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Abstract: Mesenchymal (stromal) stem cells (MSC) are a broad class of stromal populations which are able to 
differentiate towards mature cell types, and do express molecules involved in immune modulation, tolerance induction 
and inflammation dampening. MSC can be virtually isolated from each adult organ, as well as from foetus-associated 
perinatal tissues. In particular, Wharton’s jelly-derived MSC (WJ-MSC) bear all of these key properties, together with 
their ease of sourcing and lack of ethical issues. 

Cellular therapy is a key technique in regenerative medicine approaches, in particular for the treatment of diseases in 
which physiological processes of cellular repopulation are blocked by the underlying pathological conditions. Recent data 
enlightened the ability of administered cells to act also in a repopulation-independent fashion in target organs, since their 
peculiar immunomodulatory and anti-inflammatory features may favor organ self-repair by reactivating local progenitors 
by both cell-mediated or paracrine mechanisms. Translating classical regenerative medicine to “reparative medicine” or 
“support medicine” should represent a further therapeutic strategy independent from the differentiation capacity of MSC 
populations. 

Recent data further highlighted that WJ-MSC outperform BM-MSC (which are now being applied clinically) both in 
terms of immune modulation and lack of tumorigenesis (or tumor-promoting activities) in vivo. Starting from these 
premises, this paper analyzes the recent data on the biology of WJ-MSC, considering the role of both naïve and 
differentiated cells in immune modulation. In particular, the role of tolerance promoting pathways via non-classical B7 
costimulators or class Ib MHC molecules are examined. In addition, we also analyzed the interconnections with other 
mechanicistic pathways (as those driven by matrix degrading metalloproteinases) in immune modulation. Our 
observations strongly support the notion that WJ-MSC may constitute a new tool in regenerative and reparative medicine 
applications.  
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1. INTRODUCTION 

 Perinatal stem cells research attracted a great interest 
worldwide in recent years. Foetus-associated tissues contain 
various populations of stem cells, most of which are 
comprised within the category of mesenchymal stem cells 
(MSC). Many advantages of using perinatal tissues as 
sources of stem cells, can be listed: ease of the isolation 
process, lack of risks for donors, lack of ethical issues and 
high cellular yield. Data from many reports showed that 
cellular isolation is achieved in nearly 100% specimens. 
Perinatal MSC may be easily sub-cultured and long-term 
stored by deep-freezing techniques. 
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 The umbilical cord (UC) is a key part of placenta, the 
organ providing foetus-maternal interface during pregnancy. 
In particular, UC is an extraembryonic mesoderm formation 
that originates at day 13 of the embryonic development [1]. 
The mature umbilical cord is constituted by three vessels, 
one vein and two arteries, which are comprised into a 
meshwork formed by a mature mucous connective tissue, 
named Wharton’s jelly (WJ), by the name of Thomas Wharton 
who described the tissue in seventeenth century. Vessels 
inside UC provide both gas and nutrients exchange to the 
foetal circulation. Other than the major vessels, UC present 
neither other vascular structures nor neural elements [2]. 
 While WJ constitutes the largest amount of UC bulk 
tissue, this anatomical formation is actually constituted by 
different zones. Structural and functional studies led to the 
description of at least 5 distinct zones in human UC: 
amniotic epithelium, subamniotic stroma, intervascular 
stroma (WJ), perivascular stroma, and vessels. In the 
classical view, WJ is populated by two main cellular types: 
fibroblast-like cells [3] and myofibroblasts [4, 5]. 
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 The umbilical cord is delimited by a single layer of cubic 
epithelial cells forming the umbilical epithelium, an 
ectoderm derivative that continues with amniotic epithelial 
cells at the placental end and with the tegument epithelium of 
the foetus [6, 7]. No structural borders are present between the 
distinct zones of UC, although it has been reported that 
Wharton’s jelly features a relatively lower cell density than 
the other zones [8]. 

2. WJ-MSC PHENOTYPE AND DIFFERENTIATION 
CAPACITY 

 The presence of regions with distinctive features in the 
umbilical cord is reflected by the different stem cells 
populations which may be derived from the organ. In fact, 
MSC have been isolated from WJ [9], perivascular region 

[10], cord blood [11], amniotic epithelium [12]. Despite their 
different origin, all of these cells can be reproducibly 
isolated, cultured and long-term stored. Moreover, there are 
striking phenotype similarities between these cells, since all 
share the core markers which allow their categorization 
within the growing family of MSC. To this regard, the 
continued research on WJ-MSC features further extended the 
list of expressed markers, which encompass molecules 
normally expressed by mature cell types derived from each 
of the three germ layers, as well as molecules with 
immunomodulatory features. WJ-MSC can be isolated from 
the UC matrix by means of both enzymatic digestion or 
enzyme-free methods (see Fig. 1). In both cases, primary 
populations can be expanded successfully ex vivo and 
further characterized and differentiated. 

 
Fig. (1). Schematic representation of the steps for the isolation of MSC from Wharton's jelly. Cord harvesting and tissue processing are 
performed within 24 hours from delivery; then MSC may be isolated either wih explant culture, or by proteolytic digestion of whole cord 
fragments, with or without vessel removal. Isolated cells are easily grown on plastic, and can be further characterized for the expression of 
key markers (by immunocytochemistry or flow cytometry) and subjected to differentiation experiments. 
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 Classical reports demonstrated that WJ-MSC phenotype 
closely resembles that of bone marrow mesenchymal stem 
cells (BM-MSC). WJ-MSC do express the core markers 
CD29, CD44, CD73, CD90, CD105, together with class Ia 
MHC (major histocompatibility complex) molecules (as 
HLA-A, -B, -C). WJ-MSC do not express hematopoietic and 
endothelial markers (CD34, CD45, CD31, vWF) and class II 
MHC (HLA-DR) as well [13-16]. In addition, WJ-MSC may 
express CD117 (receptor for the stem cell factor, encoded by 
c-Kit gene) and, differently to BM-MSC, CD68 and CD14 
[12, 16, 17]. 
 Several mature tissue-specific markers have been also 
characterized in naïve WJ-MSC under standard culture 
conditions [18]. For example, cytoskeletal molecules of 
various classes such as: α-smooth muscle actin and vimentin 
(mainly expressed in mesenchymal lineage cells); nestin and 
GFAP (glial fibrillar acidic protein) (featured by mature cells 
of neuroectodermal lineage); cytokeratin-8, -18 and -19 
(expressed in endoderm-derived epithelial cells) [16,19]. The 
presence of such molecules may partly reflect the capacity of 
these cells to differentiate towards mature cell types derived 
from all three germ layers, thank to their intrinsic ability to 
cross germ layers boundaries: indeed, WJ-MSC are defined 
as multipotent stem cells since they can differentiate into at 
least three different cellular lineages: osteoblasts, adipocytes 
and chondrocytes [19, 20], even though their differentiative 
ability is largely wider [21, 22]. 
 Using specific in vitro protocols, WJ-MSC can be 
differentiated into glial cells and neurons [9], skeletal muscle 
cells [23], cardiomyocytes [24, 25], endothelial cells [26-28], 
hepatocytes [29, 30]. In addition, the expression of connexin 
43 [16] suggested the possibility to differentiate WJ-MSC 
into cardiomyocytes or other cardiac resident cell types [31] 
or to be directly administered to correct conduction defects 
and other heart diseases [32-34]. 

3. RECENT DATA ON THE EXPRESSION OF 
RELEVANT IMMUNOMODULATORY MOLECULES 
IN VITRO BY MSC 

 Immune modulation is viewed as a promising feature of 
many MSC populations, since these cells, once administered 
therapeutically, may be able to overcome, or at least evade, 
the host immune response which leads to acute or chronic 
rejection of the transplant. 
 The need of a better characterization of relevant 
molecules expression by MSC is further justified by the re-
discovery of "old markers" (previously known to be 
expressed by leukocyte populations) also in perinatal MSC. 
We recently showed that WJ-MSC do express CD68 at both 
protein and mRNA level [17]. CD68 is classically known as 
a macrophage-specific antigen [35], even though its extra-
myeloid expression has been demonstrated in other cell 
types. [36]. In addition, recent data from Kita and co-
workers suggested that cells derived from amniotic 
epithelium of UC do express CD14 antigen, which is known 
as a monocyte-specific marker [8, 12]. 
 As demonstrated by an increasing number of relevant 
publications, a vast number of molecules with a frank 
immunomodulatory role are expressed by MSC, and in 
particular also in WJ-MSC. Literature data do exist for adult 

MSC populations, as those isolated from bone marrow or 
adipose tissue (AT-MSC), as reported in Table 1. However, 
recent reports also highlighted the expression of such 
molecules also in many perinatal mesenchymal populations, 
as those derived from amniotic membrane (AM-MSC), 
umbilical cord lining (CL-MSC) and Wharton’s jelly. Table 
1 shows some of the classical and novel immunomodulatory 
markers which are expressed by various mesenchymal 
stromal cells populations. 
 Low level expression of class I MHC, together with lack 
of class II MHC and B7 co-stimulators (B7-1 or CD80 and 
B7-2 or CD86) highlighted a frank hypoimmunogenicity 
condition for MSC. Contrasting data on the expression of 
CD80 by MSC can further confirm MSC 
hypoimmunogenicity: in fact, CD80 may exert an inhibitory 
role on lymphocytes via CD152 (CTLA-4) binding, thus 
attenuating lymphocyte response [73,74]. Other authors 
suggested that this process may be enhanced in the absence 
of CD86, which binds CD28: CD86 blockade, in presence of 
intact CD80, results in alloantigen-specific tolerance [75,76]. 
Other members of the B7 family, with known immuno-
modulatory features, have been studied so far in MSC. B7-
H1 and B7-H3 have been demonstrated in BM-MSC and 
AT-MSC. We demonstrated that B7-H3 is also expressed at 
the protein level in human cardiac MSC [76]. In addition, we 
recently demonstrated that also WJ-MSC do express 
CD276/B7-H3 [56]. 
 Also MHC molecules received great attention in recent 
years as key players of immune reactions. As depicted in 
Table 1, and as reported by us and others, HLA-G is 
expressed by WJ-MSC [16, 47] and BM-MSC [48]. HLA-G 
has a key role in tolerance induction of the mother's immune 
system towards the semi-allogeneic foetus during pregnancy; 
it acts together with other class Ib MHC molecules (such as 
HLA-E and HLA-F) and trophoblast-secreted factors as EPF 
(early pregnancy factor) [77, 78]. To this regard, we recently 
demonstrated for the first time that WJ-MSC do express also 
other class Ib MHC molecules, namely HLA-E and HLA-F 
[45]: both are implicated in tolerogenic processes occurring 
at the foetomaternal interface, together with HLA-G [79-81]. 
Recent studies suggested additional functions for HLA-F 
other than antigen peptide loading [82, 83]. Both HLA-E and 
HLA-F share a low genetic polymorphism (i.e. very few 
allelic forms are known, with respect to the highly 
polymorphic class Ia HLA molecules) and their primary 
structures are highly conserved in different species, as 
demonstrated in primates [84]. Interestingly, other MSC 
populations, as cardiac-derived ones, do express both HLA-
E and HLA-F molecules [76]. Another recent report by Chen 
and co-workers confirmed our original observations about 
the expression of all of three class Ib HLAs by WJ-MSC 
[44]. HLA-E expression has been also demonstrated in CL-
MSC and BM-MSC, but only after challenge with TNF 
alpha (see Table 1) [40]. One of the suggested effects due to 
MSC-expressed HLA-G is the stimulation of regulatory T 
cells (CD4+CD25+FoxP3+ Tregs). These T lymphocytes 
have been characterized as key suppressors of effector 
responses to alloantigens [48, 85]. Interestingly, the action 
mechanisms through which HLA-G may exert this function 
are almost two and distinct: the membrane-bound isoform is 
involved in immune modulation mediated by direct 
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intercellular contact, while the secreted isoform (known as 
HLA-G5) is shedded from the cellular membrane.  

 The current vision of immune modulation by MSC is 
based on the observations linking different pathways to the 
suppression of lymphocyte response. Diaz-Lagares and 
colleagues suggested that a functional interplay between NO 
production and HLA-G expression may be effective in 
promoting MSC-mediated immune tolerance via HLA-G 
nitration [86]. Tyrosine nitration is a reaction which is 
accomplished through specific enzymes, and favoured by 
increased NO in the extracellular space as demonstrated in 
different models [26,28,87,88]. Nitration makes HLA-G 
sensitive to metalloproteinase (MMP)-dependent shedding. 
Therefore, MMP-dependent shedding of the soluble form of 
HLA-G may drive a paracrine mechanism of further 
tolerance promotion without direct cell-cell contact [86]. 

 Other recent reports suggested that WJ-MSC do express 
also PGE2 (prostaglandin E2) and LIF (leukaemia inhibitory 
factor) [61,65]. Both of these molecules are able to modulate 
the proliferation of allogeneic lymphocytes in vitro, both in 
WJ-MSC and adipose tissue-derived ones.  

 More recently, Najar and co-workers demonstrated that 
both AT-MSC and WJ-MSC do express and activate the 
members of the CD200/CD200R pathway [68]. The 
CD200/CD200R axis has been reported to be important in 
regulating the immune responses. Engagement of CD200R 
by CD200 initiates an inhibitory pathway with immuno-
suppressive effects. The authors reported that between the 
tested MSC populations, WJ-MSCs did express CD200 in 
the greatest proportion. The concurrent expression of both 
molecules in T lymphocytes and the variations induced by 
inflammatory conditions on MSC expression levels, support 
the notion of the existence of bidirectional communications 

between MSC and T-lymphocytes, with potentially relevant 
outcomes in cellular therapy [68]. 
 Another molecule with immunomodulatory functions is 
CD271. This 399 aminoacids transmembrane protein is one 
of the members of the TNFR (tumor necrosis factor receptor) 
subfamily [89]. This molecule serves as receptor for 
neurotrophins, such as NGF (nerve growth factor). CD271 
expression was initially characterized in BM-MSC, and 
CD271+ cells were shown to possess immunomodulatory 
ability in vitro and in vivo [71]. In a very recent report, 
Margossian and co-workers reported the weak expression of 
CD271 molecule in fresh umbilical cords specimens [72]. 

4. INTERACTION WITH AN INFLAMMATORY 
CONTEXT AND IMMUNE MODULATION IN VIVO: 
THE EFFECTS OF MICROENVIRONMENTAL 
COMPLEXITY 

 A great amount of literature data strongly suggested the 
ability of MSC to modulate immune cells proliferation and 
activation in in vitro settings. These promising data were 
often challenged by contrasting reports regarding the 
generation of immune and memory responses by MSC when 
administered in vivo in both allogeneic and xenogeneic 
settings. As a general rule, literature reports of failure of 
MSC-mediated immune modulation may be linked either to 
the massive use of xenogenic models, which take in little 
account the relevant interspecies differences existing 
between immune systems, or to the use of scarcely 
characterized MSC populations [reviewed in 21]. 
 In addition, recent studies may provide positive and 
mechanicistically-relevant data to the notion of MSC-
mediated immune regulation [90]. First of all, the existence 
of an inflammatory-primed microenvironment in a number 
of diseases for which cellular therapy application has been 

Table 1. Comparison of Classical and Novel Immunoregulatory Molecules Expressed by Adult (BM-MSC and AT-MSC) and 
Perinatal (AM-MSC, CL-MSC, WJ-MSC) Stem Cells. n.a.: not Applicable 

Markers BM-MSC AT-MSC AM-MSC CL-MSC WJ-MSC References 

HLA-A,-B,-C + + + + + [14,16, 37-42]  

HLA-DR -/+ (*) - - - (*) - [14,16,39-42] 

HLA-E + (*) n.a. n.a. - (*) + [40,43-45] 

HLA-F n.a. n.a. n.a. n.a. + [44,45] 

HLA-G + + + - (*) + [16,40,46-49]  

B7-1 CD80 - - - - +/- [12,16,42,44,50,51] 

B7-2 CD86 - - - - - [12,16,38,42,50-52] 

B7-H1 (CD274) + n.a. n.a. n.a. + [53,54] 

B7-H3 (CD276) + + n.a. n.a. + [41,55,56]  

B7-H4 + n.a. n.a. n.a. - [56,57] 

PGE2 + + + n.a. + [58-61] 

LIF + + + n.a. + [62-65] 

CD200 + n.a. n.a. n.a. + [66-68] 

CD271 + + + n.a. + [69-72]  

(*): The authors reported a low baseline level of expression, which was strongly upregulated after exposure to IFN-γ. 
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hypothesized, has to be taken in account. In fact, recent data 
showed that even though the overall expression of 
immunomodulatory molecules on WJ-MSC is highly similar 
to BM-MSC, their induction, mediated by pro-inflammatory 
cytokines, might differ [91]. The case of HLA-DR is 
exemplificative: this class II MHC may be induced in BM-
MSC following IFN-! treatment. When parallel experiments 
were performed using WJ-MSC, no similar upregulation was 
reported [40,92]. In addition, further recent data also 
demonstrated that WJ-MSC are able to inhibit the secretion 
of cytokines by peripheral blood lymphocytes, as shown for 
IFN-! [93]. 
 Very recent data from an in vivo model of wound healing 
showed that WJ-MSC are able to ameliorate wound closure 
by the paracrine secretion of active factors, as demonstrated 
for TGF beta 1 and IL-10, which conversely share also 
potent immunomodulatory activities [94]. 
 In another recent report, inflammation and TLR (toll-like 
receptor) triggering were demonstrated to have scarce effects 
on WJ-MSC phenotype, and differentiation ability (see 
below, section 5) [95]. 
 Raicevic and co-workers, in a comparative report 
between MSC isolated from adipose tissue, bone marrow, 
and Wharton's jelly, demonstrated that the 
immunosuppressive potential of WJ-MSC on MLR (mixed 
lymphocyte reaction) was affected neither by inflammation 
nor by TLR triggering. This resistance was related to an 
overproduction of HGF (hepatocyte growth factor) by these 
cells [96]. 
 Ma and co-workers recently reported the in vitro and in 
vivo data on the use of WJ-MSC in immune 
thrombocytopenia (ITP) patients. In vitro co-culture of WJ-
MSC with PBMCs (peripheral blood mononuclear cells) 
from patients did exert a suppressive action on both 
proliferation of autoreactive lymphocytes and destruction of 
autologous platelets. The authors suggested that WJ-MSC 
action was achieved by decreasing the co-stimulatory 
molecules CD80, CD40L and FasL expression. In addition, 
researchers demonstrated that MSC administration caused a 
shift in the Th1/Th2/Treg cytokines profile in ITP patients 
[97]. 
 The current view on immunomodulation processes, 
derived from a number of recent observations, clearly shows 
that different biologic pathways, which are featured by MSC, 
contribute to the overall effect of immunomodulation. This is 
for example the case of MMP (matrix metalloproteinases) 
expression by MSC or in host tissues upon cellular therapy 
administration [98]. 
 Matrix metalloproteinases constitute a broad family of 
matrix degrading enzymes which have been further 
subdivided in subfamilies based mainly on substrate 
specificity. These zinc-binding, calcium dependent enzymes, 
are typically expressed by stromal cells in mature tissues 
[99,100], and may also be detected in body fluids in both 
healthy and diseased individuals [101, 102]. MMP secretion 
by mesenchymal cells (stromal fibroblasts) has been also 
linked to fibrosis amelioration in vivo [103].  
 Griffin et al recently showed that both upregulation of 
MMP activity and collagen invasion in ES (electrical 

stimulation)-challenged MSC could favor the process of 
wound healing in a mice model, with particular regard to 
bone fractures [104]. 
 Recent work by Kanematsu and co-workers showed that 
human decidua MSC did express several enzymes of the 
MMP family [105]. 
 Another recent report showed that CXCR4-
overexpressing MSC were able to better infiltrate infarct site 
in an in vivo model, and had beneficial effects on left 
ventricle remodeling, angiogenesis and function. The authors 
demonstrated that these effects were mainly due to the 
synthesis of MMP-9 by MSC [106]. 
 A very recent paper by Qiu et al., elucidated the 
molecular mechanism at the basis of MSC migration towards 
inflammation sites. The authors described complement 1q 
molecule as a key chemoattractant for MSC to lesion site, 
and the chemoinvasion properties of MSC were due in part 
to the enhanced expression of MMP-2 [107]. 
 The activity of MMP is also of key importance in 
differentiative processes: Studer and co-workers elucidated 
the roles of MMPs in hypertrophic cartilage growth, a 
process at the basis of bone elongation, and which may be 
taken in account when chondrogenic differentiation 
protocols are being performed using MSC [108]. It has been 
suggested that MMP inhibition may hamper chondrocyte-
derived or MSC-derived matrix deposition in cartilage 
matrix [109]. In a very recent in vivo report, the ability of 
producing MMP by human MSC has been linked to the 
recovery of patients with osteoarthritis (OA) [110]. 
 Yeung and colleagues investigated the mechanisms by 
which MSC could protect human islets from pro-
inflammatory cytokines. Authors reported that culture of 
MSC with transplanted islets prevented β-cell apoptosis after 
cytokine treatment. Hepatocyte growth factor, MMP-2 and 
MMP-9 were suggested as the secreted cytoprotective 
factors [111]. 
 Moreover, as reported above, another key mechanism in 
promoting MSC-based tolerance is the MMP-dependent 
shedding of the soluble form of HLA-G, driving a paracrine 
mechanism of long-distance tolerance promotion without 
direct cell-cell contact [86]. 

5. IMMUNOMODULATION AND DIFFERENTIATION: 
CAN WE GET THEM TOGETHER FOR CELLULAR 
THERAPY? 

 One of the bigger questions in regenerative medicine, and 
in general in the biology of stem cells and their progeny, is 
whether these cells, upon differentiation, should maintain the 
immunomodulatory features of the undifferentiated 
population. 
 Most reports on the hypoimmunogenicity of MSC are 
based on in vitro or in vivo experiments using 
undifferentiated cells. As discussed above, these experiments 
gave largely promising results. However, several issues 
emerged when in vivo approaches have been tried. 
Wharton’s jelly-derived MSC constitute a population of 
interest for their immune features: these cells derive from a 
naturally immune-privileged tissue, therefore it should be 
also expected that stem populations could maintain a 
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positional memory which may provide selective advantages 
to their progeny in terms of immune evasion also in an 
immunocompetent host. Therefore it is not surprising that, 
besides the above mentioned in vivo models using mainly 
BM-MSC, recent data on WJ-MSC further strengthened the 
concepts of safety and performance in the use of MSC in cell 
therapy. Very recently, a comparative study on the 
immunogenicity of human BM-MSC and UC-MSC, showed a 
faster rejection rate for BM-MSC. In addition, when cells were 
transplanted into immune deficient SCID mice, cell survival 
was longer for both cell populations investigated [40]. 
 In vitro data from our group recently demonstrated that 
WJ-MSC do express relevant immunomodulatory molecules 
both in their naïve and differentiated state, as demonstrated 
for osteogenic, adipogenic and hepatogenic differentiation 
protocols [56, 57]. 
 Another recent report by Raicevic and co-workers 
pointed out the potential usefulness of WJ-MSC in bone 
regeneration under inflammatory conditions. Even though 
the osteogenic differentiation ability of WJ-MSC was lower 
than that of BM-MSC or AT-MSC, the authors demonstrated 
that inflammation strongly upregulated the osteoblast-
differentiation of WJ-MSC, up to reaching the levels attained 
by BM-MSC. On these basis, the authors suggested that WJ-
MSC could constitute an alternative of BM-MSC for bone 
regenerative applications, since WJ can provide larger 
amounts of MSC which may be differentiated into 
osteoblasts in inflammatory settings [95]. 

6. CONCLUSIONS AND FUTURE PERSPECTIVES. 

 WJ-MSC represent a viable alternative to BM-MSC in 
cellular therapy. This is due to their key properties: 
differentiation capacity, hypoimmunogeniciy, immuno-
modulatory activity, tropism for inflammatory/lesion sites. 
The ease of sourcing and the isolation success from nearly 
100% of specimens also increase the interest towards these 
stem cells.  
 What may constitute a new and groundbreaking finding 
is that the usefulness of WJ-MSC may go further beyond 
their ability to generate mature cell types for organ 
repopulation following in vitro culture. In fact, these cells 
recently emerged as capable to stimulate in organ reparative 
processes by multiple mechanisms. First, WJ-MSC can 
secrete molecules and cytokines which can dampen local 
inflammatory processes. This may result in higher survival 
of local cells and progenitors, and may favor the self repair 
of tissues. In addition, secretion of matrix metalloproteinases 
may render these cells able to overcome fibrosis, due to the 
breakdown of excessive extracellular matrix deposited 
during the fibrotic process, and release of matrix-bound 
factors. In addition, MMPs may also mediate 
immunomodulatory processes, as shown for the shedding of 
HLA-G5 from the cellular membrane, thus enabling the 
creation of paracrine signaling cascades which can promote 
peripheral immune tolerance without the need of direct cell-
cell contact. 
 In addition, WJ-MSC can be banked in parallel to cord 
blood units. This will hopefully lead to an increase of cells 
available for both autologous and HLA-matched 
heterologous administration. Detailing the mechanicistic 

events which can lead to the immune privilege of WJ-MSC 
in vivo, with or without a parallel immune suppression, may 
help to define their value not only in tissue regeneration, but 
also in tissue repair and support of local host progenitors. 
 Once these key results will be achieved, it is our opinion 
that a new therapeutic weapon will be available to be used in 
the management of several diseases, with the additional 
advantage to be free of the ethical and safety issues which 
currently limit the sourcing and use of other progenitor 
populations. 
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