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Abstract: Cell therapy has emerged as an attractive alternative to orthotopic liver transplantation for the treatment of liver 
disease. Among the potential candidates, umbilical cord derived stem cells are of particular interest owing to greater 
proliferation potential and low immunoreactivity. Previous reports permit to distinguish different cell types that could be 
generated from cord blood, vessels and cord matrix itself. Wharton Jelly’s derived umbilical cord stem cells and cord-
blood derived mesenchymal stem cells have demonstrated a potential to differentiate into endodermal lineage, including 
hepatocyte-like cells. In addition, recent studies have underlined their potential to alleviate liver fibrosis and express liver 
metabolic functions in rodent models. 

The present review focuses on the current knowledge on in vitro and in vivo use of these cells for liver cell therapy. We 
discuss the general characteristics homology between hepatic and umbilical cord derived stem cells and the results of 
hepatocyte-like differentiation attempts. We finally address the question of future application of these cells for the 
treatment of liver disease. 
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INTRODUCTION 

 Liver transplantation has long been the unique curative 
treatment for acute or chronic liver diseases. However, the 
shortage of donor organs and the invasiveness of the 
procedure in critically ill patients remain major limitations 
[1]. Recently, cell transplantation has offered a promising 
alternative approach for liver-based therapies [2-4]. Stem 
cells originating from various intra and extra-hepatic sources 
has been investigated for the treatment of hepatic diseases 
[5-15]. Stem cells are relatively easy to harvest, display an 
inherent ability to proliferate and demonstrate various differ-
entiation potentials [16, 17]. Moreover, stem cells present 
immunotolerogenic features decreasing the risk for graft 
rejection [18]. Despite encouraging results, the technique is 
hampered by the restricted number of donors and invasive 
harvesting techniques. Furthermore, the stem cell yield, their 
differentiation capacity and in vivo repopulation potential 
decrease with aging [19]. Umbilical cord mesenchymal stem 
cells (UCMSC) are an attractive candidate for cell therapy 
because they are an unexhaustive cell source with a great 
proliferation potential [20-22]. In addition, because the 
umbilical cord is discarded at birth, their isolation raises few 
ethical concerns. These cells also express hepatocyte-like 
markers [10], which confer them a theoretical advantage for 
liver cell transplantation. In vitro data and animal studies on 
hepatocyte-like differentiation of UCMSC are very pro-
mising but the demonstration of liver specific functionality, a 
key task for regenerative medicine application, remains  
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limited [10, 23, 24]. Further, the ability of UCMSC to 
repopulate the liver needs to be investigated.  
 In this review we discuss the general phenotype homo-
logy between hepatic and umbilical cord derived stem cells. 
Secondly, we evaluate the effect of various differentiation 
protocols on enhancing hepatocyte-like phenotype in 
UCMSC. Finally we will discuss the steps to be performed 
for future application of umbilical cord stem cells for the 
treatment of liver disease. 

HEPATOCYTE-LIKE PHENOTYPE CHARACTER-
ISTICS OF UCMSC  

 In response to various cytokines, the embryonic endo-
derm initiates its development toward a hepatic specifi-
cation by generating the primary liver bud [25-27]. This 
tissue is mainly composed of liver precursors, the hepato-
blasts. Early hepatoblasts progressively begin to express 
characteristic liver genes [28, 29] (such as albumin, alpha-
fetoprotein and HNF-4) while undergoing important growth. 
From midgestation to perinatal life, hepatoblasts modulate 
the expression of specific genes to meet the specific needs of 
each developmental stage. Late hepatoblasts possess 
bipotential (hepatic and biliary) properties. The cells further 
differentiate and undergo metabolic and morphologic 
maturation to finally acquire mature hepatic function during 
infancy.  
 As a first proof of their endodermal commitment, 
UCMSC express some characteristic genes of the definitive 
endoderm phase (Table 1) such as CXCR-4, Sox 17 and E-
Cadherin. Furthermore, UCMSC express moderate basal 
mRNA and protein levels of albumin, alpha-foetoprotein, 
cytokeratin 19 and CD54 (I-CAM) with very low or negative 
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levels of CD117 (c-kit), CD56 (N-CAM) and Cyp3A4. The 
combination of all these markers correlates well with the 
phenotype of early hepatoblasts. UCMSC also share more 
mature hepatic features such as cytokeratin 18 (CK18), 
glucose-6-phosphatase, alpha-1 antitrypsin, connexin-32, 
phosphoenolpyruvate carboxykinase (PEPCK) and trypto-
phan-2,3-dioxygenase (TDO). Despite an interesting pheno-
type, these cell characteristics have to be carefully analyzed, 
as they do not confer them the status of mature hepatocyte. 
In the perspective of regenerative medicine, commitment to 
hepatic lineage is not sufficient per se, as these cells have not 
yet demonstrated the ability to perform the various metabolic 
roles of the hepatocyte [41]. Indeed, neither cytochrome 
activity [10], nor bilirubin conjugation by uridine 5’-diphos-
phate-glucuronyltransferase could be detected in UCMSC 
[42]. Moreover, some of the above mentioned genes are not 
liver specific and the extent to which some of them are 
expressed by the liver alone is not clear. Finally, these cells 
also display mesodermal and ectodermal characteristics 
possibly associated with many other lineage differentiation 
potentials [22].  
 Taken together, UCMSC constitutively express some 
early stage or more mature hepatic markers and functions, 
giving them a theoretical advantage for liver tissue repair. 

Furthermore, their hepatic commitment could potentially be 
enhanced by in vitro or in vivo differentiation in response to 
specific growth factors or host liver environment. 

ENHANCING HEPATIC COMMITMENT OF UCMSC 
AFTER IN VITRO DIFFERENTIATION  

Differentiation Protocols 

 Hepatogenic differentiation protocols are performed 
using a cocktail of factors/cytokines known to be involved in 
the successive developmental stages leading to mature 
hepatocytes. To this day, no consensus has been put in place 
in the literature regarding the protocol that should be used to 
generate hepatocyte-like cells. The current majority of 
protocols are performed using fibrosblast growth factor 
(FGF) and hepatic growth factor (HGF) in early steps. 
During early embryogenesis, FGF induces competent 
endoderm cells to an hepatic fate [43] while HGF stimulate 
hepatoblast proliferation [44]. Later stages utilize Oncostatin 
M (OSM), which induces, via a STAT-3 mediated signaling 
cascade, terminal hepatocyte maturation [45]. It remains a 
matter of debate whether cells should be preferentially 
differentiated into mature hepatocytes or hepatic progenitors 
[46]. Indeed, these latter better resist transplantation and 

Table 1. Expression of Developmental Hepatic Lineage Markers in UCMSC and Hepatocyte-like Differentiated UCMSC 
 

 UCMSC Differentiated 
UCMSC 

Hepatic Stem 
Cell Hepatoblast Mature 

Hepatocyte References 

CXCR-4 + ND ND ND + [30] 

Sox17 + ND ND ND + [30] 

E-cadherin + + + + + UD, [31] 

Albumin + + + ++ +++ [10, 23, 24, 28] 

Cytokeratin 18 + + ++ ++ +++ [10, 23, 29, 32] 

Cytokeratin 19 + + +++ ++//- - [10, 24, 29, 33-35] 

Alpha Fetoprotein + + - +++ - [10, 23, 24, 35, 36] 

I-Cam (CD54) +/- ND - ++ +++ [10, 35, 37] 

N-Cam (CD56) - ND +++ - - [35, 38] 

Cyp3A4 - + - - ++ [10, 35] 

Connexin-32 + + + ++ +++ [10, 29] 

Alpha-1antitrypsin + + ND ++ +++ [10, 29, 36] 

Glucose-6-
phosphatase + + ND ++ +++ [10, 24] 

TAT - + ND ND +++ [10] 

TDO +/- + ND +/- ++ [10, 24, 39] 

PEPCK + + - + ++ [10, 29] 

HNF-4 +/- - +++ ++ ++ [10, 29, 32, 36, 40] 

CYP: cytochrome P450, HNF4: hepatic nuclear factor 4, ND: no data, PEPCK: phosphoenolpyruvate carboxykinase, TAT: tyrosine aminotransferase, TDO: tryptophan 2,3-
dioxygenase, UD: personnal unpublished data. Hepatoblast early // late markers. +/- controversial data in litterature. 
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maintain a greater proliferation and repopulation capacity 
than fully mature differentiated cells.  

Assessment of Hepatocyte Differentiation in Vitro 

 A critical point in using stem cells for liver cell therapy 
lies in the acquisition of a sufficient extent of hepatic dif-
ferentiation to display mature metabolic functions required 
for effective liver replacement. Classical characterization of 
differentiated cells includes a comparison of morphological 
features and the evaluation of mRNA transcript or protein 
expression. UCMSC, incubated in a specific differentiation 
medium, display morphological changes evocative of the 
acquisition of hepatocyte-like features [10]. Spindle shaped 
UCMSC progressively become more polyhedric, but ultra-
structural data is required to further confirm these changes. 
In most studies, the description of an acquired hepatocyte-
like phenotype is based on a restricted panel of markers 
(Table 1). The interpretation of data concerning the extent of 
hepatic differentiation is difficult using these markers, as 
authors sometimes observed a dissociation between mRNA 
or protein expression and maturation of related metabolic 
function [47]. More interesting -and mandatory- are the 
concomitant analysis of liver specific functional activities. 
Altogether, the results of different studies con-firmed that 
the acquisition of hepatocyte-like phenotype was only 
partial. Indeed, differentiated cells displayed some early or 
more mature hepatic markers/functions (such as Cyp3A4, 
UGT1 and TAT), but lacked expression of molecules such as 
HNF-4. Moreover, UCMSC maintained native mesenchymal 
markers, suggesting the persistence of a chimerical pheno-
type after differentiation. 

IN VIVO USE OF UCMSC FOR THE TREATMENT 
OF LIVER DISEASES 

In Vivo Hepatocyte Differentiation Potential of UCMSC  

 While in vitro testings may suggest an hepatocyte-like 
differentiation potential of UCMSC, the ultimate proof of 
this capacity relies on the demonstration that cells can 
repopulate and rescue the liver function in an animal model 
that mimics human liver disease. Studies analyzing the 
repopulation and differentiation capacity of UCMSC in vivo 
are scarce. To our knowledge, no study has used rodent 
models of metabolic liver failure (Gunn, Nagase Rats; FAH 
mice,…) to specifically asses the potential of UCMSC to 
restore liver function. Instead, studies used immuno-
compromised models (SCID) without liver injury or selec-
tive advantage for the injected cells (Table 2). Finally, others 
used models with induced liver damage (CCl4, …). The data 
obtained using these xenogenic models would further benefit 
from being complemented by studies using humanized 
models or human subjects, since cell adhesion, cell-to-cell 
interactions and differentiation may vary between species 
[48].   
 Cell engraftment can be evaluated in vivo by different 
methods such as fluorescent in situ hybridization, immuno-
staining, Real Time PCR, etc. As all these techniques carry 
specific pitfalls, the use of combined methods is largely 
recommended for accurate evaluation. Thus far, engraftment 
rates remain low, below 5%, especially in models that do not 
provide space or selective advantage for eventual implanta-

tion of injected cells (unpublished data). These engraftment 
numbers seem in most cases insufficient to provide a defini-
tive curative treatment. Different approaches can be consi-
dered to favor cell implantation. Regenerative stimulus is 
very efficient in animal models and clearly was associated 
with significant improved repopulation. However, the 
translation of such techniques to humans is difficult. Some 
methods have already been described in human, such as 
hepatic irradiation [49], partial hepatectomy or ischemia/ 
reperfusion injury [50]. Finally, successful hepatic repopu-
lation can be hampered by graft rejection. Recent studies 
underlined the ability of UCMSC to induce tolerance [51]. 

Effect of UCMSC on Liver Fibrosis 

 Liver fibrosis occurs in response to chronic liver damage 
induced by a variety of conditions including liver metabolic 
diseases and autoimmune or viral hepatitis. Chronic hepatic 
injury of any etiology leads to persistent activation of tissue 
repair mechanisms mediated by various cytokines and 
growth factors. Ultimately, this condition drives the progres-
sive accumulation of extracellular matrix (ECM) com-
ponents [52]. The propensity of MSC to alleviate fibrosis in 
injured liver has first been described in mice transplanted 
with bone marrow stem cells [53]. Likewise, rodents in 
which liver damage was established using CCl4 or TAA 
injections demonstrated reduced hepatic inflammation and 
ECM deposition after UCMSC transplantation [39, 54, 55]. 
Mechanisms mediating these effects are thought to imply the 
modulation by UCMSC of endogenous secreted factors such 
as metalloproteinases [56, 57]. These findings however 
remain controversial, as other authors could not find any 
effect on hepatic function when rodents were maintained 
alive for longer periods or in case of extended liver injury 
(association of hepatotoxic chemicals) [58]. In addition, 
studies have demonstrated that mesenchymal stem cells 
display a profibrogenic propensity [59]. Yan et al. [54] have 
also suggested this fact for UCMSC. Indeed, intravenously 
infused UCMSC contributed to the myofibroblast population 
(αSMA and fibroblast secretory protein-1 positive cells) in 
mice with CCl4 induced liver injury.  

PERSPECTIVES AND CONCLUSIONS 

 Over the last few years, major advances have allowed a 
better understanding of the different steps and pathways 
involved in hepatogenesis. In parallel, a great amount of 
work has been performed in the field of stem cell therapy for 
regenerative medicine. Umbilical cord mesenchymal stem 
cells certainly represent a very attractive cell source for liver 
based treatments as they display several hepatic markers 
characterizing the sequential steps of liver development. In 
addition, their differentiation ability to hepatic lineage can be 
enhanced in vivo and in vitro after culture with hepatogenic 
factors. A better understanding of the temporal sequence of 
hepatic differentiation steps will permit the amelioration of 
in vitro differentiation protocols in the future.  
 Generating fully mature hepatocytes from stem cells may 
be an idealistic, extremely difficult task. The extent of 
hepatic maturation needed for effective cell transplantation 
greatly depends on the pathology we want to cure. Some 
conditions such as inborn errors of metabolism are related to 
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the deficiency of only one enzyme. In those cases, cells 
expressing mature hepatic levels of the particular enzyme 
could be used even in the absence of other hepatic metabolic 

functions. However, for the treatment of other conditions 
such as acute hepatic failure, advanced hepatic differen-
tiation will be needed.  

Table 2.  Representative Studies Investigating in Vitro and/or in Vivo Hepatocyte-like Differentiation Ability of UCMSC 
 

Protocol 
In vitro characterization 

Before differentiation 
After differentiation In vivo characterization 

 

4 steps - 5 weeks 
IMDM supplemented 
with: 
step 1: EGF, FGF (2days) 
step 2: FGF, HGF, Nico, 
ITS (10days) 
step 3: HGF, OSM, Nico, 
ITS (10days) 
step 4: OSM, Dexa, ITS 
(10days) 

RNA: 
(+) ALB, AFP, CX-32, 
A1AT, CK18, CK19, G6P, 
PEPCK, TDO 
(-) CYP, HNF4, TAT 
Protein: (IF) 
(+) ALB, AFP, CX-32, 
CK18, CK19, DPPIV 
Function: 
(+) G6P, Urea, Cyp3A4, 
Glycogen storage 
(-) ALB 

RNA: 
(+) ALB, AFP, CX-32, A1AT, 
CK18, CK19, G6P, PEPCK, TDO, 
CYP, TAT 
(-) HNF4 
Protein: 
(+) ALB, AFP, CX-32, CK18, 
CK19, DPPIV 
Function: 
(+) G6P, Urea, Cyp3A4, 
Glycogen storage 
(-) ALB 

Host: SCID 
Injury: none 
Time: 
TRP: 
- intrasplenic 
- 106 UD cells 
Characterization: 
RNA: Not tested 
Protein: ALB, AFP, CK19 
Function: Not tested 

Campard 
[10] 

1 step - 3 weeks 
IMDM supplemented 
with: 
step 1: HGF, FGF-4, 
(21days) 

RNA: 
(+) ALB, AFP, CK18 
Protein: 
(-) ALB, AFP, CK18 
Function: 
(-) Glycogen storage, LDL 
uptake 

RNA: 
(+) ALB, AFP, CK18 
Protein: 
(+) ALB, AFP, CK18 
Function: 
(+) Glycogen storage, LDL uptake 
 

Not tested Zhang 
[23] 

2 steps - 5 weeks 
DMEM-F12 supplemented 
with: 
step 1: HGF, FGF, ITS, 
Dexa (16days) 
step 2: OSM, Dexa, ITS 
(16days) 

RNA: (PCR) 
(+) ALB, AFP, CK19, G6P 
(-) TDO 
Protein: (IF) 
(+) ALB, AFP, CK19 
Function: 
(-) LDL uptake, Albumin 
secretion, Urea 

RNA: 
(+) ALB, AFP, CK19, G6P, TDO 
(-) / 
Protein: (IF) 
(+) ALB, AFP, CK19 
Function: 
(+) LDL uptake, Albumin secretion, 
Urea 

Host: NOD-SCID 
Injury: CCl4 
TRP: 
- tail vein 
- 5.10

5
 D cells 

Characterization: 
RNA: Not tested 
Protein: ALB 
Function: Not tested 

Zhao [24] 

Co-culture with C57BL/6 
mice liver tissue exposed 
to thioacetamide (TAA) 
24h earlier (2-4days) 

RNA: (PCR) 
(-) ALB,CK18, TDO, AFP, 
CYP7A1 
Protein: Not tested 
Function: Not tested 

RNA: (PCR) 
(+) ALB, CK18, TDO, AFP, 
CYP7A1 
Protein: Not tested 
Function: Not tested 

Host: Wistar Kyoto 
Injury: TAA 
Time: 64 days 
TRP: 
- portal vein 
- 1.10

6
 UD cells 

Characterization: 
RNA: Not tested 
Protein: ALB 
Function: Not tested 

Lin [39] 

4 steps - 5 weeks 
IMDM supplemented 
with: 
step 1: EGF, FGF (2days) 
step 2: FGF, HGF, Nico, 
ITS (10days) 
step 3: HGF, OSM, Nico, 
ITS (10days) 
step 4: OSM, Dexa, ITS 
(10days) 

RNA: 
(+) ALB, AFP, CX-32, 
A1AT, CK19, G6P, PEPCK, 
TDO, UGT1A1 
(-) CYP3A4, HNF4, TAT 
Protein: (IF-WB) 
(+) ALB, AFP, CX-32, 
CK19, DPPIV 
(-) UGT1 
Function: 
(+) G6P, Urea, Cyp3A4, 
Glycogen storage 

RNA: 
(+) ALB, AFP, CX-32, A1AT, 
CK19, G6P, PEPCK, TDO, 
UGT1A1, CYP3A4, TAT 
(-) HNF4 
Protein: 
(+) ALB, AFP, CX-32, CK19, 
DPPIV, UGT1 
(-) / 
Function: 
(+) G6P, Urea, Cyp3A4, 
Glycogen storage 

Not tested Scheers 
[42] 

Abbreviations: A1AT: alpha 1 antitrypsin, AFP: alphafetoprotein, ALB: albumin, CK19: cytokeratin 19, CCl4: carbon tetrachloride, CX-32: connexin 32, CYP: cytochrome P450, D: 
differentiated cells, Dexa: dexamethasone, DPPIV: dipeptidylpeptidase IV, EGF: epidermal growth factor, FGF: fibroblast growth factor, G6P: glucose-6-phosphatase, HGF: 
hepatocyte growth factor, HNF4: hepatic nuclear factor 4, IF: immunofluorescence, ITS: insulin-transferrin-selenium, LDL: low density lipoprotein, Nico: nicotinamide, NOD: non 
obese diabetic, OSM: oncostatin M, PEPCK: phosphoenolpyruvate carboxykinase, SCID: severe combined immunodeficiency, TAT: tyrosine aminotransferase, TDO: tryptophan 
2,3-dioxygenase, UD: undifferentiated cells, UGT1: UDP-glucuronyltransferase, WB: western blot.  
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 Enhancing cell engraftment and survival will be another 
critical point on the road to effective clinical application. 
Study results converge to the conclusion that less than 5% 
functional cells should be enough to correct metabolic 
disease [60]. However, this repopulation rate could be 
insufficient in case of hepatic failure. Animal models will be 
useful to better examine UCMSC engraftment in specific 
conditions. Furthermore, it remains unclear to which extent 
UCMSC are involved in the reconstitution of hepatic non-
parenchymal and metabolically active cells. In vivo UCMSC 
engraftment and functionality in animal models presenting a 
metabolic disease remains an unanswered question. Finally, 
reducing graft rejection can enhance cell survival. Although 
UCMSC present a poor immunogenic profile [24], it is 
unclear if immunosuppressive therapy is needed to avoid 
graft rejection.  
 Recent research has demonstrated the long-term in vitro 
and in vivo tumorigenic safety of UCMSC. Extensive ana-
lysis of cell karyotype and modulation of cell cycle regula-
tion genes during culture remained normal over a long 
period of time [42]. However, other safety issues concerning 
cell administration route, clotting risk, etc. have to be further 
assessed. 
 Finally, studies performed on liver cirrhosis models have 
demonstrated promising anti-inflammatory and anti-fibro-
genic properties of UCMSC. In depth studies of the mecha-
nisms involved in these processes will certainly bring new 
insights for the targeted treatment of liver cirrhosis. 
Although previous work has underlined the ability of 
UCMSC to differentiate into hepatocyte-like cells in vivo, 
further investigations should be performed to better under-
stand the effective role of these cells in helping functional 
liver repair. 
 Overall, UCMSC present interesting characteristics for 
cell based therapies. Further improvements regarding cell 
distribution, engraftment and differentiation capacity with 
demonstration of acquired metabolic functions in vivo will 
help to unveil the real potential and place of UCMSC in 
clinical liver based therapies. 
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