc, systemic 
sclerosis) [6]. Likewise, increased circulating levels of TGF-

1 were demonstrated in patients with hypertrophic and 
restrictive cardiomyopathy [7]. Interestingly, in SSc TGF-  
mRNA was only detected in association with inflammatory 
cells, but not in sclerotic skin, underscoring an important 
role of elevated TGF-  in initiation, but not in progression of 
dermal fibrosis in SSc [8]. Furthermore, circulating active 
TGF-  levels were decreased in SSc and correlated inversely 
with the degree of skin fibrosis [9]. 

 As TGF-  is secreted in inactive form, factors that 
contribute to its activation locally in the affected tissues 
might play a critical role in perpetuation of the fibrotic 
process during chronic stages of the disease. TGF-  is 
secreted and deposited into ECM as a large latent complex 
(LLC) that consists of latent TGF-  binding protein (LTBP) 
covalently bound to so called small latency complex (SLC). 
SLC is formed by a homodimer of TGF-  non-covalently 
bound to an RGD-containing N-terminal latency associated 
binding peptide (LAP) [10]. Recent studies provided 
compelling evidence for the integrin-mediated activation of 
latent TGF- [reviewed in [11-13]]. LAPs of TGF- 1 and -
3, but not TGF- 2, contain RGD motif and can be activated 
through this mechanism [13]. To date, six integrins, 
including all five v integrins, as well as 8 1 have been 
shown to interact with the RGD-containing LAPs [13]. 
Integrins v 5 and v 6 were shown to activate TGF-  via a 
mechanism that does not require cleavage of latent TGF-  
and most likely involves conformational change of the latent 
complex. This protease-independent mechanism entails 
contractile cell forces and can be enhanced by agents that 
stimulate cell contraction such as thrombin, angiotensin-II, 
endothelin-1 [14], as well as LPA [15]. A protease-
dependent mechanism that does not involve cell contraction 
has been described for integrin v 8, which upon binding to 
SLC induces MT1-MMP (MMP14)-mediated release of 
TGF-  [16]. Other, non integrin, mediated mechanisms 
involve proteolytic cleavage of LAP by MMP2, MMP9 and 
plasmin [rev. in [17]]. Another proposed mechanism 
involves conformational rearrangement of the LAP-TGF-  
complex upon interaction with thrombospondin-1 (TSP-1) 
[18] or a recently described ADAMTS1 (ADAM 
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metallopeptidase with thrombospondin type motif, 1) [19]. 
Notably, there is evidence for the excessive activation of 
TGF-  in human fibrotic diseases. For example, SSc 
fibroblasts express elevated levels of integrin v 5 and v 3, 
which contributes to the activation of the autocrine TGF-  
signaling and increased collagen synthesis in these cells [20, 
21]. In addition, SSc fibroblasts produce more TSP-1, which 
may further augment autocrine TGF-  signaling [22, 23]. 
Importantly, expression of TSP-1 mRNA in the skin in vivo 
was highly correlated with degree of skin fibrosis in SSc 
patients [24]. The importance of v 6 integrin was 
demonstrated in animal models of fibrosis, including 
pulmonary and hepatic fibrosis [25]. Recently, elevated 
levels of ADAMTS1 were observed in human fibrotic livers. 
Additional functional studies demonstrated a key role of 
ADAMTS1 in activation of TGF-  signaling during 
experimental liver fibrosis [26]. Together, these clinical and 
experimental data support the view that deregulated 
activation of latent TGF-  plays an important role in the 
development of fibrosis. 

TGF-  RECEPTORS - OVERVIEW 

 TGF-  receptors are transmembrane proteins with 
intrinsic serine/threonine kinases activity and include Type I 
(T RI, also termed Activin Like Kinase 5, ALK5) and Type 
II (T RII) receptors [27]. Both types of receptor have a short 
extracellular region, a transmembrane region and a large 
intracellular cytoplasmic domain. The extracellular domain 
undergoes glycosylation, and while the T RII has a high 
affinity for the ligand, T RI does not bind to TGF- . The 
transmembrane domain of T RII is constitutively 
phosphorylated at Ser213 independent of ligand activation 
and is essential for downstream signaling. In contrast, 
transmembrane region of T RI is phosphorylated at Ser165 
by T R-II in a ligand dependent manner. Both TGF-  
receptors have the intracellular domain with inherent 
serine/threonine kinase activity. In T RI a unique glycine-
serine region termed the GS domain is present between 
kinase and transmembrane domains [28]. Upon ligand 
binding, T R-II recruits and activates T RI by 
phosphorylating the GS domain. In addition to the major 
Type I and II receptors, accessory TGF-  receptor such as 
betaglycan and endoglin are present and collectively termed 
as Type III receptors. The major function of these co-
receptors appears to be to increase the bioavailability of 
TGF-  to the signaling TGF-  receptors. Interestingly, recent 
studies have challenged previously held view that TGF-  
receptors are present on the cell membrane as preformed 
homodimers. Zhang et al. have elegantly demonstrated that 
in the absence of TGF-  receptor isoforms are monomeric 
and dimerization takes place upon TGF-  binding to T RII 
[29]. Furthermore, Huang et al. have shown that TGF-  
treatment leads to increase of T RII:T RI heterodimers 
rather than heterotetramers [30]. Upon activation, T RI is 
relieved of inhibitory effect of the immunophilin protein 
FKBP12 and actively recruits and phosphorylates the 
receptor Smads - Smad2 or -3. Smad proteins comprise of 
three domains, an N-terminal MH1 domain followed by a 
linked region and a C-terminal MH2 domain. Under resting 
condition, the MH2 domain and MH1 domain interact with 
each other. However, receptor-mediated phosphorylation at 
C-terminal disrupts these interactions exposing N-terminal 

nuclear localization signal. In addition phosphorylation 
promotes interaction of MH2 domain with other protein such 
as Smad4 that as a complex move into nucleus where they 
regulate large number of genes [31]. In addition to activation 
of Smad pathway, TGF-  has been shown to elicit non-Smad 
signaling responses via intermediates such as MAPK, Rho, 
PI3K-AKT, Src and other signaling molecules (28-31). The 
remarkable versatility of TGF-  can be attributed to the 
activation of these non-Smad pathways working in 
conjunction with Smads to further modulate cellular 
responses. However, this complexity increases the likelihood 
of alteration in additional components of this fine-tuned 
system that ultimately may result in pathological fibrosis. 

TGF-  RECEPTOR MEDIATED NON-SMAD 
SIGNALING 

 In recent years a significant progress has been made in 
unraveling the molecular mechanisms involved in the 
activation of the non-Smad pathways. This topic has been 
discussed in details in several recent reviews [32-35]. We 
will discuss selected pathways with a particular relevance to 
fibrosis. 

Erk MAPK Pathway 

 Activation of Erk MAPK plays an important role in 
fibrosis by regulating myofibroblast transdifferentiation, cell 
proliferation and survival, as well as matrix synthesis [36-
42] (Fig. 1). Recent studies have provided new insights into 
the molecular mechanisms involved in activation of this 
pathway by TGF- . Lawler et al. [43] were first to 
demonstrate that in addition to serine/threonine phosphory-
lation, T RII undergoes autophosphorylation on tyrosine 
residues. Further studies from Galliher and Schiemann 
showed that Src-mediated Tyrosine phosphorylation of 
T RII, triggers receptor recruitment of Shc and Grb2 
resulting in activation of p38 MAPK signaling [44]. Similar 
to T RII, T RI is also phosphorylated on tyrosine residues in 
response to TGF-  activation leading to the assembly of 
Shc/Grb2 complex and activation of Erk1/2 MAPK [45] 
(Fig. 1). While activation of Erk1/2 MAPK by RTKs 
(receptor tyrosine kinases) is usually rapid and transient, 
activation of this pathway by TGF-  is characterized by a 
prolonged kinetics in dermal fibroblasts [46]. Studies by 
Samuel et al. have shown that this may be due, in part, to the 
downregulation of the catalytic subunit of PP2A (protein 
phosphatase 2A), a key cellular phosphatase that targets 
Erk1/2 MAPK [46]. SSc fibroblasts were also shown to 
express reduced levels of PP2A as a result of the constitutive 
activation of TGF-  signaling. As PP2A is also involved in 
dephosphorylation of T RI [47], its downregulation may 
further contribute to the chronic activation of this pathway in 
scleroderma fibrosis (Fig. 1). Relevant to this finding, 
Bandyopadhyay and colleagues [48] have demonstrated that 
varied expression levels of TGF-  receptors might explain 
tissue-selective activation of Erk1/2 pathway by TGF- . The 
authors observed that in contrast to epithelial cells, in which 
TGF-  inhibited Erk1/2 activation, Erk1/2 was induced by 
TGF-  in dermal fibroblasts and microvascular endothelial 
cells. On the other hand, activation of Smad2/Smad3 was 
comparable in all cell types. Further, investigation into the 
levels of receptors revealed that unlike the T RI levels, 
which were similarly expressed in both cell types, the levels 
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of T RII were expressed at much higher levels in fibroblasts. 
Additional depletion experiments indicated that Erk1/2 
MAPK activation is mediated by T RII in a T RI 
independent manner in fibroblasts. Given the importantance 
of Erk1/2 in regulating profibrotic gene expression, these 
studies may explain failure of the T RI kinase specific 
inhibitors to fully normalize activated phenotype of SSc 
fibroblasts [49, 50]. 

PI3K (Phosphoinositide 3-Kinase)-FAK Pathway 

 Activation of PI3K pathway and its downstream targets 
plays a central role in the fibrogenic process induced by 
TGF- . In contrast to Erk1/2 MAPK, PI3K activation 
requires both Type II and Type I receptor [51]. The studies 
by Leof and his colleagues have provided important insights 
into activation of the TGF- -PI3K axis in mesenchymal 
cells. Collectively, these studies demonstrated that TGF-  
stimulation leads to recruitment of the p85 subunit of PI3K 
to FAK (focal adhesion kinase) that acts as a scaffold to 
organize this signaling complex. Notably, this function of 
FAK does not require tyrosine kinase activity and is Src-
independent [52]. PI3K is a branch point for the activation of 
the two important profibrotic pathways: PAK2 (p21 
activated Kinase)-Abl (Abelson kinase) and Akt-mTOR1 
pathways [53] (Fig. 2). The importance of c-Abl pathway 
has been well established in experimental models of fibrosis, 
where it was shown that administration of c-Abl inhibitor, 
imatinib, reduces organ fibrosis [54]. Downstream targets of 
c-Abl in fibroblasts include such known profibrotic 
mediators as Egr [55], Smad1 [56, 57], and PKC /Fli1 [57]. 
Furthermore, recent studies have shown that c-Abl-PKC  
pathway may also contribute to the process of endothelial-

mesenchymal transition [58]. The Akt-mTOR branch 
regulates cell proliferation, cell survival, and metabolism 
[59] (Fig. 2). The importance of the activation of the PI3K 
pathway in fibrotic disorders is further underscored by the 
finding that a key negative regulator of this pathway, PTEN, 
is underexpressed in several fibrotic disorders, including IPF 
(Idiopathic Pulmonary Fibrosis) [60], scleroderma [61, 62], 
and liver fibrosis [63]. 

 The important aspect of the TGF- -PI3K signaling is its 
role in the process of EMT (epithelial-mesenchymal 
transition). While EMT has been shown to be a source of 
collagen producing cells in experimental models of renal and 
pulmonary fibrosis [64, 65], whether this process contributes 
to human disease is debatable. This topic has been a subject 
of recent reviews and will not be discussed herein [35, 59]. 

Endoglin-Smad1 Pathway in Fibrosis 

 The type III receptors, betaglycan and endoglin, are part 
of the TGF-  receptor complex. Structural studies revealed 
that the cytoplasmic regions of both receptors lack any 
significant signaling domains and that both receptors are 
similar in their transmembrane domain [66, 67]. However, 
these accessory receptors differ in their affinity towards 
Type I and Type II receptors. Betaglycan facilitates binding 
of TGF-  isoforms to T RII, and this effect is most 
pronounced for TGF- 2, which by itself binds receptor with 
low affinity [rev in [68]]. Endoglin binds TGF- 1 and TGF-

3, but not TGF- 2, and needs the presence of TGF RII for 
binding to TGF-  ligands [rev in [67, 69]]. Endoglin is a 
critical mediator of angiogenesis and aberrant expression of 
this co-receptor has been associated with several vascular 
pathologies including HHT (hereditary hemorrhagic 

 

Fig. (1). Autocrine regulation of ERK MAPK activation by TGF-  plays a key role in wound healing and fibrosis. TGF-  via Ras-Raf 

proteins activates Erk pathway. Activated ERK in turn inhibits PP2A, a negative regulator of ERK and TGF-  receptors and stimulates 

myofibroblast survival and matrix production. 



The Role of TGF-  Receptors in Fibrosis The Open Rheumatology Journal, 2012, Volume 6   159 

talangiectasias), preeclampsia, and tumor angiogenesis [69, 
70]. Studies from the laboratory of Peter ten Dijke have 
provided important insights into the role of endoglin in the 
TGF-  signaling in endothelial cells. TGF-  has been shown 
to utilize distinct receptor subtypes to induce different 
responses in endothelial cells. TGF-  signaling via ALK5 
and subsequent phosphorylation of Smad2/3 is associated 
with inhibition of cell proliferation and migration, as well as 
other features consistent with induction of quiescent 
phenotype, while signaling via ALK1 receptor leads to 
activation of Smad1/5 and promotion of angiogenic response 
[67]. It has to be noted that ALK5 is also required for 
signaling through the ALK1 receptor, although the role of 
ALK5 in this process is not fully defined. Endoglin is 
upregulated on proliferating endothelial cells and may 
function as modulator of a balance between ALK1/Smad1 
and ALK5/Smad3 by promoting ALK1 signaling and 
indirectly inhibiting ALK5/Smad3 signaling. Consistent with 
this concept, high levels of soluble endoglin are present in 
patients with preeclampsia and contribute to the defective 
angiogenesis. 

 There is increasing evidence that elevated expression of 
endoglin on mesenchymal cells contributes to the profibrotic 
TGF-  signaling by triggering endothelial-like signaling via 
activation of ALK1/Smad1. High levels of endoglin have 
been demonstrated in liver biopsies and patient serum 
samples in liver fibrosis [71, 72], renal fibrosis [73, 74], as 
well as dermal fibroblasts and serum of patients with 
scleroderma [75-80]. The function of endoglin with respect 
to regulation of the profibrotic effects of TGF-  has been 
investigated in several experimental systems. While 
antifibrotic effects of endoglin were described in some 

studies [78, 81], majority of the studies support a profibrotic 
role of endoglin. For example, endoglin was shown to 
promote profibrotic action of Angiotensin II in cardiac 
fibroblasts [82]. Furthermore, studies of transdifferentiated 
HSCs (hepatic stellate cells) have linked endoglin to 
activation of Smad1/5 signaling and subsequent upregulation 
of -SMA [72]. In a subset of scleroderma fibroblasts, 
constitutive activation of ALK1/Smad1 pathway has been 
shown to contribute to CCN2 and collagen gene expression 
[41, 56]. Recent studies by Morris et al. have revealed that 
this subset of SSc fibroblasts is characterized by the elevated 
levels of endoglin [61]. Furthermore, endoglin was required 
for activation of Smad1/5 pathway and collagen and CCN2 
gene expression in SSc fibroblasts. Notably, endoglin/ALK1 
pathway was also shown to mediate expression of another 
profibrotic mediator, endothelin-1 in SSc and healthy dermal 
fibroblasts (Fig. 3). Although, less is known about the 
potential role of betaglycan in fibrotic disorders, recent 
studies have suggested that deregulation of this co-receptor 
may also contribute to fibrosis [83, 84]. 

CONCLUSIONS 

 Recent progress in unraveling TGF-  signaling provides 
a better understanding of the role of this pleiotropic growth 
factor in fibrosis. While these new information further 
solidify a central role for TGF-  in development of fibrosis, 
a critical question regarding suitability of TGF-  as a 
therapeutic target, remains unanswered. The effective 
suppression of TGF-  in the affected tissues might be 
difficult to achieve. Furthermore, serious concerns remain 
that such a treatment could promote autoimmunity and 
epithelial hyperplasia [85]. Although anti-TGF-  strategies 

 

Fig. (2). PI3 kinase pathway contributes to TGF-  induced fibrosis via Akt and PAK2 pathways. Activation of Akt/mTOR pathway plays a 

key role in activation of fibroblast and myofibroblasts survival. PAK2 via c-Abl induces matrix production via activation of EGR and Smad1 

pathway and inhibition Fli1 protein. 
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used to date did not produce toxic effects, this could have 
been a result of incomplete inhibition of TGF- , consistent 
with the absence of beneficial anti-fibrotic effect. The 
discovery of additional signaling pathways that work in 
concert with TGF-  in promoting fibrosis may offer new 
therapeutic options by combining TGF-  suppression with 
the additional pathway specific inhibition. 
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