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Abstract: In a recent publication, a new unified theory of spectral line shapes was derived, which allowed for the 
variation of the electric dipole moment with perturber positions. The present author put the ( )g s  term derived from the 

theory into a computable form, and constructed spectral line shapes from which line-core HWHM's ( )w s′  were 

measured. These w 's were compared with experimental Fabry-Perot-interferometric results. Typically, for 2V∆  and 

T=1000 K, the percent difference between .exptlw  and .comptw  is ≈  22% . ( ) ( )log w vs log P− −  and curve is computed 
and compared with those from non-impact-approximation-theory computations. Two temperatures were studied at T=400 
and 1000 K in the Ar-perturber/K-radiator system; and two pseudo-potential differences were used: 1V∆ = 

2 2
1/2 3/2,3/27 ,4s S p P−  and 2V∆ = 3/2,1/2

2
1/2

2 47 PpSs − . They were used to evaluate their comparative effects on w . E.g., 

1V∆  with a deep well exhibited a larger w  than that of 2V∆  with a shallow well. 

Keywords: Quantum-mechanical, Semi-classical, Unified-theory, Spectral-line-shapes, Non-impact-approximation, K/Ar-
system. 

1. INTRODUCTION 

 In the continual development of spectral line-shape 
theory, one of the most important outputs of a theory is the 
derivation of the ( )g s  term, defined in the Discussions 
subsection 6.3, because from it the line shape can be 
computed and the HWHM( w ) can be measured and tested 
experimentally with spectrophotometric or interferometric 
techniques. Typical derivations of the ( )g s  term are as 
follows: Baranger [1] derived two quantum-mechanical 
(QM) ( )g s  terms, one Eq.(31)[1] for the impact 
approximation and one Eq.(29)[1] for the non-impact 
approximation; Allard and Kielkopf [2] derived two semi-
classical (SC) ( )g s  terms, two Eqs.(56,57)[2] for the impact 
approximation and one Eq.(55)[2] for the non-impact 
approximation; Szudy and Baylis [3] presented a ( )g s  term 
Eq.(2.15) [3] for their unified theory; very recently, Allard 
et  al . [4] published a comprehensive derivation of the 

( )g s   term  Eq. (121)  [4]  for  their  unified  theory  of  line 
 
*Address correspondence to this author at the Research and Instructional 
Computer Center and Chemistry Department, Wright State University, 
Dayton, Ohio, 45435, USA; E-mail warren.kreye@wright.edu 

shapes, in which the electric dipole moment varies with the 
position of the perturbers (see Theory Section for details of 
the theory). An example of the application of this unified 
theory is by Allard et  al . [5] who studied the 

3 3(3 ) (2 )He S He P−  line. 

 Kreye and Kreye/Kielkopf [6-9] have used the ( )g s  
terms to compute spectral-line shapes for the line core; and 
from them have measured the w 's and the shifts d 's of the 
5802 Å  line for the Ar-perturber/K-radiator system at 
temperatures (T's) equal to 400, 800 and 1000 K. They 
computed and discussed ( ) ( )log w vs log P− −  and 

( ) ( )log w vs log n− −  curves for two pseudo-potential 
differences, 0V∆  = plane  2

3/2,1/24wave p P− , and 1V∆  = 
2 2

1/2 3/2,3/27 4s S p P− . P and n  are the perturber pressure and 
density, respectively. 

 In the present paper, Kreye extends the previous studies 
[6-9] as follows:(1) the g(s) term from the newly derived 
unified theory of spectral line shapes Eq.(121)[4] is put into 
a computable form and the w 's are measured from the 
computed line shapes for the line core;(2) a computed non-
impact-approximation )()( Plogvswlog −−  curve is compared 
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with an earlier impact-approximation curve in [8];(3) a third 
pseudo-potential difference is introduced, 

3/2,1/2
2

1/2
2

2 47= PpSsV −∆ ; (4) )()( Plogvswlog −−  curves 
for the unified theory are studied at T=400 and 1000 K and 
compared with those from non-impact-approximation 
theory; (5) a question had been brought up in the previous 
paper [9], which shows in Fig. (2) [9] a slope discontinuity 
in the )()( Plogvswlog −−  curve between the impact-
approximation and non-impact-approximation regions. The 
question was, is there any alternative method for plotting 

)()( Plogvswlog −−  curves which avoids the slope 
discontinuity? This paper shows that there is

)()( Plogvswlog −−
 an alternate 

method for plotting  that avoids these 
slope discontinuities, as demonstrated in Fig. (3) and in 
Conclusions 5.1. 

2. THEORY 

2.1. Impact-approximation and Non-impact-approxima-
tion Theories  

 In the present paper, the SC impact-approximation 
Eqs.(56,57) [2] and the non-impact-approximation Eq.(55) 
[2] are used in computing ( ) ( )log w vs log P− −  curve. 

2.2. Unified Theory 

 Theoretical calculations and experimental evidence show 
that the electric dipole transition moment is not constant 
[10]. Allard et  al . [4] derived a unified theory of spectral 
line shapes to take into account the dependence of the 
electric dipole moment upon the position of the perturbers. 
The details of the complete derivation are given in [4]. 
The important ( )g s  term in the unified theory is given in 
Eq.(121)[4]. It is renumbered here as Eq.(1) and includes 
several minor changes: only one transition is considered and 
the first factor on the right of Eq.(121)[4] is taken as unity.  

1
, ,0 0

, ,

[ ( )] = 2 [ (0)]{cos( [ ( )])

[ ( )] [ (0)]} ,

s

e e e e

e e e e

g s d dx d r dtV r t

d r s d r

πρ ρ
∞ ∞ −

′ ′−∞

′ ′

ℜ ⋅

−

∫ ∫ ∫ 

 
     (1) 

where [ ( )]g sℜ  has been formed from Eq.(121)[4] by using 
the real part of 1exp( ...)i − , namely, 1cos( ...)− . In order to 
put [ ( )]g sℜ  Eq.(1) into a computable form, we must first 
put , ( )e ed r′

  Eq.(93)[4] into a computable form. We 
substitute the electronic basis function , ( )i k rψ  Eq.(14)[8] for 
the ( )e rχ   term in Eq.(93)[4] and , ( )f k rψ  for the ( )e rχ ′

  
term in Eq.(93)[4]. , ( )e ed r′

  Eq.(93)[4] then becomes  

, , ,( ) = ( ) | | ( ) ,e e i k f kd r r d rψ ψ′ 〈 〉  (2) 

where d  is generally approximated as unity. , ( )i k rψ  was 
introduced in [8] as Eq.(14). Renumbered, it becomes  

, , ,
=0

( ) = (2 1) exp( ) ( ) (cos ),
lmax

l
i k i l i l l

l
r l i i R kr Pψ δ θ+∑  (3) 

where , ( )i k rψ  has been expanded as a sum of partial waves. 
l  is the angular momentum quantum number, ,i lδ  is the 
phase shift, (cos )lP θ  is the Legendre polynomial and 

, ( )i lR kr  is the solution to the Schroedinger equation 
Eq.(6)[9], renumbered below as Eq.(4), and expressed in 

, ( )f lR kr  terms:  

2 2 2
, ,

2
,

/ 2 / [1 4 ( ) /

( 1) / ] = 0,
f l f l f

f l

d R d dR d V c k

l l R

ρ ρ ρ µπ ρ

ρ

+ + − −

+


 (4) 

where 2= (3 / )Bk k Tµ√  , µ  is the reduced mass and only 
in Eq.(4), ρ =kr. Note that in Eq.(1) and in the following 
equations, ρ  is the impact parameter. 

 Of the two forms, , [ (0)]e ed r′  and , [ ( )]e ed r s′ , we choose 

, [ (0)]e ed r′  to derive, where 2 2(0) = ( )r xρ√ +  and x  is the 
position of the perturber along its straight-line trajectory. For 
a given ρ , x  and the corresponding (0)kr , the 
Schroedinger Eq.(4) is scanned through 2750 solutions until 
the value of the independent variable ρ  matches the above 
value of (0)kr . The corresponding value of the dependent 
variable, , [ (0)]f lR kr , is the desired term for Eq.(5) below. 
Similarly, we use ( )iV ρ  in Eq.(4) to get , [ (0)]i lR kr  for 
Eq.(5). 

 The dipole matrix , [ (0)]e ed kr′  in Eq.(2) involves an 
integration over θ  of the product , ,[ (0)] [ (0)]i k f kkr krψ ψ⋅  
(the integration over ϕ  equals 2π ). Now from Eq.(3), this 

product involves a double sum, 
=0 =0

l lmax max
l l

′

′
⋅∑ ∑ . In the θ  

integration of Eq.(2), after , ( )i k rψ  and , ( )f k rψ  from Eq.(3) 
have been entered, the orthogonality of (cos ) (cos )l lP Pθ θ′⋅  
eliminates one sum. The resulting integration over θ  of the 
remaining sum yields 

2
, , ,

=0
[ (0)] = (2 1) 2 / (2 1) [ (0)] [ (0)] .

lmax

e e i l f l
l

d kr l l R kr R kr′ + +∑   (5) 

 Similarly, one obtains an expression for , [ ( )]e ed r s′  for a 

given value of s , where 2 2( ) = [ ( ) ]r s x vsρ√ + +  and where 

the velocity = (3 / )Bv k T µ√ . The integration over dt  can be 
achieved in Eq.(1) if we set the expression for ( )r t  equal to 

2 2[ ( ) ]x vtρ√ + + . From Eq. (117) [4],  

, ,( ) = ( ) ex p[ 1/ 2 ( )]′ ′ ⋅ − ⋅
e e e e B id r d r k T V r . 

 Thus, we have all the necessary terms for the three 
integrations in Eq.(1) to form [ ( )]g sℜ  for a given s . Note, 

, [ (0)]i lR kr  and , [ (0)]f lR kr  are implicit functions of ρ  and 
x , and , [ ( )]i lR kr s  and , [ ( )]f lR kr s  are implicit functions of 
ρ , x  and s  . Similarly, we obtain [ ( )]g sℑ  by substituting 

1sin( ...)−  for 1cos( ...)−  in Eq.(1). Finally, the line shapes 



A Computational/Spectroscopic Study of a Newly Derived General Unified Theory The Open Spectroscopy Journal, 2013, Volume 7    3 

 

for different P's, can be computed from the following line-
shape equation ( )F ω :  

0
( ) = 2 / 2 exp{ [ ( )]}cos{ [ ( )] } .

smaxF d s n g s n g s sω π ω⋅ − ⋅ℜ − ⋅ℑ +∫
 (6) 
 Thus, the desired computed w 's can now be obtained 
from measurements made on these line shapes, and these 
computed values of w  can be put into the curves as shown 
in the Results Section. 

3. COMPUTATIONAL DETAILS 

3.1. Integration of Eq.(4) 

 The integration of the Schroedinger Eq.(4) to obtain 
, [( (0)]i lR kr , , [ (0)]f lR kr , , [ ( )]i lR kr s  and , [ ( )]f lR kr s  used a 

second-degree Runge-Kutta method; 

3.2. Expansion of Pseudo-potentials 

 The pseudo-potentials were expanded into 2750 elements 
employing a standard Spline techniqe; 

3.3. Plotting of ( ) ( )log w vs log P− −  curves 

 For a given value of P and of T, the value of w  was 
measured from the computed line shape, ( )F ω  Eq.(6). The 
resulting w′ s for different P's were plotted as 

( ) ( )log w vs log P− −  curves. This type of a plot was used 
because it is linear in the case of the impact-approximation 
Eqs.(56,57)[2], thus allowing the slope to be easily measured 
and characterized; 

3.4. Choice of maxl  

 The choices of maxl  = 160 and 105 are for T=1000 and 
400 K, respectively; 

3.5. Choice of maxs  at T=400 K 

 For the computations of ( )log w  at T=400 K, we used the 
following procedure: the value of maxs  at T=400 K is such 
that w  at T=400 K equals w  at T=1000 K+0.25 1cm− . This 
procedure is based on the results in [8], where Fig. (2) [8] 
established that the difference between w  at T=400 K and 
w  at T=1000 K was ≈  0.25 1cm− ; 

3.6. Integration of Eq.(6) over ds  

 For the integration over ds  of Eq.(6) to obtain the line 
shape ( )F ω , a value of maxs  was used instead of the ∞ . 

Because of the close resemblance of the dt∫  factor in 

Eq.(121)[4] to the dt′∫  factor in the non-impact-
approximation Eq.(55)[2], the following procedure was used: 
for a given P, the value of maxs  in the unified treatment was 
set equal to the corresponding value of maxs  in the non-

impact-approximation treatment. The calculation of maxs  in 
the non-impact-approximation treatment is described below 
in subsection 3.7. A grid of 100 elements was adequate to 
ensure convergence of the integration. 

3.7. Calculation of maxs  in the Non-impact-approximation 
Treatment 

 We summarize here the method for calculating the maxs  
values in the non-impact-approximation treatment: first, for 
log(P)=6, [ ( )]n g s⋅ℜ  in Eq.(6) ≈  5+/-1. For simplicity, let 

6]=)([ Plogsmax  be represented by (6)maxs . Then, 
(10)(6)=(5) √⋅maxmax ss , (4) = (5) (10)max maxs s ⋅√ , 

(3) = (4) (10)max maxs s ⋅√ , (2) = (3) 10max maxs s ⋅ , 
(1) = (2) 10max maxs s ⋅ . 

 This procedure is based on the results of [9], where the 
slope of the non-impact-approximation curve is 

( ) / ( )dlog w dlog P ≈ 0.5 and the slope of the impact-
approximation curve is ( ) / ( )dlog w dlog P ≈  1.0. 

4. RESULTS 

4.1. Pseudo-potential Descriptions 

 Figs (1 and 2) show the pseudo-potentials, 
2 2

1 1/2 3/2,3/2= 7 4V s S p P∆ − , 2
1/2

X ∑  - 2
3/2A Π  and 

2 2
2 1/2 3/2,1/2= 7 4V s S p P∆ − , 2

1/2
X ∑  - 2

1/2
B ∑ , where 

= f iV V V∆ − . (See [11] for a discussion of the electronic 

states, such as 2 2
1/2 3/2X AΣ − Π ). In the region 12.5ÅR ≈ , 

the pseudo-potentials are about equal, ≈  -9.0, -8.3 1cm− ; but 
at 6.3ÅR ≈ , 1V∆  has a much deeper well of -39.3 1cm−  as 
compared with the well, -8.8 1cm− , in 2V∆ . The similarity in 
the shapes of the two pseudo-potential-differences at 

12.5ÅR ≈  is attributed to the fact that both pseudo-
potentials have the same final state, 2

1/27s S ; and the 
difference in well depths at 6.3ÅR ≈  is attributed to the 
difference between 2

3/2,1/24 p P  and 2
3/2,3/24 p P . The 

development of the pseudo-potential is best described in [2], 
lines 1127-1129. 

4.2. Figures, Showing Pseudo-potentials, 
( ) ( )log w vs log P− − , ( ) ( )log w vs log n− −  and 

, [ (0)] (0)e ed r vs r′ − −  Curves 

4.3. .exptlw  vs .comptw  Relations  

(a) .exptlw  values 

 The experimental results were reported in [6] in which 
measurements were made by the author on a pressure-
scanned Fabry-Perot interferometer described by Kreye and 
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Roesler [12]. Fig. (4) [6] shows experimental values of 
/width n  in the square-symbol line as a function of T. 

(a1) T=400 K 

>From Fig. (4) [6], the value of width/n= 20 28.9 10 cm−⋅  at 
T=400 K. 
 At P=10 torr, 

 

Fig. (1). This figure shows 1V∆  = 2 2
1/2 3/2,3/27 4s S p P−  as a function of R. 

 

Fig. (2). This figure shows 2V∆  = 2 2
1/2 3/2,1/27 4s S p P−  as a function of R. Both Figs. 1 and 2 are scaled to the same vertical axis, from -100 

to 12. 

��
�
�
�
��
��

���
���
���
���
���
�	�
�	�
���
���
���
�
�
�
�
���
���
���
���
���
���
���
���
���
���
����









�






�







�






�






��




��





��




�	





��




�
 �� �� �� �� ��
������

��
��
��
���

��
��
���
��
�

��
���
�

��
�� !  "#�����$"��%&�'��
(�

��


�
�

���
��

���
��

�	�
�	

���
��

�
�
�


���
��

���
��

���
��

���
��


����

 � � � � �� �� �� �	 �� �
 �� �� �� �� ��

������

��
��
��
���

��
��
���
��
�

��

���
�



A Computational/Spectroscopic Study of a Newly Derived General Unified Theory The Open Spectroscopy Journal, 2013, Volume 7    5 

 

.exptlw  = 0.021 1cm− . 

(a2) T=1000 K 

>From Fig. (4) [6], the extrapolated value of 
width/n= 20 213.4 10 cm−⋅  

at T=1000 K. At P=10 torr, 

 

Fig. (3). This figure shows two ( ) ( )log w vs log P− −  curves for the line core at T=1000 K. The solid line corresponds to the non-impact-
approximation Eq.(55)[2] and the dashed line corresponds to the impact-approximation Eqs.(56,57)[2]. As expected, the impact-
approximation line is linear, whereas the non-impact-approximation line approaches a constant slope at P= 610  torr. Both curves are for 

1V∆ . The smooth solid line, with no slope discontinuities, answers the question at the end of the Introduction Section, namely, can the non-

impact-approximation ( ) ( )log w vs log P− −  curve be plotted with no slope discontinuities? 

 

Fig. (4). This figure shows two ( ) ( )log w vs log P− −  curves. The dotted line corresponds to the important unified Eq.(121)[4]. It steadily 

increases at P= 610  torr. The solid line corresponds to the non-impact-approximation Eq.(55)[2], and it begins to approach a constant slope. 
At P= 610  torr, the ratio of the unified-theory value of w  to the non-impact-approximation-theory value is 1.12. Both lines correspond to 

2V∆  at T=1000 K. 
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.exptlw =0.013 1cm− . 

(b) .comptw  values 

 The computed results for T=1000 K are based on 
analyses of spectral-line shapes for the unified theory and for 
the non-impact-approximation theory. 
(b1) T=400 K 

 

Fig. (5). This figure shows two ( ) ( )log w vs log P− −  curves. The dotted line corresponds to the unified Eq.(121)[4]. The solid line 

corresponds to the non-impact-approximation Eq.(55)[4]. At P= 610  torr, the ratio of the unified value of w  to the non-impact-
approximation value of w  is 1.66. Both lines correspond to 1V∆  at T=1000 K.  

 

Fig. (6). This figure shows the ( ) ( )log w vs log P− −  curve which is computed at T=400 K and for 2V∆ . The solid line corresponds to the 
non-impact-approximation Eq.(55)[2].  
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>From Fig. (6), with 2V∆  and T=400 K, the intersection of 
the solid non-impact-approximation line with the horizontal 
axis at P=10 torr yields 

.comptw =0.0281 1cm− . 

(b2) T=1000 K 

>From Fig. (4), with 2V∆  and T=1000 K, the intersection of 
the dotted 
unified line with the horizontal axis at P=10 torr yields 

.comptw =0.0159 1cm− . 
(b3) T=1000 K 
>From Fig. (5), with 1V∆  and T=1000 K, the intersection of 
the dotted unified line with the horizontal axis at P=10 torr 
yields 

.comptw =0.0229 1cm− . 

(c)Percent difference=( .comptw - .exptlw ) 100/ .exptlw  

 >From the above data at T=400 K, we compare 
.exptlw =0.021 1cm−  with .comptw =0.0281 1cm− . The percent 

difference is +33%, and the average value is 0.024 1cm− . At 
T=1000 K, we compare .exptlw =0.013 1cm−  with 

.comptw =0.0159 1cm− . The percent difference is +22%, and 

the average value is 0.014 1cm−  . 

4.4. Ratios of . /unif non impact approximationw w − − , Compared for 

1V∆  and 2V∆  

The ratio of . /unif non impact approximationw w − −  at T=1000 K, P= 610  
torr and for 1V∆  is calculated from Fig. (5) in the present 
paper to be 1.66. The corresponding ratio for 2V∆  is 
calculated from Fig. (4) to be 1.12. The larger ratio for 1V∆  
is attributed to its deeper well of -39.3 1cm−  at 6.3ÅR ≈  as 
compared to the corresponding well of -8.8 1cm−  for 2V∆ . 

.unifw  is the value of w  for the unified theory. 

4.5. Dependence of .unifw  upon the Depth of the Well 

 For this result, P=10 torr, T=1000 K. We show in the 
following that the .unifw  is an increasing function of the 

depth of the well: for a well depth of -8.8 1cm−  in 2V∆ , 

.unifw =135 1cm− ; and for a well depth of -39.3 1cm−  in 1V∆ , 

.unifw =239 1cm− . 

5. CONCLUSIONS 

5.1. Objective one: to Eliminate the Slope Discontinuities 
in the Curves in Fig. (2) [9] 

 The slope discontinuities in the ( ) ( )log w vs log P− −  
curves in Fig. (2) [9] are a result of using two theories: the 
impact-approximation theory for small log(P) and the non-

impact-approximation theory for large log(P). For each 
theory, there is a unique linear ( ) ( )log w vs log P− −  line, as 
demonstrated in the two intersecting straight lines for each of 
the three temperature-plots in Fig. (2) [9]. In Fig. (3) in the 
present paper, there is only one plot for T=1000 K. However, 
the solid-line curve exhibits no slope discontinuity; this is a 
result of using the non-impact-approximation theory for the 
whole log(P) range. 

5.2. Objective Two: to Show that a Deeper Well Will 
Yield a Larger Value of w  

 In subsection 4.5, P=10 torr and T=1000 K. For 2V∆  
with a well depth of -8.8 1cm− , .unifw =135 1cm− . For 1V∆  

with a well depth of -39.3 1cm− , .unifw =239 1cm− . Thus, the 
objective is fulfilled. 

5.3. Objective Three: to Compare .exptlw  with .comptw  and 
to Calculate the Percent Difference 
 From subsection 4.3(b2) with P=10 torr, T=1000 K and 
for 2V∆ , .comptw =0.0159 1cm− . From subsection 4.3(a2) with 

P=10 torr and T=1000 K, .exptlw =0.013 1cm− . >From 
subsection 4.3(c), the percent difference is ≈  22 % , thus 
fulfilling the objective. 

5.4. Objective Four: to Show that the Value of w  for the 
Unified Theory is Larger than the Value of w  for the 
Non-impact-approximation Theory at P= 610  Torr 

 From Fig. (5) at P= 610  torr, T=1000 K and for 1V∆ , 

.unifw = 239. 1cm−  and non impact approximationw − − = 144, 1cm− . Thus, 
the objective is fulfilled. 

5.5. Objective Five: to Show that the Value of w  at 
T=400 K is Greater then the Value of w  at T=1000 K 

 From Fig. (6) at T=400 K, P= 310  torr and for 2V∆ , 

.( )comptlog w =0.380 1( )log cm− . From Fig. (4) at T=1000 K, 

P= 310  torr and for 2 ,V∆ , .( )comptlog w =0.199 1( )log cm− , 
thus fulfilling the objective. 

6. DISCUSSIONS 

6.1. QM,SC contributions to Eq.(1) 

 Equation (1) essentially contains an SC part and a QM 

part. The SC ,0
[ ( )]

s

e edtV r t′∫ part is given by the  term in Eq. 

(1), since it is identical, in content, with the 
2 2 1/2

0
[( ) ]

s
dt V b x′ +∫  term in the SC Eq.(55)[2], renumbered 

as Eq.(7) below (if the 1−  term is removed): 
1 2 2 1/2

0 0
( ) = 2 [1 { [( ) ] }]

∞ ∞ −

−∞
′− − +∫ ∫ ∫ 

s

o
g s pi bdb dx exp i V b x dt , (7) 

where 0=x x vt′+ . The QM , [ (0)])e ed r′
 terms of Eq.(1) are  

and , [ ( )]e ed r s′
 . 
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6.2. Comparison of .exptlw  with .comptw  

 From Section 4.3, the percent differences between .exptlw  
and .comptw , 33% and 22%, are admittedly large; however, 

the corresponding average values, 0.024 and 0.014 1cm− , are 
measures of the absolute w values of , since the computed 
values of w  are compared with experimental

 In most studies, an average value is only a 

 values. 

relative

6.3. Definition of 

 value, 
since it is a result of a comparison between a computed/ 
theoretical value and a computed/theoretical value. 

( )g s  

 Broadly speaking, the ( )g s  term contains the intricate 
details of the basic theory in a form which is usable in the 
actual spectral-line-shape expression, ( )F ω , which has a 
general Gaussian/Lorentzian form. 

 The ( )g s  term is included in the ( )F ω  line-shape 
Eq.(6). One of the simplest definitions is from the impact-
approximation Eq.(31) [1], ( ) = | |g s is k V ψ +〈 〉


, where the 

expression 〈  〉  represents an integration over θ , ϕ  and r . 

k


 and ψ +  are defined in Eqs.(9,14) [8]. [ ( )]g sℜ  is the real 
part of the complex g(s). 
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