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Abstract: The Notch pathway is an evolutionary conserved signalling mechanism that regulates cellular fate and 

development in various types of cells. The full spectrum of Notch effects has been well studied over the last decade in the 

fields of development and embryogenesis. But only recently several studies emphasized the involvement of the Notch 

signalling pathway in fibrosis. This review summarizes the structure and activation of the Notch family members, and 

focuses on recent findings regarding the role of Notch in organ fibrogenesis, in humans and in animal models. 
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INTRODUCTION 

 The treatment of tissue fibrosis is a challenge for the 
medical community. Indeed, 40 % of the developed world 
mortality is caused by fibrotic diseases and, to date, no 
efficient therapy is available. Over the past two years, an 
increasing number of papers have reported the involvement 
of new mediators in fibrogenesis, including the Notch-
signalling pathway. In the present review, we will first 
present the Notch family members, their functions and 
structures. Then, we will focus on the implication of Notch-
signalling in fibrosis and develop its role in the development 
of fibrotic diseases affecting various organs especially in the 
context of rheumatic diseases. 

STRUCTURE, ACTIVATION AND FUNCTIONS OF 
NOTCH RECEPTORS AND LIGANDS 

 Notch proteins are single-pass transmembrane receptors 
with a conserved expression among animal species during 
evolution. Their principal function is the regulation of many 
developmental processes, including proliferation, 
differentiation and apoptosis [1]. Four Notch proteins have 
been described in mammals (Notch 1 to 4), and they have 
non-redundant functions during embryogenesis [2]. 

Structure of Notch Receptors and Ligands 

 Notch receptors are located at the cell surface with 
extracellular and intracellular portions linked in a non-
covalent manner (Fig. 1). The binding of the extracellular 
portion to its ligand triggers two successive proteolytic 
cleavages in the receptor. The second cleavage leads to the 
release of the intracellular portion of the receptor in the 
cytoplasm and its translocation to the nucleus. The Notch 
extracellular domain is characterized by numerous EGF-like 
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repeat domains (29 to 36) that are critical for the binding of 
the ligand [3]. EGF-like repeats are followed by three 
cystein-rich domains (LIN) that prevent signalling in the 
absence of ligation [4]. The intracellular portion of Notch 
receptors (NICD, Notch Intra-Cellular Domain) contains 
regions which mediate signal transduction: a RBP-J-
associated-molecule (RAM) domain, ankyrin repeats (ANK) 
which interact with downstream proteins, a transactivation 
domain (TAD) and a C-terminal PEST (Prolin, Glutamic 
acid, Serin, Threonin) domain that is pivotal for the stability 
of the protein. Vertebrates and mammals have four different 
Notch receptors, that differ mainly in the number of EGF-
like repeats and C-terminal sequences located between the 
ANK and PEST domains. 

 Notch ligands are transmembrane proteins with a large 
extracellular portion. They are encoded by genes of the 
Jagged (JAG1 and JAG2) and Delta-like (DLL1, 3 and 4) 
families [4]. Each ligand contains EGF-like domains and a 
“Delta-Serrate-Lag” (DSL) sequence, conserved among 
Drosophila melanogaster, Caenorhabditis elegans and 
vertebrates (Fig. 1). Depending on the context, the ligand can 
be produced by a cell from the same lineage as the cell 
expressing Notch receptor or from a disctinct population [5]. 
Also, ligands can interact with Notch within the same cell 
(cis-interactions), and inhibit Notch signalling [6]. The 
mechanisms leading to the expression of an active ligand on 
the cell surface are still not clear, and further molecular 
studies are needed. 

Activation of Notch Receptors 

 The activation of the Notch-signalling pathway requires 
cell to cell contact. The binding of Notch to one of its 
ligands triggers an extracellular cleavage by the ADAM17 
metalloprotease (also named TACE, for Tumor-necrosis-
factor Alpha Converting Enzyme), thus leading to the 
formation of a membrane-tethered cleaved form of Notch 
(called NEXT), which is not the active form of the receptor 
[7]. This first step is followed by a second cleavage achieved 
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by a -secretase complex [8]. The Notch cleavage by the -
secretase enzymatic complex allows the release of the 
intracellular domain of Notch (NICD), the active form of 
Notch proteins [9]. The -secretase complex is the target of 
DAPT, a pharmacological inhibitor of the Notch pathway 
used in several preclinical studies mentioned below. NICD 

translocates to the nucleus where it induces target genes, that 
belong mainly to the Hes and Hey family [1, 2]. 

 The release of the intracellular portion of Notch receptors 
is a key-step in the activation of the Notch pathway because 
NICD is directly involved in the transcriptional regulation of 

 

Fig. (1). A. Structure of Notch receptors in mammals. Notch is a heterodmeric transmembrane receptor. The extracellular domain 

containsEGFlike repeats and LIN repeats. The intracellular domain contains a RAM domain (RBP-J associated molecule), nuclear 

localization sequences (NLS), seven ankyrin repeats (ANK), a transactivation domain (TAD) and a PEST sequence (Proline, Glutamate, 

Serine, Threonine-rich domain). The four Notch receptors differ in the number of EGF-like repeats and Cterminal sequences. B. Activation 

of the Notch pathway. Notch binds its l igand, is first cleaved by a metalloprotease and second by the -secretase compex. These cleavages 

allow the release of the Notch intra-cellular domain (NICD) and its transport into the nucleus, where it cooperates with transcription factors 

to regulate gene activity. 

Delta/Serrate-Jagged

Notch

2. Metalloprotease 
ADAM17 cleavage

3. γ-secretase 
cleavage

4. Nuclear 
translocation

CSL

Maml1

5. Transcriptional 
activation

Hes
Deltex
...

NICD

1. Recognition 
of ligands

ADAM17

Polyubiquitination
Proteosomal degradation

NICD

γ-secretase 
complex

Structure of Notch receptors

Notch1

Notch2

Notch3

Notch4

EGF-like repeats

extracellular portion

LIN RAM ANK

intracellular portion

TAD PEST

NLS

NLS

NLS

NLS

Activation of the Notch pathway

A

B



98   The Open Rheumatology Journal, 2012, Volume 6 Kavian et al. 

nuclear target genes, without relying on second messengers 
or phosphorylation cascades [5]. Not only is the activity of 
Notch receptors regulated by ligand binding and proteolytic 
cleavages, it is also regulated through post-transcriptional 
mechanisms such as glycosylation, endocytosis, endosomal 
trafficking and recycling, and ubiquitination [3, 5]. 

Functions of Notch Receptors 

 Notch-signalling controls the developmental fate and 
differentiation of cells. Thus, mutations of Notch receptors 
and ligands in mice lead to dysfunctions in many tissues, 
including the vascular system and the immune system. In 
humans, mutations of genes coding for different members of 
the Notch pathway have been linked to hereditary diseases, 
including the Alagille syndrome, CADASIL syndrome 
(Cerebral Autosomal Dominant Arteriopathy with 
Subcortical Infarcts and Leucoencephalopathy), tetralogy of 
Fallot, and spondylocostal dysostosis [10, 11]. Moreover, 
deregulation of Notch signalling can lead to cancer [12]. The 
involvement of Notch in the development of haematological 
malignancies, such as T-acute lymphoid leukemia, is now 
established, and recent studies have reported a role for Notch 
in solid tumours [11]. Indeed, depending on the cell type and 
context, Notch can act as a tumor promoter or suppressor 
[12]. 

NOTCH AND EPITHELIAL-MESENCHYMAL TRAN-
SITION (EMT) 

 Epithelial-mesenchymal transition is a process, initially 
described in early embryogenesis, through which epithelial 
cells acquire a mesenchymal-like phenotype [13]. Epithelial 
cells lose their epithelial characteristics, including E-
cadherin expression and apical-basal polarity, and reorganize 
their cytoskeleton to acquire a motile behaviour and the 
phenotype of myofibroblasts. This dynamic process has been 
well studied in the embryonic development, but also plays a 
key role in the genesis of new fibroblasts during the 
development of organ fibrosis in adult tissues. Indeed, in 
mature tissues, epithelium can undergo EMT following 
epithelial stress such as inflammation or wounding, leading 
to fibroblast proliferation and fibrogenesis [14]. Thus, 
epithelia contribute to fibrosis by creating new fibroblasts 
that coexist with resident fibroblasts to produce extracellular 
matrix in excess. 

 A large bulk of evidence suggests that EMT is associated 
with fibrotic diseases such as progressive chronic kidney 
disease, lung fibrosis and, possibly, liver fibrosis [14, 15]. 
Recently, several studies have shown that the Notch pathway 
is involved in the EMT induction process [16, 17]. In 9.5 
days old mouse embryos Timmerman and colleagues 
demonstrated that Notch is critical for the promotion of EMT 
in the developing heart. In this study, mice with a targeted 
deletion of Notch1 receptor or its effector RBP-JK-CSL 
exhibited abnormal maintenance of intracellular endocardial 
adhesion complexes and abortive endocardial EMT in vivo 
and in vitro. In another recent study [17], Aoyagi-Ikeda and 
colleagues have shown in RLE-6TN cells (rat alveolar 
epithelial cells) that the activation of the Notch pathway by 
ectopic expression of NICD or by co-culture of RLE-6TN 
cells with Jagged-1, induces the expression of -SMA, a 
marker of myofibroblasts, type-1 collagen and vimentin. 
They showed that the Jagged1/Notch signalling pathway 

induces epithelial-to-mesenchymal transition by interactions 
with the TGF-  pathway. Indeed, Notch induces the 
production of TGF- 1 and the phosphorylation of Smad3 
that favours the expression of -SMA and leads to EMT. 
Thus, overexpression of Notch family members can induce 
EMT and fibrogenesis in various organs. 

NOTCH AND FIBROTIC DISEASES 

 Recently, several papers have suggested that 
overexpression of Notch signalling may have fibrogenic 
effects in a wide spectrum of diseases, including scleroderma 
[18, 19], idiopathic pulmonary fibrosis [20], kidney fibrosis 
[21], and cardiac fibrosis [22]. 

Skin Fibrosis and Systemic Sclerosis 

 In humans, Notch1 is expressed in all epidermal layers. 
Notch ligands Jagged and Delta-like are also expressed in 
the epidermis. Notch1 induces the differentiation of 
keratinocytes through the expression of early markers such 
as keratin1 and involucrin [23]. Notch1, 2, and 3 are also 
expressed in the hair follicle and are essential for its 
homeostasis. 

 Interestingly, Notch1 is also expressed in skin fibroblasts, 
and is able to induce the transcription and expression of -
SMA through the activation of FIZZ1 (also known as 
resistin-like molecule- , RELM- , or hypoxia-mediated 
inducible factor), thus triggering the differentiation of 
fibroblasts into myofibroblasts. 

 Systemic sclerosis (SSc) is a connective tissue disease 
characterized by vascular dysfunction, fibrosis of skin and 
visceral organs, and immunologic dysregulation associated 
with the presence of autoantibodies [24]. Although 
environmental and genetic factors have been incriminated, 
the mechanisms that are directly implicated in the 
pathogenesis of the disease are still unclear [25]. Some 
advances have been made to treat vascular complications, 
but no treatment has shown convincing effectiveness to 
reduce skin and visceral fibrosis. An increasing amount of 
evidence suggests that the Notch pathway is implicated in 
the development of the fibrosis that characterizes SSc in both 
rodent and human [18, 26, 27]. Indeed, Notch1 is activated 
in the lesional skin of SSc patients and in their fibroblasts 
[18, 26]. Mice with ROS-induced SSc, bleomycin-induced 
SSc and Tsk1-mice also display elevated levels of NICD in 
skin and lungs. This accumulation of NICD is associated 
with the overactivation of ADAM17 (TACE), a proteinase 
involved in Notch activation through the first cleavage of the 
Notch receptor [18]. Moreover, treating mice with DAPT, a 
-secretase inhibitor that blocks the release of NICD, can 

reduce the collagen content in skin and lungs and the 
production of autoantibodies, thus preventing the 
development of SSc in the different mouse models [18, 26, 
27]. Similarly, treating SSc-mice with Notch siRNA 
prevented dermal thickening and fibrosis [27]. 

 The activation of the Notch cascade has major 
implications on the activation of fibroblasts in SSc. Indeed, 
the stimulation of SSc fibroblasts with a recombinant Jag-1-
Fc chimera results in their differentiation into myofibroblasts 
expressing high levels of -SMA and producing high 
amounts of collagen and ECM [26]. The pharmacological 
blockade of Notch-signalling with DAPT can also normalize 
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the proliferation rate of dermal fibroblasts extracted from 
lesional skin. In a wound-healing mouse model, the increase 
in fibroblast proliferation has been correlated with the 
activation of the Notch pathway and can be blocked by the 
treatment of mice with DAPT, showing that Notch-signalling 
plays important roles in the proliferative properties of 
fibroblasts [28]. 

 These data emphasize the role of Notch in the fibrotic 
process observed in SSc in humans and in several animal 
models. 

 Several hypotheses can explain the overactivation of 
Notch1 in SSc. First, reactive oxygen species (ROS) could 
activate Notch in SSc-fibroblasts. Indeed, the involvement of 
ROS in the pathophysiology of SSc [29-33] has been 
emphasized in a large number of studies, and we have 
developed a model of murine SSc induced by ROS [34]. In 
this model, skin fibrosis is induced by intradermal generation 
of HOCl that oxidizes skin proteins. Among those proteins, 
oxidized DNA topoisomerase-1 itself can generate an 
oxidative stress. This stress leads to the stimulation and 
proliferation of fibroblasts and to the overproduction of 
collagen and fibrosis. It also involves endothelial cells and 
is, at least partly, responsible for a vasculopathy. The 
development of fibrosis is not limited to the skin, because 
DNA topoisomerase-1 and other oxidized proteins can 
circulate and determine a systemic fibrosis. Fig. (2) describes 
the hypothetical mechanisms of activation of Notch 
receptors in ROS-mediated SSc during this process. 
Intradermal ROS can also induce the synthesis of the 
metalloprotease ADAM17 [18, 35, 36]. ADAM17 that 
triggers the first step of Notch activation, that is the shedding 
of the ectodomain of the receptor. ROS-induced ADAM17 
could be a major factor of activation of the Notch pathway in 
SSc. In addition, the ischemia-reperfusion process can 
activate HIF-1  and lead to an increase in Notch1 mRNA 
levels. In Ras-transformed human fibroblasts, oncogenic Ras 
activates Notch1-signalling, which is required to maintain 
the neoplastic phenotype of these cells [37]. In SSc, the 
hyperproliferative phenotype of fibroblasts has been 
associated with elevated levels of Ha-Ras and Ki-Ras [38]. 
Ha-Ras and Ki-Ras could activate the Notch pathway and 
thus trigger their differentiation into myofibroblasts with 
elevated proliferative capacities. 

 Altogether, the data obtained in skin fibroblasts both in 
vitro and in vivo, demonstrate a pivotal role for Notch-
signalling in the development of skin fibrosis especially in 
patients with SSc. 

Pulmonary Fibrosis 

 Progressive primary idiopathic or secondary pulmonary 
fibrosis as observed in SSc, is a rapidly progressive illness 
whose pathophysiology remains poorly understood. The 
histological lesions show fibroblast foci where mesenchymal 
cells proliferate and produce aberrant levels of ECM. Some 
studies suggest that TGF-  is involved in the recruitment of 
the fibroblasts [39]. Active pulmonary fibrosis is 
characterized by fibroblast proliferation, emergence of 
myofibroblasts, ECM deposition and tissue remodelling. A 
recent study on the abnormal differentiation of respiratory 
epithelial cells in idiopathic pulmonary fibrosis has reported 
the activation of the Notch pathway in the lung. Hes-1, a 

Notch target gene, was highly expressed in lung mucus cells 
from patients with chronic obstructive pulmonary disease, 
idiopathic pulmonary arterial hypertension and idiopathic 
pulmonary fibrosis [20]. 

 FIZZ-1 is expressed by airway epithelial cells and 
alveolar epithelial cells and is endowed with fibrogenic 
properties [40]. In the lung, TGF-  and FIZZ-1 can induce 
myofibroblast differentiation and stimulate -SMA 
expression in fibroblasts [41]. A study published by Liu and 
colleagues has shown that the Jagged1/Notch-signalling 
pathway is upregulated in response to FIZZ-1 and is crucial 
for the myofibroblast differentiation of lung fibroblasts [42]. 
Using FX-ko mice that exhibit deficient Notch-signalling in 
the absence of exogenous fucose supplementation, they 
showed that Notch is required for the upregulation of -
SMA induced by FIZZ-1. They used the model of 
bleomycin-induced pulmonary fibrosis to confirm that FIZZ-
1 induces and promotes myofibroblast differentiation in vivo 
through Notch-signalling. Pulmonary fibrosis is associated 
with a TH2 cytokine response modulated in part by Jagged 
1/Notch 1 signalling that regulates TH2 differenciation and 
the transcription of the gene of IL-4 (33). Interestingly, the 
induction of pro-inflammatory and pro-fibrotic factors 
(MCP-1, TNF- , IL-4, TGF- ) was impaired in Notch-
deficient mice. 

Chronic Kidney Disease 

 Renal fibrosis is characterized by the increased 
deposition of collagen and extracellular matrix, proliferation 
of myofibroblasts, migration of leukocytes, dysfunctions of 
epithelial cells and loss of capillaries. During kidney injury, 
fibroblasts can originate from various sources. Recent 
experiments have suggested that 15 % of fibroblasts 
originate from bone-marrow, 35 % from local EMT 
involving tubular epithelial cells under inflammatory 
conditions, and the rest results from local proliferation [14]. 
Several pathways have been implicated in the development 
of renal fibrosis, and a growing number of data indicate that 
Notch-signalling plays a key role in its pathogenesis. 

 During kidney development, Notch1 and Notch2 are 
expressed but do not play redundant roles [43]. Both 
receptors are required for proximal tubule and podocyte 
developments. In mature human and rodent developed 
kidneys, Notch activity is not detected, indicating that the 
pathway is mostly silenced once kidney development is 
complete [44]. The reactivation of this pathway is implicated 
in various renal disorders in humans and in animal models. 
Murea and colleagues have shown that elevated levels of 
Notch ligands and receptors are detected in several 
glomerular diseases, such as membranous nephropathy, 
lupus nephritis, crescentic glomerulonephritis and 
tubulointerstitial fibrosis [44, 45]. A correlation was found 
between the severity of the tubulointerstitial fibrosis and the 
expression of cleaved Notch1 in the tubulointerstitium. 
Concomitantly, another study showed that Notch plays a key 
role in the development of tubulointerstitial fibrosis in 
patients and in mouse models [21]. Using pharmacologic and 
genetic in vivo and in vitro experiments, the authors 
demonstrated that the expression of Notch in renal tubular 
epithelial cells is necessary and sufficient for the 
development of tubulointerstitial fibrosis. Moreover, genetic 
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deletion of the Notch pathway in these cells reduced renal 
fibrosis. A previous report had shown that transgenic mice 
with elevated expression of Notch1 in podocytes develop 
albuminuria and sclerosis of the glomerule and die by the 
age of 3 weeks [46]. 

 Taken together, all these data indicate that the Notch 
pathway plays a key role in kidney fibrosis. Pharmacological 
inhibition of the Notch pathway could be an important 
therapeutic strategy for chronic kidney diseases and further 
studies are needed to determine the effectiveness of such 
treatments. 

Cardiac Repair 

 Notch-signalling plays a central role in heart 
development. In humans, the Alagille syndrome, an 
autosomal dominant disorder characterized by congenital 
heart deficiency with pulmonary artery stenosis, enlarged 
right ventricle and atrial and ventricular septation defects, is 
linked to Jag1 and Notch2 mutations [47]. In mice, null 
mutants for Jag1, Notch1, Notch2 and RBPJK display 
multiple cardiac defects leading to early embryonic mortality  
 

[48]. In the mammalian adult heart, Notch-signalling is 
downregulated [49]. The mammalian adult heart responds to 
injury with fibrosis, and recent findings suggest that Notch-
signalling is critical for cardiac repair. Increasing Notch1 
signalling in mesenchymal-stem cells leads to decreased 
infarction size and improved cardiac function after 
myocardial infarction [50]. Furthermore, Russell and 
colleagues showed that the Notch pathway is activated in 
epicardial-derived cells and drives their transdifferentiation 
into fibroblasts after injury, through an EMT process [22]. 
Finally, these data provide new evidence for a role for Notch 
in cardiac repair. 

CONCLUSION 

 The Notch pathway, first described for its major role in 
the development of organisms, is also a key mediator in 
fibrogenesis as demonstrated by recent studies on skin, lung, 
kidney and cardiac fibrosis. Further studies are needed, 
especially in vivo and in patients, to determine whether the 
inhibition of Notch ligands, receptors or downstream target 
genes could be effective curative strategies to treat 
established fibrosis. 

 

Fig. (2). Hypothetical modes of activation of the Notch pathway in systemic sclerosis. ROS produced during the ischemiareperfusion 

phenomena or through the injection of HOCl in mice, could activate the metalloprotease ADAM17, thus indirectly triggering the release of 

NICD. NICD can then translocate to the nucleus and activate the transcription of its target genes leading to the development of fibrosis. 
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NICD = Notch Intra-Cellular Domain 
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ROS = Reactive oxygen species 
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