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Abstract: The very deep knowledge acquired on the genetics and molecular biology of herpes simplex virus (HSV), has 

allowed the development of potential replication-competent and replication-defective vectors for several applications in 

human healthcare. These include delivery and expression of human genes to cells of the nervous systems, selective 

destruction of cancer cells, prophylaxis against infection with HSV or other infectious diseases, and targeted infection to 

specific tissues or organs. Replication-defective recombinant vectors are non-toxic gene transfer tools that preserve most 

of the neurotropic features of wild type HSV-1, particularly the ability to express genes after having established latent 

infections, and are thus proficient candidates for therapeutic gene transfer settings in neurons. A replication-defective 

HSV vector for the treatment of pain has recently entered in phase 1 clinical trial. Replication-competent (oncolytic) 

vectors are becoming a suitable and powerful tool to eradicate brain tumours due to their ability to replicate and spread 

only within the tumour mass, and have reached phase II/III clinical trials in some cases. The progress in understanding the 

host immune response induced by the vector is also improving the use of HSV as a vaccine vector against both HSV 

infection and other pathogens. This review briefly summarizes the obstacle encountered in the delivery of HSV vectors 

and examines the various strategies developed or proposed to overcome such challenges. 
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THE HERPES SIMPLEX VIRUS LIFE CYCLE 

 Herpes simplex virus (HSV) is an enveloped, double-
stranded (ds) DNA virus [1]. The mature virion consists of 
different components: an external envelope containing about 
13 glycoproteins involved in different functions, among 
which the first steps of binding and entry into the host cell; 
an amorphous layer known as the tegument, containing some 
20 different proteins with structural and regulatory roles; and 
an icosadeltahedral capsid containing a toroidal dsDNA. The 
HSV-1 genome consists of 152 kb of linear, dsDNA 
arranged as long and short unique segments (UL and US) 
flanked by inverted repeated sequences (TRL/IRL and 
IRS/TRS, respectively) (Fig. 1). The repeated regions of the 
viral genome contain two immediate-early (IE) genes 
[infected cell protein (ICP) 4 and ICP0], a late (L) gene 
(ICP34.5) and the latency associated transcripts (LAT) that 
are each present in two copies. Thus, the repeated region 
located between the long and short segments of the genome 
(the joint repeat region) contains a single copy of each gene. 
HSV genome encodes approximately 90 genes that can be 
classified as essential or nonessential based on their 
requirement for virus replication in tissue culture. Essential 
genes are required for virus growth such that viral mutants 
lacking these genes can only establish a lytic infection if the 
missing genes are supplied in trans by an engineered cell 
line. Nonessential genes are often required for virus-host cell 
interactions, such as evasion of the host immune response 
and host cell shut-off which are important for growth during  
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infection in vivo, but are not needed for growth in tissue 
culture. 

 The virus life cycle begins with virus attachment to the 
host cell mediated by viral glycoproteins (Fig. 2). One mode 
of HSV-1 entry is by endocytosis [2] that appears to be 
unique because it is likely not mediated by formation of 
clathrin-coated pits or caveolae. The other mode of HSV 
entry is virion fusion at the plasma membrane, which is pH 
independent and requires participation from multiple viral 
glycoproteins (gB, gC, gD, gH, and gL) and cellular 
receptors. Entry via this mode is initiated by interaction of 
viral gC and/or gB with heparan sulfate (HS), followed by 
interaction of gD with one of its three receptors. These 
receptors include HVEM, a member of tumour necrosis 
factor receptor family; nectin-1 (CD111), a member of the 
IgG superfamily; nectin 2, and 3-O-sulfated heparin sulphate 
or 3-OS HS. Binding of gD to its receptor is essential for 
viral penetration, which ultimately results in deposition of 
viral DNA for replication in the nucleus. It has been recently 
shown that paired immunoglobulin (Ig) like type 2 receptor 

 (PILR ) binds to gB and functions as an entry receptor 
during HSV-1 infection in concert with an interaction 
between gD and gD receptors [3]. Entry of HSV into cells 
involves interactions between the viral receptor-binding 
protein gD and the gD receptors. When gD binds to its 
receptors, there are conformational changes in gD which 
apparently activate gB and gH/gL, so that these 
glycoproteins promote fusion involving the virion envelope 
and cellular membranes [4-6]. Other factors that may affect 
viral entry and/or intracellular signalling include: (1) the 
capability of gB to rapidly mobilize lipid rafts [7, 8], and (2) 
the release of plasma membrane Ca

2+
 stores and the increase 

in intracellular Ca
2+

 triggered by the engagement of nectin 
by gD and of integrin v subunits by gH, respectively. 
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 After internalization, de-enveloped HSV particles travel 
to nucleus where the viral genes are expressed in a tightly 
regulated temporal sequence and consist of immediate early 
(IE), early (E), and late (L) gene functions. The IE gene 
products (ICP0, ICP4, ICP22, ICP27, and ICP47) induce 
expression of E genes that encode enzymes necessary for 
viral DNA replication, and L genes that express structural 
proteins that are assembled into new viral particles into the 
nucleus. The envelope is acquired by budding through the 
nuclear membrane with further processing in the Golgi 
apparatus. The virus replication cycle leads to rapid cell 
death and release of new viral particles during cell lysis. 
HSV-1 is a neurotropic virus. After initial lytic replication in 
epithelial cells of the primary lesion, the viral progenies 
enter sensory neurons whose axon terminals innervate the 
affected area. The nucleocapsid and tegument are transported 
retrogradely along axons from the site of entry to the 
neuronal soma, where viral DNA and VP16 enter the 
nucleus. At this point, the virus may either enter the latent 
state or initiate lytic replication. During latent infection, the 
viral genome persists as a stable episomal element, without 
detectable expression of IE, E or L gene products. Only a set 
of non-translated RNA species, known as the latency-
associated transcripts (LATs), are synthesized during 
latency. In a fraction of neurons harbouring latent HSV-1, 
the virus is periodically reactivated. Cascade expression of 
the viral IE, E, and L genes resumes, resulting in the 
production of mature virions. Infectious virus particles are 
transported to the peripheral nerve terminals by anterograde 
axonal transport pathway, released, and infect cells at or near 
the site of initial infection. 

 The anterograde and retrograde transport occur via 
interaction of capsid and/or tegument components and viral 

glycoproteins with microtubule-dependent molecular motor 
dynein/dynactin complex and kinesin [9]. The latent state is 
a characteristic of the equilibrium that is established between 
HSV infection and peripheral nervous system (PNS), 
whereas spread to the central nervous system (CNS), either 
from the PNS following reactivation from latency or as a 
new infection via the olfactory route [10], can end either in 
latency or productive replication. This last is one of the 
causes of rare episodes of devastating encephalitis. To infect 
the CNS, HSV must deal not only with the unique aspects of 
neuroanatomy and cell biology, but it also has to evade the 
compartmentalized immune response within the CNS to 
achieve viral persistence. This life style led to the evolution 
of elaborate control mechanisms that coordinately regulate 
HSV-1 gene expression during latent and productive 
infection [1]. 

DESIGN OF HSV VECTORS 

 Different aspects of HSV biology render this virus 
attractive for designing of gene therapy vectors: 

• HSV displays a broad host cell range and its cellular 
receptors, HS, PILR  [3, 11-13], HVEM, and nectin-
1 and 2, are widely expressed on the cell surface of 
numerous cell types. 

• HSV is highly infectious. 

• Non-dividing cells may be efficiently infected and 
transduced by HSV. 

• Almost half of the about 90 known viral genes are 
nonessential for growth in tissue culture and then may 
be deleted to create genomic space for exogenous 
transgenes and to delete functions essential for viral 
virulence and toxicity in vivo. Deletion of some 

 

Fig. (1). Map of HSV-1 genome and schematic representation of replication-competent and defective vectors. A schematic representation of 

the position of the genes encoding proteins involved in virus replication, regulation, in virus formation and assembly, and in virion structural 

proteins is depicted. Genes that are modified or deleted to achieve viral attenuation are indicated. 
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nonessential genes (Fig. 1) results in viruses that 
retain the ability to replicate in vitro, but are 
compromised in vivo, in a context dependent manner 
[14, 15]. 

• Recombinant HSV vectors can be easily produced to 
high titer and purity without wild type (wt) 
contaminants. 

• The latent behaviour of the virus may be exploited for 
stable long-term expression of therapeutic transgenes 
in neurons. 

• HSV possesses the interesting features to be 
transported retrogradely in neurons and transferred 
across synapses and it is possible to take advantage of 
this virus characteristic to trace neuronal pathways 
[16]. 

 Three types of HSV-1 vectors are currently in use: 
amplicons, replication-defective and replication-competent 
vectors. The amplicons are plasmid-derived vectors 
engineered to contain both the origin of HSV DNA 
replication (ori) and HSV cleavage–packaging recognition 
sequences (pac). When amplicons are transfected into 
mammalian cells with HSV helper functions, they are 
replicated, form head-to-tail linked concatamers and are then 

packaged into viral particles. There are two major methods 
currently used for producing amplicon particles, one based 
on infection with defective helper HSVs and the other based 
on transfection of HSV-1 genes, such as a set of pac-deleted 
overlapping cosmids or a pac-deleted and ICP27-deleted 
BAC-HSV-1 [17]. The main advantages of these vectors are 
that they can accommodate large fragments of foreign DNA 
(theoretically up to 152 kb), including multiple copies of the 
transgene (up to 15), and are non-toxic. 

 Replication-defective vectors are made of mutant viruses 
with deletions in one or more genes essential for the lytic 
cycle, whereas replication-competent vectors are composed 
of attenuated viruses where genes that are not essential for 
replication in cultured cells in vitro are either mutated or 
deleted (Fig. 1) [14, 15]. 

 This review focuses on replication-defective and 
replication-competent HSV-based vectors. 

 Several genes involved in HSV replication, virulence and 
immune evasion, non-essential for viral life cycle in vivo, 
have been identified. These genes are usually involved in 
multiple interactions with cellular proteins, which optimize 
the ability of the virus to grow within cells. Understanding 
such interactions has permitted the deletion/modification of 
these genes, alone or in combination, to create HSV mutants 

 

Fig. (2). Mechanism of HSV-1 entry into the host cell. The initial contact of the virus with the cell is the binding to the heparan sulfate (HS) 

proteoglycans on the cell surface, mediated by gC and gB, with consequent binding of gB to the PILRalpha receptor. Subsequently, gD binds 

to one of its cellular receptors, including HVEM, a member of the TNF-receptor family; nectin-1 or 2, two related members of the 

immunoglobulin superfamily; or sites generated in HS by the action of specific 3-O sulfotransferases. This last binding triggers the fusion 

between the cell membrane and the viral envelope, which requires the action of gB, gD and gH-gL, with subsequent release of the viral 

nucleocapsid and tegument into the cytoplasm. Gene therapy strategies aimed to target viral infection to particular cells can be obtained by 

modifying the first steps of the virus life cycle, that is, adsorption and penetration. The three main glycoproteins involved in these two phases 

are gB, gC and gD and their ORF backbone has been engineered to redirect infection to the target cell by deleting regions that affect binding 

to the main HSV receptors and/or inserting ligands that favour interaction with the new receptors. Envelope-HSV glycoproteins may also 

interact with TLRs on the cell surface, triggering signals that stimulate innate immunity. 
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with a reduced ability to replicate in normal quiescent cells, 
but that can replicate in tumour or dividing cells. These 
attenuated viruses harbour further modifications so they also 
serve as therapeutic gene delivery vehicles [14, 18]. 

 Which gene should be deleted in a live attenuated HSV 
vector? Many HSV-1 genes that are non-essential in culture 
alter virulence in animal models. Fewer HSV-2 genes have 
been studied, and there are almost certainly type-specific 
effects. Among these genes, the ones encoding thymidine 
kinase (TK), ribonucleotide reductase (RR), the virion-host 
shut off (vhs) and the ICP34.5 proteins have been 
extensively studied [1]. TK is involved in optimizing nucleic 
acid metabolism for virus growth and is necessary for 
efficient replication in neurons. RR is necessary for the 
conversion of rNTPs to dNTPs in neurons, which are 
otherwise lacking but necessary for the synthesis of new 
viral DNA during virus replication. The vhs function of HSV 
causes rapid destabilization of host RNAs and translational 
arrest. Vhs also destabilizes viral messages, resulting in 
regulation of immediate-early and early genes during lytic 
infection. The ICP34.5 neurovirulence factor has been found 
to be essential for HSV pathogenicity. It appears to provide 
multiple functions to the virus life cycle, one of which is to 
block the arrest in translation, which usually occurs in virus-
infected cells as an antiviral response preventing virus 
replication. This effect is mediated through the cellular PKR 
kinase, which phosphorylates the translation initiation factor 
eIF2 , thereby stopping translation. ICP34.5 recruits protein 
phosphatase 1 , to dephosphorylate eIF2 , allowing protein 
translation and continued virus replication. Tumour cells 
often display an impaired PKR pathway and/or elevated 
levels of eIF2 , that allow replication of ICP34.5-deleted 
viruses. Secondly, ICP34.5 takes part in blocking the stress 
response of endoplasmic reticulum (ER) via phosphorilation 
of ER resident kinase PERK [19]. In addition, ICP34.5 
seems to be involved in the egress of the virus hence 
influencing the replication efficiency [20]. Moreover, it has 
been recently demonstrated that ICP34.5 is involved in the 
inhibition of autophagy, another defence mechanism of 
infected cells, through the inhibition of Beclin 1, a critical 
factor involved in this pathway [21]. 

 When constructing a recombinant virus for use as an 
attenuated vaccine or vector, it is possible to over-attenuate 
the virus, which could possibly negate its value. To 
minimize this possibility, a gradation of additional deletions 
has to be introduced and evaluated for eventual over-
attenuation. 

 HSV vectors have been tested as gene therapy vectors to 
deliver transgenes to the nervous system, as live viral 
vaccines, and as oncolytic viruses. 

HSV-BASED VECTORS FOR GENE THERAPY OF 
THE NERVOUS SYSTEM 

 HSV-1 is a neurotropic virus that displays several 
important adaptations to the nervous system, and each of 
them can be rationally exploited in the design of gene 
therapy vectors with regard to neurological applications [22, 
23]. HSV-1 contains genes that control neuroinvasiveness 
and neurovirulence; this virus can move both in the 
retrograde and anterograde directions and disseminates 
transynaptically from neuron to neuron [9]. The ability to be 

retrogradely transported can be useful in studying the 
physiopathology of motor and sensory neurons, because 
vectors can be introduced into muscle or into the skin, and 
produce expression of transgenes in the cell bodies of 
ventral-horn or sensory-ganglion neurons [24]. The virus 
envelope contains several glycoproteins that mediate entry to 
neurons due to the recognition of specific receptors (nectins) 
[25]. In many sensory neurons, HSV-1 can establish a latent 
infection, a situation in which the viral genome persists as a 
stable chromatinized episomal element and in which all lytic 
genes are silenced [26, 27]. 

 Many studies indicate that most of these neurotropic 
features are retained in defective and attenuated HSV-1 
vectors, including the abilities to be efficiently transported 
along axons in both directions, and to establish latent 
infections with prolonged gene expression, both in sensitive 
and in motor neurons. 

 The main replication-defective vectors used so far for 
experimental gene therapy of neurological disorders in 
central and peripheral nervous system are reported in Table 
1. 

Replication-Defective Vectors 

 Different types of defective recombinant vectors have 
been developed. The problems related to HSV-1 vector 
design fall into the following general categories: (1) 
elimination of the lytic viral gene expression and of the 
innate and immune responses (toxicity); (2) engineering of 
promoter systems to achieve appropriate, lasting transgene 
expression; (3) identification of strategies to target heterol-
ogous gene expression to specific neurons; and (4) 
simultaneous expression of multiple genes. In recent years, 
novel technologies have allowed researchers to get deeper 
into these problems. To date, several replication-defective 
vectors have been constructed in which the IE genes, 
expressing ICP 0, 4, 22, 27, and 47, have been deleted in 
various combinations [28-30]. Non-replicative HSV vectors 
have been tested in many different gene therapy animal 
models of various neuropathies [31-33], such as epilepsy and 
multiple sclerosis (MS) [34, 35], Alzheimer’s disease (AD) 
[36], Parkinson’s disease [37], chronic pain [38-40] or 
lysosomal storage disorders with neurological involvement 
[41, 42]. 

1. Epilepsy 

 The concept is if it is possible to repair damage by 
providing appropriate cues to the endogenous neural 
staminal cells (NSCs) and progenitors; cues that are not 
available or insufficient in the injured tissue. The therapeutic 
applicability of this system was proved in a model of 
neuronal loss, the hippocampal sclerosis induced by 
prolonged generalized seizures. In this model, an 
epileptogenic insult (the episode of prolonged seizures) 
causes a damage pattern in the hippocampus that closely 
mimics the one observed in many patients affected by the 
most common adult epileptic syndrome [43]. In time, 
animals begin to display spontaneously recurrent seizures, 
i.e. they become truly epileptic, again reproducing the 
situation observed in patients [44, 45]. Paradiso and co-
workers demonstrated that recombinant HSV-1-based 
vectors expressing a combination of two NTFs, fibroblast 
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growth factor-2 (FGF-2) and brain-derived neurotrophic 
factor (BDNF), increased survival and proliferation of 
freshly isolated neural progenitors and favoured their 
differentiation into neurons in vitro. These vectors were 
tested in vivo, in the pilocarpine model of status epilepticus-
induced neurodegeneration and epileptogenesis. When 
injected in the hippocampus 3 days after status epilepticus, 
FGF-2/BDNF expressing vectors partially repaired neuronal 
damage and prevented the occurrence of spontaneous 
seizures. Thus, viral vector-mediated supplementation of 
FGF-2 and BDNF promotes neurogenesis and repair of an 
existing neuronal damage and these effects are disease-
modifying in epilepsies associated with hippocampal 
sclerosis, demonstrating the feasibility of use of HSV vectors 
expressing NTFs to provide recovery from damage and to 
prevent the development of epilepsy [35]. 

2. Multiple Sclerosis 

 One of the most important human demyelinating diseases 
of unknown aetiology is multiple sclerosis (MS), an 
autoimmune-mediated inflammatory disease of the CNS 
with inflammatory infiltrates containing auto-reactive T cells 
and a multitude of pathogenic nonspecific lymphocytes that 
might benefit from anti-inflammatory therapies [46, 47]. 
Furlan and colleagues have used viral vectors expressing 
immune-modulators to treat experimental autoimmune 
encephalomyelitis (EAE), which is a mouse model for MS, 
showing the therapeutic efficacy of non-replicating HSV-1-
derived vectors expressing anti-inflammatory genes, such as 
cytokine interleukin-4 (IL-4) [48] or cytokine interleukin-1 
receptor antagonist (IL-1ra) [34, 49]. They have 
demonstrated that, after disease onset, CNS administration of 
HSV-1 defective recombinant vectors expressing IL-4 or IL-
1ra genes into Biozzi AB/H mice stopped the progression of 
relapsing–remitting form of EAE. The treated mice showed a 
shorter duration of the first EAE attack, a longer inter-
relapse period, and a reduction in the severity and duration 
of the relapse. The results obtained by this group have 
revealed an in situ modulation of the cytokine/chemokine 
circuits, demonstrating that the local administration of anti-
inflammatory cytokines by viral vectors can be effective in 
the preventive treatment of chronic EAE [34]. 

3. Alzheimer Disease 

 Accumulation of insoluble aggregates of amyloid-  
peptide (A ), a cleavage product of amyloid precursor 
protein (APP), is thought to be central to the pathogenesis of 
Alzheimer’s disease (AD). Consequently, down-regulation 
of APP, or enhanced clearance of A , represent possible 
therapeutic strategies for AD. Hong CS and colleagues [36] 
have generated replication-defective HSV vectors that inhibit 
A  accumulation, both in vitro and in vivo. In cell culture, 
HSV vectors expressing either (i) short hairpin RNA 
(siRNA) directed to the APP transcript (HSV-APP/shRNA), 
or (ii) neprilysin, an endopeptidase that degrades A  (HSV-
neprilysin), substantially inhibited accumulation of A . To 
determine whether these vectors showed similar activity in 
vivo, it was developed a novel mouse model, in which 
overexpression of a mutant form of APP in the hippocampus, 
using a lentiviral vector (LV-APPSw), resulted in rapid A  
accumulation. Co-inoculation of LV-APPSw with each of 
the HSV vectors showed that either HSV-APP/shRNA or 

HSV-neprilysin inhibited A  accumulation in this model, 
whereas an HSV control vector did not. These studies 
demonstrate the utility of HSV vectors for reducing A  
accumulation in the brain, thus providing useful tools to 
clarify the role of A  in AD that may facilitate the 
development of novel therapies for this important disease. 

4. Focal Diseases 

 Some brain diseases that are amenable to gene therapy 
are localized to particular region of the brain; example of 
these type of disorders include Parkinson’s disease. Using a 
replication-defective HSV vector expressing either glial cell 
derived neurotrophic factor (GDNF) or the antiapoptotic 
peptide bcl-2, it has been shown that direct inoculation of the 
HSV vector into the substantia nigra can be used to protect 
rodents from 6-hydroxidopamine-induced degeneration of 
dopaminergic neurons [50, 51]. Using latency associated 
promoter (LAP2) to drive GDNF expression in the 
replication-defective vector prolonged biologically active 
transgene expression, over the course of many months, has 
been obtained [52]. In another study, it has been investigated 
the neuroprotective effect of erythropoietin (EPO) in a 
rodent model of Parkinson disease [37]. The effects of 
vector-produced EPO were similar in magnitude to the 
effects of vector-mediated GDNF in the same model. These 
results demonstrate that vector-mediated EPO production 
may be used to reverse dopaminergic neurodegeneration in 
the face of continued toxic insult. 

5. Diabetes 

 Neuropathy is a common, untreatable complication of 
both type 1 and type 2 diabetes. In animal models peptide 
neurotrophic factors can be used to protect against the 
development of neuropathy, but the combination of short 
half-life and off-target effects of these potent pleiotropic 
peptides has limited translation to human therapy. Nerve 
growth factor (NGF) is probably the most extensively 
studied trophic factor in diabetic neuropathy. NGF levels are 
reduced in diabetic nerve, and though NGF receptor 
expression is normal in streptozotocin (STZ)-induced 
diabetic nerve there is a marked decrease in receptor 
saturation and concomitant reduced retrograde axonal 
transport of NGF. Other trophic factors that have been 
shown to have a protective effect in diabetic neuropathy 
models in rodent include: brain derived neurotrophic factor 
(BDNF), neurotrophin 3 (NT-3); ciliary neurotrophic factor 
(CNF), vascular endothelial growth factor (VEGF), IL-6, 
glial cell derived neurotrophic factor (GDNF), fibroblast 
growth factor (FGF) and erythropoietin. A detailed review 
on the therapeutic effects of the above receptor factors has 
been published [53]. Results suggesting a protective effect of 
NGF in patients with diabetic neuropathy were obtained in a 
phase 2 human trial but the following phase 3 prospective 
randomized control trial of efficacy NGF was found to be 
ineffective in preventing the progression of neuropathy [54]. 
Number of potential pitfalls can be identified that may have 
contributed to the failure of NGF treatment in this trial. The 
most obvious is the dose-related effect and that the treatment 
needs to be effective for a prolonged period of time. 

 Gene transfer is a promising strategy that might 
circumvent these limitations [55]. Replication-defective 
HSV vectors have been tested in several different models of 
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neuropathy leading up to studies in diabetes [56-61]. In an 
experimental model of type 1 diabetes in STZ mice, 
subcutaneous inoculation of replication-defective HSV 
expressing VEGF was able to prevent the reduction in foot 
sensory nerve amplitude characteristic of diabetes [58]. 
Moreover, in a model of diabetic cystopathy, HSV vector-
mediated NGF gene therapy has been proved useful to 
restore decreased NGF expression in the bladder and bladder 
afferent pathways, thereby improving hypoactive bladder 
function in diabetes [62]. In a further study aimed to 
determine whether an HSV latency promoter can prolong 
expression of neurotrophin 3 (NT-3), it has been shown that 
the continuous production of NT-3 by Lap2-driven long-
term expression of the transgene from an HSV vector 
protects against progression of diabetic neuropathy in mice 
[31]. 

6. Chronic Pain 

 Over the past several years, studies of the mechanisms 
that are involved in the development of chronic pain have 
created novel information that can lead to identify multiple 
points of intervention to treat this pathological condition. On 
the basis of this knowledge, HSV-based gene therapy 
approaches have been developed to locally express products 
that block pain transmission or reverse the chronic pain state 
[40, 63-66]. Preclinical studies on pain animal models have 
demonstrated in vivo the capacity of these vectors to 
effectively transfer genes into the dorsal root ganglia (DRG) 
neurons following direct pancreatic inoculation or 
subcutaneous inoculation to efficiently express and release 
inhibitory neurotransmitters or anti-inflammatory peptides 
that can be used to modulate pain-related behaviours and 
provide a therapeutic effect in models of poly-neuropathy 
and chronic regional pain [40, 67, 68]. Opioid receptors are 
found presynaptically on the terminals of primary 
nociceptive afferents in the spinal cord, and post synaptically 
on second-order neurons in the dorsal horn. Activation of 
receptors, naturally by endogenous ligands enkephalin or 
endomorphin, or therapeutically by opiate drugs such as 
morphine, inhibits pain-related neurotransmission at the 
spinal level. The first vectors to be used in models of pain 
were deleted for accessory viral functions (e.g. thymidine 
kinase, tk). Recombinant HSV defective in tk can be 
propagated in culture and will replicate in skin, but are 
unable to replicate in the DRG and are thus forced into a 
pseudo-latent state. The efficacy of HSV-mediated gene 
transfer of enkephalin has been tested in several different 
models of pain in rodents [69, 70]. Expression of enkephalin 
from TK-negative vectors did not only reduce pain-related 
behaviours, but also prevented cartilagine and bone 
distruction in the inflamed joint. Similar effect were 
subsequentely demonstrated using a nonreplicating HSV 
vector deleted for both copies of the essential HSV IE gene 
ICP4 [71]. The observations regarding reinoculation of the 
vector, which have been repeated in several different model 
of pain and with different transgene products, indicate the 
absence of any significant immune response to vector 
inoculation in rodent. Studies of the enkephalin-expressing 
HSV vectors have been extended to primates [72] and 
provide proof-of-principle evidence that HSV vector-
mediated delivery of enkephalin can provide an analgesic 
effect and set the stage for a human trial to treat chronic pain 

using HSV vector-expressing enkephalin. The clinical-grade 
replication-defective ICP4 and ICP27 deleted vector 
engineered to express preproenkephalin was termed NP2. 
This vector entered in phase 1 clinical trial, enrolling patients 
with cancer-associated pain, and based on the predefined 
parameters of the toxicology study was well tolerated with 
no significant toxicity [39]. 

 Animal pancreatitis models have been used to test 
innovative preclinical, site-specific gene therapeutic 
interventions [65, 66]. The efficacy of pre- and post-
treatment with a replication-defective HSV-1 vector 
construct encoding human preproenkephalin gene (HSV-
Enk) to bring overexpressed opioids directly to pancreatic 
tissue was tested. Reduced pain-related behaviours, 
inflammatory and cellular activation responses in rats with 
acute and chronic pancreatitis were demonstrated after direct 
injection of the viral vector into the pancreas by laparatomy. 
As an important safety issue, in this experimental model 
there was no evidence of spread of HSV-1 centrally or 
peripherally other than into the appropriate level DRG. 
HSV-1 vectors that express glutamic acid decarboxylase 
(GAD) have been shown to be more effective than the opioid 
peptide in neuropathic pain [67, 68]. Defective HSV-1-
derived vectors expressing anti-inflammatory cytokines, 
such as IL-4 or IL-10 [39, 73], have been deeply studied to 
examine the involvement of cytokines in the development of 
inflammatory pain. Mata and colleagues have demonstrated, 
in a rat model of inflammatory pain, that expression of IL-10 
by a HSV-1 vector in DRG prevents activation of p38 
mitogen-activated protein kynase (p38 MAPK) and 
expression of full-length membrane-spanning tumour 
necrosis factor-  (mTNF ) in dorsal horn and spinal cord, 
suggesting the involvement of TNF  in the development of 
inflammatory and neuropathic pain [55, 74]. Plans for an 
efficacy trial with an opioid producing vector in 
inflammatory pain and with a GAD producing vector in 
diabetic neurophatic pain are outlined. 

 Recently, it has been shown silencing in DRG neurons in 
vivo by vector-mediated delivery of small interfering RNA 
(shRNA). This study support the utility of HSV vectors for 
gene silencing in peripheral neurons and the potential 
application of this technology to the study of nociceptive 
processes and in pain gene target validation studies [64]. 

7. Lysosomal Storage Diseases 

 The lysosomal storage diseases (LSDs) are caused by 
genetic defects in lysosomal enzymes that result in the 
accumulation of substrates in the lysosomes. Over 50 LSDs 
exist and the group of disease has a collective occurrence of 
about one in 7,000 [75]. Therapy of lysosomal storage 
disorders with neurological involvement, such as Tay-Sachs 
(TS) disease, requires active hexosaminidase (Hex) A 
production in the CNS and an efficient therapeutic approach 
that can act faster than human disease progression. Several 
therapeutic approaches have been developed that allow to 
restore the enzymatic activity in many key tissues (kidney, 
liver, spleen, etc.). However, the reduction of the GM2 
ganglioside deposits in the CNS is difficult to achieve since 
CNS represents a privileged environment, separated from the 
blood system by the blood-brain barrier (BBB) that is an 
obstacle to therapy. Martino S. and colleagues [42] 
combined the efficacy of a non-replicating HSV-1 vector 
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encoding for the Hex A alpha-subunit (HSV-T0alphaHex) 
and the anatomic structure of the brain internal capsule to 
distribute the missing enzyme optimally. With this gene 
transfer strategy, for the first time, it was possible to re-
establish the Hex A activity and totally remove the GM2 
ganglioside storage in both injected and controlateral 
hemispheres, in the cerebellum and spinal cord of TS animal 
model in the span of one month’s treatment. In this study, no 
adverse effects were observed due to the viral vector, 
injection site or gene expression and it has been 
hypothesized that the same approach could be applied to 
similar diseases involving an enzyme defect [42]. 

Replication-Competent or -Attenuated Vectors 

 Replication-competent HSV vectors have been used 
mainly as oncolytic therapeutic agents. However, some 
studies have been conducted on CNS disorders, such as 
lysosomal disorder, multiple sclerosis or acute injury. 

1. Lysosomal Disorder 

 Berges B.K. and colleagues [41] have used HSV1716 
attenuated vector, an ICP34.5 null mutant, to treat 
Mucopolysaccharidosis (MPS) VII. MPS VII is caused by a 
gene deficiency in the lysosomal enzyme -glucoronidase 
(GUSB) with consequent accumulation of glycosamino-
glycans (GAGs) affecting a number of organ systems. The 
investigators have demonstrated the capacity of HSV1716 
virus expressing GUSB driven by the latency-associated 
transcript promoter (HSV-1716-LAT-GUSB virus) to correct 
the lysosomal storage in the adult MPS VII mouse model 
following intracranial injection. The authors have shown that 
this neuroattenuated vector was able to establish latency and 
to express GUSB at a distance from the site of injection and 
the correction of the lysosomal storage was demonstrated in 
several brain regions. This result was the consequence of the 
ability of neuroattenuated vectors to traverse at least one 
neuronal synapse and achieve gene expression in a 
secondary neuron followed by the secretory properties of 
GUSB that can cross-correct a larger brain area. 

2. Multiple Sclerosis 

 Two neuroattenuated, ICP4-negative HSV vectors 
expressing IL-4 or IL-10 have been used as gene therapy 
approach in the EAE animal model for human MS [76]. The 
results of this study demonstrate that local expression of IL-4 
from a replication-competent HSV vector precludes sign of 
EAE, whereas local expression of IL-10 did not have the 
disease-abolishing effect as did the expression of IL-4, 
although IL-10 has been shown to be connected to the 
recovery phase of disease development of EAE. These 
results confirm the different roles of different Th2-type 
cytokines expressed during the recovery phase of EAE. 

3. Ischemic Brain Injury 

 The development of therapeutic strategies to attenuate the 
neurological symptoms of acute injury is the subject of 
major research interest. However, effective treatments 
remain elusive, due at least in part, to the complex cell-to-
cell interactions that regulate neuron cell life/death decisions. 
Therefore, multiple-target strategies to rescue neurons, 
including those that surround the treated ones, are 
particularly desirable. At this regard, it has been recently 

reported that neurons surviving apoptosis through expression 
of HSV-2 ICP10PK gene (containing a deletion in the 
protein kinase -PK- domain of the ICP10 gene), delivered by 
the replication attenuated vector RR, release increased 
levels of VEGF and FKN that protect uninfected neurons 
from apoptosis both through neuron-neuron and bidirectional 
neuron-microglia communications [77]. The latter involves 
increased release of IL-10 and decreased release of TNF-  
by the FKN-treated microglia. Further to these 
considerations, it has been suggested that RR delivered 
ICP10PK is a multiple-targeted strategy to rescue neurons. It 
has the distinct advantage that in addition to protecting the 
infected neurons, it modulates them to release 
neuroprotective soluble factors in a balanced proportion such 
as to create a self-propagating cycle of neuronal inputs and 
release of chemical mediators that inhibit the progression of 
acute and chronic neurodegeneration through protection of 
uninfected neurons. 

Concluding Remarks 

 As described above, a number of different HSV-1 vectors 
for specific gene therapy applications in CNS and PNS have 
been developed so far and have been studied using different 
routes of inoculation to efficiently deliver genes into the 
CNS and PNS in both small (mice) and large (non-human 
primates) animals, specially for neurodegenerative diseases 
that involve large areas of the CNS [78, 79]. Recent 
advances and current applications of existing vectors are still 
focused in improving the properties of these vectors, in 
particular in modulating the intensity and time-course of 
transgene expression [52, 80]. Long-term gene expression is 
still difficult to achieve, although some success has been 
obtained in the PNS with the HSV-1 latency-active promoter 
2 (LAP2) [31, 52]. Other recent studies have focused in 
improving target expression to specific neuronal populations 
[81] and, since there is considerably neuronal heterogeneity 
in both the PNS and CNS, it would be naive to presume that 
the behaviour of viral vectors will be the same for all 
neuronal populations in different regions of the nervous 
system. Because of this intrinsic complexity, it is more 
feasible that neural targeting may be achieved through the 
use of specific promoters to drive expression of the 
therapeutic gene, such as promoters of genes encoding 
neuropeptides or enzymes involved in the synthesis of 
neurotransmitters, which are attractive candidates for cell 
targeting because many types of neurons are defined by their 
neurotransmitters [82, 83]. 

 Neuron proliferation or regeneration would be important 
in the treatment of diseases associated to neurodegeneration 
(epilepsy, stroke, ischemic injury, spinal cord injury) [35, 
84]. Alterations in NTF expression patterns in different 
physiopathological situations, as well as effects of NTF in 
the adult brain (e.g. axonal sprouting induction and 
neuroprotection), suggest their involvement in neuronal 
plasticity [85]. Previous observations demonstrate that 
synergies occur between NTFs and that it is possible to 
manipulate neural stem cells (NSC) and to obtain neural 
progenitor proliferation, differentiation, and migration, by 
using appropriate NTF combinations [86, 87]. The HSV-1 
genome has the advantage of allowing the insertion of large 
amounts of exogenous DNA, such as multiple distinct 
transgene expression cassettes, therefore allowing to test 
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whether treatment with multiple NTFs can significantly 
increase neuronal survival in comparison with the delivery of 
single factors. 

HSV-BASED VECTORS FOR VACCINATION 

 Many of the HSV based vectors have been used in gene 
therapy studies and some of them as experimental vaccines 
against HSV-1 infection [89-91]. However, studies related to 
the evaluation of the potential of these vectors, as foreign 
gene or protein delivery systems for immunological studies 
are very limited. The use of HSV vectors requires the 
development of mutated viruses that are genetically stable, 
incapable of replicating in the CNS and of spreading in 
immunocompromised individuals, not transmissible from 
immunized individual by contacts and, at the same time, 
capable of inducing protective immunity against the disease. 
The main HSV vectors used for vaccination are summarized 
in Table 2. 

 Recent major breakthroughs in the field of HSV-1 
technology authorize and support the use of HSV-1 as 
vaccine vectors for the delivery of foreign antigens [91-95]. 
In particular, HSV vectors show several advantages for 
prophylaxis against viral infections. They have been shown: 
i) to elicit strong and durable immune responses by various 
routes of inoculation [96, 97]; ii) the viral DNA persists 
inside the host’s cell nucleus as an episomal element, thus 
eliminating the safety concerns deriving from the random 
integration of the viral genome into the host’s DNA; iii) they 
carry the tk gene, encoding the viral thymidine kinase, that, 
in case of undesired effects, can be used, in combination 
with specific antiviral drugs, to kill the virus-harbouring 
cells. 

 The efficacy of all of these vectors might potentially be 
affected by the pre-existing immunity to viral antigens in 
host. The effect of pre-existing immunity on HSV-1 vectors 
remains controversial, with some studies showing strong 

immune response in the face of anti-HSV-1 immunity [97, 
98] while another study showed a reduction in the immune 
response to a transgene, with the intensity of the reduction 
depending on the route of inoculation. 

 Moreover, HSV encodes multiple proteins that allow the 
virus to inhibit an effective host immune response. To this 
purpose, to obtain an effective immunity it would be 
required the manipulation of the vaccine candidate strain to 
remove its ability to suppress, in particular, dendritic cell 
(DC) activation. 

Replication-Defective Vectors 

 Until recently, it was believed that, to be effective, viral 
vaccines must consist of a live, replication-competent virus 
or a large dose of inactivated virus. Replication of live virus 
was believed to be essential to provide sufficient immunogen 
to induce a strong immune response. However, several non-
replicating vaccines, including replication-incompetent HSV, 
have been shown to induce an immune response [95, 99]. 
These HSV mutants show a reduced cytotoxicity, due to 
their inability to replicate and to spread in the host, but 
maintain the capability to infect a wide range of tissues and 
host species. 

 HSV replication-defective viruses with mutations in 
essential genes that fail to form progeny virions and disabled 
infection single cycle (DISC) viruses with mutations in 
structural protein genes that form uninfectious, progeny 
virions

 
have been used as vaccines against HSV infections 

and as vaccine vectors [100-102]. 

 It has been shown that the HSV-2 double mutant dl5-29, 
deleted in the essential UL5 and UL29 genes, and its 
derivative dl5-29-41L, deleted also in UL41 gene, do not 
cause any disease in immunodeficient mice indicating that 
the virus would be safe even in immunocompromised 
individuals [103, 104]. Moreover, both the viruses are 
equally effective and immunogenic in the guinea pig model 

Table 1. Experimental Gene Therapy of Neurological Disorders Using HSV Vectors 

 

Pathological Disturbances/Clinical Indications Therapeutic Transgenes Stage Ref. 

Replication-Defective Vectors 

Epilepsy FGF-2, BDNF Preclinical [35] 

Multiple sclerosis IL-4, IL-1ra Preclinical [34, 48, 49] 

Alzheimer’s disease shRNA, neprilysin Preclinical [36] 

Parkinson’s disease 

GDNF 

bcl-2 

Erithropoietin 

Preclinical 

[51, 52] 

[50, 51] 

[37] 

Diabetes Neurotrophic factors Preclinical [56-60] 

Chronic pain Preproenkephalin Phase I [38, 39, 88] 

Lysosomal storage diseases: Tay-Sachs HexA  subunit Preclinical [42] 

Replication-Competent Vectors 

Lysosomal disorders: MPS VII -glucoronidase Preclinical [41] 

Multiple sclerosis IL-4, IL-10 Preclinical [76] 

Ischemic brain injury HSV-2 ICP0PK Preclinical [77] 

Chronic pain Preproenkephalin Preclinical [69, 70] 
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[99, 105]. In February 2008, Acambis, a leading vaccine 
company developing novel vaccines, has initiated pre-
clinical testing with dl5-29 recombinant HSV-2. 

 Based on the data obtained with a DISC-gH HSV-1 
virus, deleted for the gH coding sequence, tested as a vaccine 
vector [101, 106], a DISC HSV-2 vaccine [107] has 
undergone clinical trial but was ineffective as therapeutic 
vaccine in previously infected persons. DISC-HSV-2 has 
been shown to be an efficient vector for cytokine gene 
delivery into tumour cells, and that the expression of mGM-
CSF or hIL-2 enhances the immunogenicity of whole-cell 
vaccines [108, 109]. 

 It has been recently demonstrated that immunization with 
CJ9-gD, a novel HSV-1 recombinant virus that is 
replication-defective due to the deletion of the UL9 locus, 
and expresses high levels of gD, elicits a strong and long-
lasting humoral and Th1-like cellular immune response 
against both HSV-1 and 2, and that mice immunized with 
CJ9-gD were completely protected from local or systemic 
herpetic disease after intravaginal challenge with wt HSV-1 
or 2 [110-112]. 

 The appealing properties of replication-incompetent 
HSV-1-based vectors inducing strong CTL response, both in 
murine and in simian model, against foreign genes delivered 
by viral particles have made them very promising candidates 
for potential anti-HIV-1 and also other viral or intracellular 
bacterial pathogens vaccine development [94, 113, 114]. 

 It has been shown that a mutant HSV-1 virus deleted for 
the ICP4, ICP22, and ICP27 genes and expressing 
ovalbumin (OVA) as a model antigen elicited protection in 
mice against a lethal challenge with a recombinant Listeria 
monocytogenes expressing OVA [94]. 

 A similar vector, named d106, expressing HIV-1 Tat 
protein, has been demonstrated to induce long-term Tat-
specific immune responses in the Balb/c murine model 
[114]. Moreover, vaccination of Rhesus macaques with a 
HSV-1 mutant virus that contains a deletion in ICP27 and 
expresses SIV Env and Nef antigens showed partial 
protection against mucosal challenge with the highly 
pathogenic SIVmac239 [115]. In the same animal model, 
using a prime-boost strategy of vaccination, recombinant 
HSV-1 vectors deleted for ICP4, ICP22, ICP27 and ICP47, 
and expressing Gag, Env, and a Tat-Rev-Nef fusion protein 
of SIV, elicited robust anti-Gag and anti-Env cellular 
responses and induced partial protection against intravenous 
challenge with SIVmac239 [95, 116]. The safety profile of 
this vector has been improved with the construction of 
d106S vector with increased sensitivity to acyclovir [117]. 

 Due to their ability to accept multiple heterologous 
genes, the IE replication-defective vectors could be used for 
innovative and synergistic strategies of immunization. For 
example, it is possible to engineer vectors to express specific 
chemokines and cytokines, together with antigens targeted to 
MHC-I or II molecules, in order to attract monocytes to the 
sites of infection, to induce their differentiation into DCs and 
to favor antigen presentation. 

Replication-Competent Vectors as “Live Viral Vaccines” 

 Live attenuated viral vaccines have many clear advantages. 
They provide a vehicle for complete presentation of all viral 

antigens to the host’s immune system, stimulating both humoral 
and cell-mediated immune responses. They can be efficiently 
propagated with ease and are therefore extremely cost-effective 
vaccines. Live attenuated viruses have also been successful at 
combating myriad human viral diseases. The concerns 
surrounding the development of a live viral vaccine for HSV are 
mainly safety issues revolving around the potential for 
reactivation from latency, recombination with wt virus, and the 
oncogenic potential of viral DNA [91, 118-120]. 

 The first attenuated HSV virus to be constructed and 
analyzed as a viral vaccine in humans, was the previously 
mentioned NV1020 [121, 122]. This virus was very strongly 
attenuated in rodents and primates. In a dose escalation 
study, local reactions were noted in HSV-1-infected persons. 
A dose-dependent induction of antibodies occurred in HSV-
seronegative subjects, but the development of this mutant 
has been stopped since it resulted too overattenuated, and it 
was consequently poorly immunogenic. 

 The goal to construct a safe, less attenuated vaccine 
candidate, lead to the construction of RAV9395 mutant 
[118]. When used as a live viral vaccine in a guinea pig 
model of HSV infection, it was shown to be protective, and 
it was also demonstrated that the immunologic answer 
depended on the route of administration of the virus. 
RAV9395 is based on HSV-2, strain G, which carries 
deletions in the UL55 and UL56 genes, encoding proteins 
with unknown functions, the deletion of which causes 
attenuation, and deletion in both copies of the -34.5 gene. 
Concomitant with this deletion, both copies of the open 
reading frame (ORF) P have also been deleted. The tk gene 
was left intact and functional, conferring acyclovir 
sensitivity to the recombinant virus. 

 Mutations in tk, especially for HSV-2, do not attenuate 
the virus sufficiently for human vaccines [123]. Other 
attenuated HSV-1 and HSV-2 viruses with single deletion in 
vhs or in RR respectively [124, 125], were shown to 
determine a protective immunity when tested in animal 
models, but still they are too neurovirulent to be used for 
human trials. 

 On the basis of RAV9395, the AD-472 attenuated virus 
was developed. This HSV-2 strain contains the same 
deletions of the previous mutant with addition of deletion of 
UL43.5 and US-10-12 region. This AD-472 virus proved 
effective in reducing clinical disease in the guinea pig model, 
but still did not prove effective in reduce infection rates or in 
eliminating latency or recurrent disease [126, 127]. 

 It has been recently constructed a replication-competent, 
live attenuated HSV-1 vaccine, NS-gEnull, in which the US8 
gene, encoding gE, has been deleted. The NS-gEnull virus 
was shown to have a defect in anterograde and retrograde 
directional spread and cell-to-cell spread. When used as a 
live vaccine in the murine model, it did not reach the dorsal 
root ganglia (DRG) and, even if it did not provide sterilizing 
immunity against viral infection, the challenge virus 
replicated to low titers at the site of inoculation with less 
severe disease and vaccinated mice were totally protected 
from zosteriform disease and death. Moreover, after HSV-1 
challenge, latent virus was recovered by DRG explants in 
less than 10% of vaccinated mice, compared to 100% of 
mock vaccinated once [128]. 
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 BioVex Inc, a biotechnology company developing 
clinical stage treatments for cancer and the prevention of 
infectious disease, has announced, in August 2008, that the 
UK Medicines and Healthcare products Regulatory Agency 
(MHRA) has accepted BioVex’s Clinical Trial Application 
to conduct a phase I clinical study (http://www.biovex.com/ 
immunovex.html) testing the safety and immunogenicity of 
its lead infectious disease candidate for genital herpes, 
ImmunoVEX

HSV2
 (www.biovex.com). 

 ImmunoVEX
HSV2

 is a novel live-attenuated vaccine, which 
has been rationally designed to remove the genes that allow 
herpes virus to avoid the immune system. This should allow the 
immune system to recognize and mount a powerful immune 
response against the causative agent of genital herpes. In 
preclinical studies, ImmunoVEX

HSV2
 completely prevented all 

symptoms of genital herpes and triggered a powerful immune 
response, suggesting that ImmunoVEX

HSV2
 may be more potent 

than other HSV-2 vaccines for which data has been published. 

 The company reported that the ImmunoVEX backbone 
could also be suitable for delivery of many other tumour or 

infectious disease antigens, including HIV, HPV and 
hepatitis B or C. 

HSV-1 BASED VECTORS FOR CANCER GENE 

THERAPY 

 HSV vectors have wide-range natural hosts and have 
been proven to efficiently infect numerous human tumour 
cell lines in vitro. A number of new therapies have been 
developed for treatment of cancer, and the knowledge of the 
basic defects that occur in malignant tumours has lead to the 
conclusion that the association of different therapeutic 
approaches is the method to eradicate these malignancies. 
The HSV oncolytic vectors used to date in preclinical and 
clinical trials are summarized in Table 3. 

Replication-Defective Vectors 

 Multiple immediate early gene-deleted non-replicative 
HSV-1 vectors are characterized by high efficiency of 
transduction of several different host species and cell types, 
both dividing and non dividing, including various tumour as 
well as endothelial cells [29, 129-132]. The anticancer 

Table 2. Summary HSV Based Vectors for Vaccination 

 

HSV Strain Genetic Modification Therapeutic Transgenes Clinical Indications Ref. 

Replication-Competent Vectors 

NV1020 
(HSV-1) 

Deletion in one copy of ICP34.5 + tk under ICP4 
promoter control + deletion in UL24, 55 and 56 

none Anti HSV vaccine [121, 122] 

RAV9395 
(HSV-2) 

Deletion in both copy of ICP34.5 + deletion in 
UL55 and 56 + deletion in both copy of ORF P 

none Anti HSV vaccine [118] 

AD-472 
(HSV-2) 

Deletion in both copy of ICP34.5 + deletion in 
UL55 and 56 + deletion in both copy of ORF P + 

deletion of UL43.5 + deletion of US10-12 

none Anti HSV vaccine [126, 127] 

NS-gEnull 
(HSV-1) 

Deletion of US8 none Anti HSV vaccine [128] 

ImmunoVEXHSV2 Deletion of genes involved in immune evasion none Anti HSV vaccine www.biovex.com 

Replication-Defective Vectors 

dl5-29 
(HSV-2) 

Deletion of UL5 and 29 none Anti HSV vaccine [99, 103, 105] 

dl5-29-41L 
(HSV-2) 

Deletion of UL5 and 29 + deletion of UL41 none Anti HSV vaccine [99, 104, 105] 

DISC-gH 
(HSV-1) 

Deletion of gH none Anti HSV vaccine [101, 106] 

DISC gH 
(HSV-2) 

Deletion of gH mGM-CSF or hIL-12 
Anti HSV vaccine and 

anti tumour vaccine 
[108, 109] 

CJ9gD 
(HSV-1) 

Deletion of UL9 Over-expression of gD Anti HSV vaccine [110-112] 

TOH-OVA 
(HSV-1) 

Deletion of ICP4, 22, 27, and 47 Ovalbumin Anti bacterial infections [94] 

d106 
(HSV-1) 

Deletion of ICP4, 22, and 27 HIV-1 Tat Anti HIV vaccine [114] 

d81 
(HSV-1) 

Deletion of ICP27 SIV Env and Nef Anti SIV vaccine [115] 

HSV-SIV d106 
(HSV-1) 

Deletion of ICP4, 22, 27, and 47 
SIV Gag, Env, and Tat-
Rev-Nef fusion protein 

Anti SIV vaccine [95, 116] 

d106S 
(HSV-1) 

Deletion of ICP4, 22, 27, and 47 + increased 
acyclovir resistance 

HIV-1 Tat Anti HIV vaccine [117] 
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activities of replication-defective viruses depend on delivery 
and expression of an assortment of anticancer or 
immunomodulatory genes. These genes function alone or in 
combination with either radiotherapy and anticancer drugs or 
with anticancer vaccines. 

 Different replication-defective HSV vectors have been 
produced that deliver anticancer transgenes to tumour cells 
such as melanoma [30], gliosarcoma [130, 133, 134], or 
glioblastoma [135]. Two or more therapeutic molecules, 
acting additively or synergistically, can thus be expressed at 
comparable levels by cells transduced with a combination 
vector, which is clearly an advantage in comparison with co-
administration of two or more vectors encoding a single 
transgene and also in comparison with co-expression of two 
molecules, separated by IRES sequences, by a unique vector. 

 These mutant vectors express, in association with the 
autologous HSV-1 tk gene acting as a suicide gene when 
accompanied by its pro-drug ganciclovir, further transgenes 
chosen for their potential to synergize in tumour cell killing 
and induction of antitumor immunity with genes encoding 
for soluble human cytokines (IL-2, GM-CSF and IFN- ), the 
human B7.1 gene encoding a co-stimulatory surface antigen 
(CD80) [30], rat connexin 43 gene improving the HSV-1 
TK/GCV killing of glioma cells by increasing the bystander 
effect [136] or rat connexin and human TNF  [135, 137]. 
Recently, an HSV-1-derived replication-defective vector 
(T0-IFI16) was developed [135], which has been shown to 
efficiently transduce an interferon-inducible gene (IFI16), 
into primary human umbilical vein endothelial cells 
(HUVEC), which are usually poorly transfectable. It has also 
been possible to infect HUVEC cells with similar HSV-1-
based vectors expressing anti-angiogenic fusion proteins 
endostatin::angiostatin and endostatin::kringle 5. The 
expression of antiangiogenic proteins by directly infected 
HUVEC cells has been shown to induce cytostatic effects in 
proliferation assays in vitro. Also, by addition of gancyclovir 
to the cell culture media, a major cell killing effect was 
observed [129]. In vivo, the expression of autologous tk gene 
in association with GCV was shown to be highly efficient in 
both reducing small tumour masses growth rates and also in 
inhibiting tumour cell engraftment. The expression by 
tumour cells of vector-encoded angiostatic proteins was also 
extremely efficient in inhibiting the tumour establishment, 
both in presence or in absence of GCV [129]. 

 The wide spectrum of dividing or non-dividing cell types 
that can be easily infected by non-replicative HSV-1 vectors, 
and among them endothelial and dendritic cells, along with 
their large exogenous DNA accommodating capacity, makes 
these vectors very attractive delivery systems. These unique 
features might be of extreme importance for combined 
therapeutic strategies requiring the simultaneous expression 
of high levels of multiple foreign genes, like suicide genes, 
cytokines or other immunomodulatory molecules, 
antiangiogenic proteins, soluble growth factor receptors and 
so forth. As various types of tumours present different 
characteristics, the high manageability of large, well 
characterized HSV-1 genome might permit the combination, 
in a unique backbone, of the most appropriate exogenous 
genes for treatment of each particular tumour. 

 

Replication-Competent Vectors: Oncolytic Viruses 

 A replicating vector for cancer therapy should be derived 
from viruses that are naturally endemic to the human 
population. The optimal strategy might be to derive a 
replicating vector from a highly prevalent but weakly 
pathogenic human virus [138]. Reversion to wt would then 
be of no serious risk to the patient or to the population. 

 Construction of oncolytic viruses that cannot only target 
cancer cells, but can also retain their ability to infect, usurp 
host replication machinery, then release newly made progeny 
to infect other transformed cells after lysing and killing the 
host cell, has become a major area of therapeutic cancer 
research, called “oncolytic virotherapy”. There are some 
characteristics that an ideal replication-competent, oncolytic 
virus should possess above and beyond those viruses that 
function simply as delivery vectors: (i) be easy to engineer 
and to produce in large quantities; (ii) selectivity to 
neoplastic cell alone; (iii) minimal toxicity to normal tissue; 
(iv) show proliferation within and systematic killing of 
tumour tissue which itself may be rapidly propagating; (v) 
ability to disseminate throughout the tumour mass and 
possibly to sites of invasion distant from the initial 
inoculation site; (vi) carry low or bearable toxicity; (vii) 
genomically stable, thus avoiding the generation of toxic, 
undesirable mutants that could pose a danger; (viii) 
incorporate a “fail-safe” mechanism for inactivation; (ix) 
absence of potential spread to the general population; and (x) 
enduring efficacy despite prospect of encountering a 
mounting immune response to replicating viruses [15, 18, 
139-146]. 

 So far, several oncolytic HSV vectors have been 
developed (Table 1) with particularly efforts for the 
treatment of malignant glioma [147]. 

1. First-Generation Vectors 

 The first generation of these vectors contains mutation in 
a single gene that restricted their replication to dividing cells. 
Three such HSV-1 mutants have been constructed: (1) dlsptk 
containing a deletion in the tk gene [148]; (2) hrR3 
containing an insertion of the E. coli lac-Z gene in the early 
gene UL39, encoding the large subunit of the viral RR 
(ICP6) [149, 150]; (3) R3616 containing 1 kb deletions in 
both copies of the -34.5 gene, encoding the neurovirulence 
factor ICP34.5 [151-153]. 

 TK mutants are highly neuroattenuated, and when used in 
different mouse models of various nervous system-derived 
tumour types, showed a slowed tumour growth and 
prolonged survival. However, clinical trials were not pursued 
because of (i) undesirable level of toxicity at high titers, and 
(ii) its TK-negative status made it resistant to traditional anti-
herpetic treatments, a major disadvantage should any viral 
toxicity to arise in treated patients [148, 154-156]. 

 ICP6 mutants have been tested as replicative anticancer 
agents, alone or in combination with acyclovir/gancyclovir, 
as the mutants retain their sensitivity to such antivirals. 
Moreover, the RR

-
 mutants have been shown to display  

an increased sensitivity to gancyclovir, compared to  
the wt virus. These recombinant viruses showed enhanced  
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killing of tumour cells in vitro, and showed improved 
survival of animals. However, like TK mutants, they can 
cause fatal encephalitis when used at sufficient dose and 
were not thought to provide a sufficient margin of safety for 
testing in humans [149, 157]. 

 It has been shown that deletion of ICP34.5, the 
neurovirulence factor essential for HSV pathogenicity, 
provides the greatest degree of attenuation of any individual 
mutation where the virus can still replicate in actively 
dividing cells. R3616, the prototype HSV-1 deleted in both 
copies of -34.5, had demonstrated attenuated neurovirulence 
but with maintained anti-glioma activity, and was found to 
produce no encephalitis in a nude mouse model [157-159]. 
The use of -34.5 mutated viruses demonstrated considerable 
antitumor efficacy, combined with a good safety profile, and 
different versions of HSV ICP34.5-deleted are currently in 
human clinical trials [160]. 

2. Second-Generation Vectors 

 Following preclinical testing with the above-mentioned 
oncolytic vectors, second generation vectors with multigenic 
mutations were created. G207 contains deletion in both -
34.5 loci and a lac-Z gene insertion in the ICP6 gene [161]. 
These multiple mutations made the reversion to wt highly 
unlikely and conferred several important safety advantages. 
Moreover, G207 retains its susceptibility to standard anti-
HSV therapies such as acyclovir, since the tk gene is intact. 
After oncolytic activity and safety evaluation studies in the 
mouse model [161], G207 neurotoxicity was further 
evaluated in non-human primates [162]. These studies 
allowed to move into phase I clinical trials [163], and, 
presently, enrolment has begun for sequential phases Ib/II 
trials employing G207 as an anti-tumour agent for malignant 
gliomas [164, 165]. MGH-1 is an oncolytic HSV-1 which 
shares the same characteristics of G207 and its oncolytic 
activity was evaluated in preclinical models [155, 166]. 

 Almost simultaneously, HSV1716, derived from the 
parent wt strain HSV-1 17+ in which both the copies of -
34.5 have been deleted, also underwent clinical trials to 
evaluate its toxicity in patients with recurrent human glioma 
[167-169], after it was demonstrated to be avirulent in mice. 
HSV1716 has also been injected into subcutaneous nodules 
of metastatic melanoma in five patients and local evidence of 
anti-tumour effects was observed [170]. HSV1716 will move 
soon in phase I clinical trial for non-CNS solid tumours. 

 Oncolytic herpesvirus have been also studied as an 
oncolytic anti-tumour therapy against a variety of tumours 
different than GBM and anaplastic astrocytoma, such as 
human breast cancer in a brain metastatic model [171], 
colorectal cancer and liver metastases [172], prostate cancer 
[173], pancreatic cancer [174], and head and neck squamous 
carcinoma [175]. In many of these studies, the efficacy of 
G207 has been compared with that of the HSV-1 mutant 
NV1020 (formerly R7020) strain [121, 122], which was the 
first attenuated HSV virus to be constructed and analyzed as 
a viral vaccine in humans. This virus, based on HSV-1 strain 
F, has a portion of the unique short region of the viral 
genome, encoding glycoproteins G, D, I and E, replaced by 
the homologous region from HSV-2, and possesses one copy 
of ICP4. NV1020, which was shown to be too attenuated to 
work as a live viral vaccine, is currently being investigated 

in phase I and II clinical trials for patients with colon cancer 
that has metastasized to the liver and has proven recalcitrant 
to chemotherapy [176, 177]. This is also the first trial to 
investigate administration via intravascular delivery. In fact, 
oncolytic viruses can be administered locally, by direct 
intratumoral inoculation, or systemically, by intravascular 
administration. However, the route of administration of the 
virus did influence efficacy, as was observed in the animal 
model. The results demonstrated that NV1020 is a safe, 
novel therapeutic agent for treatment of refractory hepatic 
malignacy. An evolution of NV1020, namely NV1023, in 
which it has been inserted an HSV-2 fragment containing 
genes US2-2 and US2-5 into the UL/S junction and other 
minor mutations, is under evaluation, combined with 
ionizing radiation, in human cholangiocarcinoma cell lines 
and could also be useful for other malignancies such as 
pancreatic, rectal, prostate, and head/neck cancer [178]. 
Finally, it has been recently demonstrated that highly 
fusogenic derivatives of NV1020, named OncSyn and 
OncdSyn, carrying syncytial mutations in both gB (syn3) 
(OncSyn) and in gB and gK (syn1) (OncdSyn), can reduce 
primary and metastatic breast tumours in immunocompetent 
mice [179-181]. 

3. Third-Generation Vectors 

 G47  is a third-generation vector that was constructed by 
deletion of US12 gene, encoding ICP47 protein, which 
normally blocks MHC class I-mediated antigen presentation 
in infected cells. Consequently, human melanoma cells 
infected with G47  expressed higher levels of MHC class I 
on their surface, compared to G207-infected cells, resulting 
in enhanced stimulation of tumour-infiltrating lymphocytes. 
The US12 deletion also removes the US11 promoter, so that 
US11 gene is expressed as an immediate-early gene under 
the control of the US12 promoter, thereby suppressing the 
diminished growth properties of ICP34.5 mutants [144]. This 
improved replication of G47  translates into enhanced 
antitumor activity. Another HSV vector with the same 
characteristics of G47  was isolated after serial passages, of 
an ICP34.5 deleted HSV, on a tumour cell lines. This viral 
isolate was shown to exhibit enhanced antitumor effect on 
prostate cancer [182]. 

4. Last Generation Vectors: Transgene-Expressing Vectors 

 Despite the promising results obtained with the 
engineered HSV-1-based oncolytic vectors described above, 
it is likely that a multimodal approach to eradicate cancer 
will be more effective with the final goal to improve safety 
and efficacy of the system. At this regard, oncolytic HSV 
vectors have been further modified to augment their 
antitumor efficacy, by incorporation of expression cassettes 
for the delivery of various transgenes. Moreover, if the 
therapeutic gene is chosen carefully, this may be synergistic 
with the antitumor effect of virus replication. 

4.1. Prodrug-Activating HSV-1 Vectors 

 Oncolytic HSVs have been tested, which encode 
different prodrug-activating systems other than the 
endogenous TK activity of the virus. Both the 5-
fluorocytosine (5-FC) prodrug/yeast cytosine deaminase 
(CD) gene system [183], alone or in combination with the 
TK/gancyclovir system [184, 185], and the cytocrome P-450 
(CYP2B1), which converts cyclophosphamide (CPA) to its 
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active metabolites, are used to concentrate the toxic 
metabolites in virus-infected cells and were shown to induce 
beneficial effects [186-188]. Moreover, a new oncolytic 
HSV-1, MGH-2, was constructed, deleted for UL39 and 
ICP34.5 genes and with an insertion of the two prodrug 
activating genes, CYP2B1 and secreted human intestinal 
carboxylesterase [189, 190]. Each of these can convert the 
inactive prodrugs, cyclophosphamide and irinotecan (CPT-
11), into their active metabolites, respectively. MGH-2 
displays increased antitumor efficacy against human glioma 
cells both in vitro and in vivo when combined with 
cyclophosphamide and CPT-11. Importantly, 
cyclophosphamide, CPT-11, or the combination of 
cyclophosphamide and CPT-11 does not significantly affect 
oncolytic virus replication. Therefore, MGH-2 provides 
effective multimodal therapy for gliomas in preclinical 
models when combined with these chemotherapy agents. 

4.2. Immunostimulatory HSV-1 Vectors 

 Molecules including a number of interleukins and 
interferons have been tested with oncolytic HSVs. Among 
these, Interleukins (ILs) 4 [191], 12 [189, 192-195], 10 
[191], granulocytes-macrophage colony stimulator factor 
(GM-CSF) [140, 160, 192], and B7.1 [196], which increase 
tumour immune recognition. This approach also reduces the 
possibility of toxicity derived from the systemic 
administration of the cytokine. Replication-competent 
vectors expressing IL-4 and IL-10 [191] were evaluated in an 
orthotopic model of murine GMP [191]. In this model, 
treatment of IL-4-expressing HSV increased survival over 
treatment with HSV alone, suggesting that cytokine gene 
therapy may mediate enhanced tumour-specific killing. Such 
effect is mediated by helper T cells of subset 2 (TH2) and has 
been attributed to CD4

+
 lymphocytes. Although IL-4 was 

effective in different animal models, generation of a TH1 
response, including the induction of a memory response 
against tumour cells seems to have a more durable antitumor 
effect. At this regard the use of HSV vectors expressing IL-
12 or GM-CSF, two indispensable cytokines for activating 
DCs and boosting the strong immune responses against 
cancer, seems promising [197, 198]. GM-CSF engenders 
protective immunity by stimulating the recruitment, 
maturation, and function of DCs, while IL-12 released from 
DCs directly primes effector lymphocytes at local 
environments. In this regard, the gene transfer of GM-CSF 
into dying tumour cell may be more suitable form to elicit 
local antitumor responses by differentiating DC in situ and 
providing immunogenic tumour antigens for cross-
presentation by paracrine fashion, whereas the expression of 
IL-12 may be an appropriate strategy to maximally boost 
antitumor effector functions. IL-12 also possesses 
antiangiogenic properties, which may represent a second 
potential mechanism of its antitumor activity [198]. M002 
vector, derived from a replication-competent ICP34,5

-
 

mutant which expresses mIL-12 was evaluated for its 
antitumor activity in a syngenic neuroblastoma murine 
model [189]. It was concluded that M002 can provide safe 
therapy with increased efficacy and survival in a model of 
nervous system tumours. Other vectors expressing IL-12, 
have been tested in different tumour models [192-195] 
showing efficacy in both treating the tumour and preventing  
 

recurrences after tumour-resection [199]. The 
antiangiogenetic property of IL-12 and its efficacy has been 
tested in animal model of squamous cell carcinoma [193]. A 
triple combination of oncolytic HSV-1 vectors armed with 
IL-12, IL-18 and B7-1 have been studied in a murine model 
of neuro2a tumours and resulted in enhanced antitumor 
efficacy [200], suggesting that combined use of multiple 
oncoltic HSV-1 armed with different immunostimulatory 
genes may be a useful strategy for cancer therapy. 

 Several HSV-1 vector expressing GM-CSF have been 
used to treat experimental tumours [140, 160, 192, 201, 202] 
and some of them are in clinical trials [203-205]. Most of the 
oncolytic HSVs analyzed have been based on serially 
passaged laboratory strains of HSV. These strains have 
probably lost some of their aggressive properties. It has in 
fact been recently demonstrated that an oncolytic HSV, 
JS1/ICP34.5-/ICP47-/GM-CSF, named OncoVex, derived 
from a clinical isolate of HSV-1 and engineered to express 
GM-CSF, possesses a higher ability to kill tumour cells in 
vitro and in vivo. Moreover, in a model of mouse lymphoma, 
mice cured with this virus were protected against further 
tumour challenge [160]. OncoVex has demonstrated 
promising results both in phase I/II dose escalation study for 
head and neck squamous cell cancer [204] and in phase II 
clinical trial for unresectable malignant melanoma [203, 
205]. In spite of the promising findings obtained in clinical 
trials, using OncoVex, the expression of GM-CSF gave 
contradictory results in different tumour models [206]. These 
contradictory activities of GM-CSF might depend upon 
additional factors operative in tumour microenvironment. 
Therefore, it is important to clarify the key regulatory 
circuits that attenuate the experimental activity of GM-CSF-
based antitumor strategies. This might help in the definition 
of new strategies to enhance GM-CSF activity. 

4.3. Antiangiogenic Approaches Using HSV Vectors 

 Angiogenesis has a critical role in tumour development 
and metastasis and novel antiangiogenic therapies are 
desirable [207-210]. Thus, strategies have been developed to 
inhibit tumour angiogenesis either by arming HSV vectors 
with antiangiogenic transgenes or with a combined treatment 
with antiangiogenic compounds and oncolytic HSV first 
[194, 208, 211-213]. In a study of Mullen and colleagues 
[211] the murine endostatin gene was incorporated into the 
HSV genome. The produced endostatin was found to inhibit 
angiogenesis in a human HT29 colon carcinoma model. In a 
second study of Liu TC and colleagues [213] a concurrent 
systemic Trichostatin A (TSA) and intratumoral oncolytic 
HSV, G47 , administration resulted in enhanced 
antiangiogenesis and enhanced antitumor efficacy in animal 
models. It was observed that in tumour and prolipherating 
endothelial cells, combination treatment enhanced cyclin D1 
and VEGF inhibition. It has been recently demonstrated in 
an in vivo model that an oncolytic HSV-1, named RAMBO 
(Rapid Antiangiogenesis Mediated By Oncolytic virus), that 
can express vasculostatin (Vstat120), the cleaved and 
secreted extracellular fragment of brain-specific 
angiogenesis inhibitor 1 (BAI1), under the control of IE4/5 
promoter, displays an anti-tumour effect upon delivery into 
established tumours. This supports the further development 
of RAMBO as a possible cancer therapy [214]. 
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5 Other Strategies in Developing HSV Oncolytic Vectors 

5.1. Spontaneously Generated HSV-1 Vectors 

 A Spontaneously generated HSV-1 vector, HF10, derived 
from strain HF, which contains a 3.9 kbp deletion at the right 
end of UL and UL/IRL junction, with resulting deletion in 
UL56, and rearrangements and deletion on the left end of the 
genome, was shown to possess oncolytic activity for 
disseminated peritoneal tumour in immunocompetent mice 
[215]. It has been recently shown that HF10 is effectively 
oncolytic in melanoma mouse models, and that intratumoral 
injection of HF10 induced systemic antitumor response 
[216]. 

5.2. Fusogenic Vectors 

 Another strategy is to clone therapeutic genes into the 
viral genome to arm the virus with additional cytotoxic 
mechanisms that augment the direct lytic functions of the 
virus. Particularly attractive in this context are cytotoxic 
mechanisms with potent bystander effect capable of 
eliminating tumour cells that the virus cannot reach. To this 
purpose, it has been recently demonstrated that incorporation 
of cell membrane fusion capability into an oncolytic HSV 
can significantly increase the antitumor potency of the virus 
[217-219]. These oncolytic HSVs were constructed by 
different methods: (i) screening for the syncytial phenotype 
after random mutation of a well-established oncolytic HSV 
(to obtain Fu-10); (ii) insertion of the gene encoding the 
hyperfusogenic membrane glycoprotein of gibbon ape 
leukemia virus (GALV.fus) into the genome of an oncolytic 
HSV (to generate Synco-2); (iii) incorporation of both of 
these two membrane fusion mechanisms into a single 
oncolytic HSV (to generate Synco-2D); and (iv) combined 
expression of GALV with a highly potent prodrug activation 
gene (yeast cytosine deaminase/uracil phosphoribosyl-
transferase fusion [Fcy::Fur]) [220]. These vectors have been 
tested for their antitumor activity against liver, breast, 
ovarian and metastatic prostate cancers showing a significant 
increase in viral oncolysis; this may lead to an enhanced 
clinical performance, especially in the late stage cancer 
patients. 

5.3. HSV-2 Based Vectors 

 It has been recently proposed that the HSV-2 PK 
mutant, which is well tolerated in human patients, as resulted 
from studies against recurrent genital HSV-2 infections, has 
robust melanoma oncolytic activity in culture and in animal 
models (xenografts) [221]. The FusOn-H2 mutant, which 
contains the same PK deletion with insertion of GFP, has 
been proposed as a promising oncolytic agent for breast 
cancer, for renal cell carcinoma, and for neuroblastoma [222-
225]. 

6. Chemotherapy or Radiotherapy to Enhance the Potency 

of Oncolytic HSV 

 In early clinical trials, however, treatment with the 
current generation of oncolytic viruses did not significantly 
affect tumour growth [163, 167]. This suboptimal result may 
reflect viral gene deletions, which can reduce the replicative 
potential of viruses in tumour cells. For example, deletion of 
the -34.5 gene significantly reduced viral growth even in 
rapidly dividing cells [144, 149, 191]. A variety of strategies 
is being pursued to enhance the potency of oncolytic viruses 

by “arming” them with various transgenes. Overall, the 
results so far obtained demonstrate that this last generation 
HSV vectors can increase antitumor efficacy, especially if 
used in combination with pre-existing anticancer treatments, 
such as radiotherapy or chemotherapy [18, 186, 226, 227]. 
Combined oncolytic viral therapy and external beam 
radiotherapy (XRT) has shown significantly improved 
results over individual therapies in preclinical models [228]. 
Significant improvements in disease outcomes have been 
observed with combination HSV virotherapy and XRT in 
preclinical models. In two different studies, NV1066 
(ICP0/ICP4/ 34.5 deletions) combined with irradiation was 
shown to significantly reduce tumour volume compared to 
either treatment alone for nonsmall cell lung cancer and 
malignant mesothelioma [229, 230]. Moreover, the 
combination of NV1023 ( 34.5/UL24/UL56/US11/ICP47 
deletions) with XRT was investigated in three models of 
cholangiocarcinoma generated using different cell lines 
[178]. This dual therapy showed a synergistic reduction in 
tumour volume in one model, whereas the effect was 
additive or not significantly better than individual therapies 
in the other models. Despite the promising results described 
above, the potential for combination therapy remains to be 
seen in a variety of other cancers. For example, in one study 
the combination of HSV oncolytic therapy and XRT, in 
prostate models, was not significantly better than virus 
therapy alone in both immunocompetent and immunoco-
mpromised models [227]. The underlying mechanism of 
increased HSV replication and oncolytic effect in the 
presence of XRT has been well characterized studying the 
synergy between ICP34.5-deleted viruses and conventional 
cancer therapy [231]. Interestingly, ICP34.5 shows 
significantly structural homology to a portion of human 
GADD34, a protein involved in the cell response to DNA 
damage [232]. ICP34.5 is responsible for dephosphorilation 
of eIF-2 , which is required for translation of both host and 
viral proteins. Radiation or chemotherapy-induced up 
regulation of GADD34 functionally replaces the ICP34.5 
protein in infected tumour cells leading to increase viral 
protein synthesis and production of infectious virus particles. 

 Oncolytic HSVs have been also investigated in 
combination with various standard chemotherapeutics, such 
as cyclophosphamide (CPA) and cisplatin. Use of CPA as an 
immunosuppressant to enhance viral oncolysis has improved 
virotherapy efficacy in combination with HSV [233-235]. 
However, one of the potential pitfalls of CPA-mediated 
immune suppression is that in addition to promoting tumour 
oncolysis, it may also lead to increased virus dissemination 
through the body. In this regard, it has been observed that 
CPA can induce the spread of HSV into normal brain tissue 
following treatment of an orthotopic glioma tumour [236]. 
Cisplatin has also been investigated in combination with 
oncolytic HSV [237-239]. In a comprehensive study of the 
interaction between NV1066 HSV vector and cisplatin, 
moderate to strong synergy was observed. The mechanism of 
synergy may be similar to that with radiation. Cisplatin 
significantly increased viral titer and resulted in a marked 
increase in GADD34 mRNA and protein expression. 

TARGETING REPLICATION-COMPETENT VECTORS 

 To prevent damage of healthy tissues, to decrease the risk 
of germ line transduction, and to design vectors that can be 
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administered intravenously, it is necessary to achieve 
targeted gene therapy. Genetic modifications to the genome 
of HSV-1 vectors have been generated to preferentially 
target viral infection and/or replication to tumour cells vs 
normal cells [141]. 

 Targeting viral infection to particular cells can be 
obtained by modifying the first steps of the virus life cycle, 
i.e. adsorption and penetration. Efforts for engineering the 
HSV-1 envelope to obtain targeted infection are currently in 
progress. Altering HSV-1 host range has proved a 
formidable task because HSV-1 infection is a complex 

process involving the action of several glycoproteins in cell 
attachment, entry, and cell-to-cell spread (Fig. 2). 

 As a first step, to eliminate the HSV tropism, a mutant 
virus deleted for gC and the HS binding domain of gB, 
namely KgBpK

-
gC

-
, was generated [251]. This virus was 

further engineered to redirect infection to erythropoietin 
(EPO)-receptor positive cells using gC-EPO fusion 
molecules. It was demonstrated that one of the gC-EPO 
fusion molecules was incorporated into a recombinant HSV-
1 viral envelope and was able to stimulate proliferation of 
EPO growth dependent cell line FD-EPO. Otherwise, the 
lack of productive infection due to endocytosis of the virus 

Table 3. Summary of Oncolytic Vectors and Clinical Trials 

 

HSV Strain Genetic Modification 
Therapeutic 

Transgenes 
Stage Clinical Indications Ref. 

dlsptk tk deletion none Preclinical  [148, 240] 

hrR3 UL39 disruption (large RR subunit) none Preclinical  [155, 241, 242] 

HSV1716 Deletion in both copies of ICP34.5 none 

Human clinical trials 

Phase I (recruitment not yet 
open) 

Glioma, melanoma, head-
and-neck cancer. 

Non-CNS solid tumours 

[167, 169, 170, 
243, 244] 

R3616 Deletion in both copies of ICP34.5 none Preclinical  [151, 157] 

R4009 
Stop codon in both copies of 

ICP34.5 
none Preclinical  [151, 157] 

G207 
Deletion in both copies of ICP34.5 

+ disruption of UL39 
none 

Human clinical trials phase 
I, IB, and II 

Recurrent brain cancer 
(glioma, astrocytoma, 

glioblastoma 

[161-165, 245, 
246] 

MGH-1 
Deletion in both copies of ICP34.5 

+ disruption of UL39 
none Preclinical  [149, 166] 

MGH-2 
Deletion in both copies of ICP34.5 

+ disruption of UL39 
CYP2B1 and 

shiCE 
Preclinical  [190] 

R7020 
(NV1020) 

Deletion in one copy of ICP34.5 + 
tk under ICP4 promoter control + 

deletion in UL24, 55 and 56 

none 
Human clinical trials phase 

I and II 
Liver, metastases derived 
from colorectal cancer. 

[121, 122, 176, 
177] 

G47  
Deletion in both copies of ICP34.5 

+ disruption of UL39 
none Preclinical  [144] 

Myb34.5 

Deletion in both copies of ICP34.5 
+ disruption of UL39 + insertion of 

an ICP34.5 gene under the control 
of the B-myc promoter 

none Preclinical  [247, 248] 

DF3 34.5 

Deletion in both copies of ICP34.5 
+ insertion of an ICP34.5 gene 

under the control of the 
DF3/MUC1 promoter 

none Preclinical  [139, 249] 

HF10 
Spontaneous generation of HSC-1 

variant 
none Human clinical trials  [215, 216] 

NV1042 
HSV-1/HSV-2 intertypic 

recombinant + contains only one 
ICP34.5 copy 

Murine IL-12 Preclinical  [192-195] 

OncoVexGM-

CSF 
Deletion in both copies of ICP34.5 

+ deletion of ICP47 
GM-CSF Phase II/III 

Breast cancer, head-and-
neck cancer, melanoma 

[160, 250] 

RAMBO 
Deletion in both copies of ICP34.5 

+ UL39 disruption  
IE4/5 prom-

Vstat120 
Preclinical  [214] 

NP2 
enkephalin 

expressing 
vector 

Deletions in ICP4, 27, 22 and 47 
human prepro-

enkephalin 
Phase I 

Chronic pain from 
terminal cancer 

[38, 39] 
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resulted in an aborted infection [252]. It was recently 
demonstrated that the KgBpK

-
gC

-
 virus, further modified to 

express and incorporate a fusion protein between gC and the 
preS1 active peptide (preS1ap) of HBV, was able to bind 
preferentially to hepatocytes, giving a productive infection 
[253]. However, this mutant still retains gD binding 
functions. Simultaneously, efforts are in progress to modify 
gD, the other glycoprotein involved in HSV-1 binding and 
penetration into the host cell [254, 255]. In a following 
report, R5111 mutant virus was described lacking the HS 
binding domains of gB and in which the HS and HVEM 
binding regions of gC and gD, were substituted with IL-13 
coding sequences. HSV-1 R5111 can infect J13R cells 
containing the IL-13R 2 receptor and lacking all other HSV-
1 receptors. However, this mutant still retains the other gD 
binding affinities, and is not yet established whether it can 
productively infect the target cells, in a similar way to that 
obtained with wt HSV [255]. An alternative approach reports 
a transiently vesicular stomatitis virus glycoprotein G (VSV-
G) pseudotyped gD minus HSV-1, but to date a stable 
mutant has not yet been reported [254]. A further stimulus to 
the search of new strategies to alter HSV cell tropism, 
derives from the observation, that selected mutations in gD 
can reduce or abolish entry/fusion activity with nectin-1 and 
nectin-2, the principal receptors for HSV-1 entry into 
neurons, without preventing activity of HVEM or 3-0-S HS, 
that alternatively can mediate entry into T cells and 
fibroblasts [256]. It has been recently reported the 
construction of an HSV-1 mutant that selectively targets the 
HER2 (epidermal growth factor 2)-expressing tumour cells 
by means of a point mutation and insertion of an anti-HER2 
single-chain antibody into gD that simultaneously allow the 
virus to be detargeted for nectin-1 and HVEM and retargeted 
to HER-2. The resulting recombinant, R-LM113, has been 
shown to enter the cells and spread to cell solely via HER2. 
Moreover, such HSV-1 recombinant strongly inhibited 
progressive tumour growth in nude mice bearing HER-2-
hyper-expressing human tumours [257, 258]. At the same 
time, other groups have demonstrated the possibility of 
redirecting HSV-1 tropism by antibody-binding sites 
incorporated on the virion surface as a gD fusion protein, by 
incorporating either single-chain variable fragment (scFv) 
anti-CD55, or anti-CD38, or anti-EGFR in place of residues 
274-393 of gD, to specifically target tumour cells [259]. 

 These data suggest that strains carrying gD mutations 
may establish transient infections in humans, but perhaps not 
latent infections of neurons, and are therefore candidates for 
development of safe virus vaccines and vaccines vectors. 

 Finally, the recently discovered the PILR  gB receptor 
represents another possible target to modify viral tropism. 

 One strategy to target replication of the attenuated virus 
is obtained by eliminating viral functions necessary for 
replication in normal cells. These mutations give the virus 
the attenuated phenotype that leads to replication only in 
permissive cells such as dividing tumour cells or cells with 
defects in specific cancer pathways [122, 148, 154, 161]. 
However, a limit of this strategy is that many normal tissues 
also have high mitotic indices, and such viruses may not 
discriminate between rapidly proliferating normal and cancer 
cells. 

 A second strategy to target viral replication to tumour 
cells, consists in placing the expression of essential viral 
genes under the control of tumour or tissue-specific 
promoters, that are preferentially active in tumour cells [139, 
168, 247, 260, 261]. The use of tissue-specific promoters to 
direct viral replication to a specific tumour type have been 
explored more extensively in oncolytic adenoviruses and use 
of these promoters to regulate HSV replication could be 
further explored. A limitation in the use of these promoters is 
that viral replication is mainly targeted at a specific tumour 
type and often further restricted to only a subgroup. To this 
purpose, promoters active in most tumours [18, 247, 262] 
have been explored [263, 264], or radiation-responsive 
promoters, but there are instances where these promoters 
might be active in normal cells, leading to toxicity. A further 
obstacle is that, in the context of a tumour, it is likely that 
these promoters will not be active in all tumour cells and that 
not all cells will be infected. As a result, a subset of tumour 
cells will have a selective growth advantage and survive 
leading to tumour recurrence. 

 Different reports indicate the possibility to drive 
expression of ICP4 or ICP34.5 with tumour specific 
promoters. Viruses containing ICP4 driven by either human 
carcinoembryonic antigen (CEA) and MUC1/DF3 tumour-
associated antigens promoters were demonstrated to replicate 
specifically in tumour cells but regulation of ICP4 
expression by the CEA promoter during HSV-1 infection 
overly attenuated viral replication [139]. Conversely, 
regulation of ICP34.5 function by the DF3/MUC1 
promoter/enhancer sequence, resulted in preferential 
replication into DF3/MUC1 expressing cancer cells, 
restricted biodistribution in vivo, and less toxicity [139, 249]. 

 It has also been demonstrated that viruses, based on 
G207 backbone, containing ICP34.5 driven by either 
Musashi1 (KeM34.5 vector) [265, 266] or rQNestin [234] 
promoter can be used to drive HSV-1 virulence toward 
gliomas while maintaining the desirable neuro-attenuated 
phenotype. 

 The main HSV-1 targeting strategies reported to date are 
summarized in Table 4. 

IMAGING GENE THERAPY 

 Molecular therapy using viruses would benefit greatly 
from a non-invasive modality for assessing dissemination of 
viruses. Non-invasive imaging, based on the use of positron 
emission tomography (PET) and bioluminescence (BLI) 
imaging markers, has been shown to be useful in assessing 
biological relevant distribution of virus in therapies using 
replication-competent HSV. 

Radionuclide Imaging 

 Positron emission tomography (PET) and single photon 
emission computed tomography (SPECT) enable the 
assessment and quantification of the intensity and 
regional/spatial distribution of gene expression in vivo. 

 PET uses decaying nuclides such as 
11

C,
 13

N, 
18

F,
 15

O, 
64

Cu, and 
124

I and images the distribution of trace quantities 
of positron-emitting molecular probe administered. 
Molecular probes labeled with positron-emitting isotopes are 
used to detect biologically active molecules, as the result of 
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the target-dependent sequestration of the systemically 
administered positron-emitting probe [267]. The ability of 
PET to image gene expression quantitatively, combined with 
the ease translation of techniques developed for small-animal 
PET imaging to the clinic, has been of clear benefit in HSV 
vector-based gene therapy trials. 

 Several genes have been proposed as potential marker 
genes for radiotracer-based molecular imaging. These 
marker genes can be broadly classified as genes whose gene 
product is an intracellular protein (e.g. enzymes) or 
associated to the cell membrane (membrane receptors or 
transporters). The most commonly used reporter gene is 
HSV-1 thymidine kinase (tk) whose product can convert 
acycloguanosines (like ganciclovir, acyclovir, penciclovir 
and 9-[4-fluoro-3-(hydroxymethyl) butyl]guanine (FHBG)) 
as well as 2’-fluoro-nucleoside analogues of thymidine such 
as 1-(2-deoxy-2-fluoro- D-arabinofuranosyl)-5-iodouracil 
(FIAU) and its derivatives in the phosphorylated forms. The 
main advantage of the use of HSV-1-TK in gene therapy 
protocols is the fact that this gene can be used as an imaging 
gene and as a therapeutic gene. The phosphorylated 
acycloguanosines, following conversion to their di- and 
triphosphate forms by HSV-1-TK, can kill cells either by 
blocking DNA synthesis or by causing chain termination. 
Most commonly ganciclovir is used as prodrug in this 
suicide gene therapy paradigm. Molecular imaging with PET 
using tk as a PET reporter gene offers the desired qualities of 

a noninvasive test which can be easily repeated to determine 
the location and magnitude of viral replication and tumour 
lysis and has been extensively used for both preclinical and 
clinical studies using HSV-1 oncolytic vectors [268]. Using 
replication-competent HSV-1 oncolytic virus with tk under 
the control of different promoters, it has been demonstrated 
that viral infection proliferation and promoter characteristics 
all interact to influence FIAU accumulation and imaging 
[269]. Moreover, the combination of two marker/reporter 
genes, tk and lacZ, has been used to monitor the kinetics of 
hrR3 and MGH-1 vectors replication and spread in infected 
tumour cells. These vectors retained an intact viral tk gene 
and contained a lac Z insertional mutation within the gene 
encoding RR, while MGH-1 bore additional mutation at both 
-34.5 genes, reducing further the risk of recombination and 

neurovirulence [166]. Time-dependent and spatial 
relationships of HSV-1-tk and lacZ gene co-expression in 
culture and in vivo indicate the potential for indirect in vivo 
imaging of therapeutic gene expression in tumour tissue 
infected with any recombinant HSV-1 vector where a 
therapeutic gene is substituted for the lacZ gene. Current 
imaging modalities have limited sensitivity for detection of 
micrometastases in lymph nodes and, therefore, there is a 
need for a better technique that can accurately identify occult 
sentinel limph nodes (SLNs) metastases. A new approach for 
imaging melanoma lymph node metastasis using an 
oncolytic HSV-1 and [

18
F] FIAU-PET has been recently 

developed in a murine model melanoma [270]. It has been 

Table 4. Summary of HSV-1 Replication-Competent Vectors Targeting Strategies 

 

HSV Strain Genetic Modification Targeting Molecule Targeting Tissue/Organ Ref. 

Targeting of Entry 

KgBpK-gC- 
Deletion in pK region of gB + 

deletion of gC 
 General [251] 

KgBpK-gC-EPO 
Deletion in pK region of gB + 

deletion of gC 
Insertion of gC-EPO fusion protein EPO-receptor positive cells [252] 

KgBpK-gC:preS1ap 
Deletion in pK region of gB + 

deletion of gC 
Insertion of gC:preS1ap fusion protein 

Hepatocytes 

HBV receptor expressing cells 
[253] 

R5111 
Deletion in pK region of gB + 

deletion of HS binding regions of gC 
and gD 

Insertion of gC-IL-13 and gD-IL-13 
fusion molecules 

IL-13R 2 receptor expressing 
cells 

[255] 

KgBpK-gC-gD- 
Deletion in pK region of gB + 
deletion of gC + deletion of gD 

Pseudotyping with VSV-G VSV susceptible cells [254] 

R-LM113 Modification of gD coding sequence 
Insertion of gD-anti-HER2 single-

chain antibody fusion molecule 
HER-2-expressing tumour cells [257, 258] 

HSV1716 Modification of gD coding sequence 
Insertion of gD-scFv anti-CD55or anti 
CD38 or anti-EGFR fusion molecules 

Tumour cells [259] 

Targeting of Replication/Expression 

CEAICP4;  Deletion of either ICP4 promoter Substitution with CEA promoter Tumour cells [139] 

CEA 34.5 Deletion of ICP34.5 promoter Substitution with CEA promoter Tumour cells [139] 

DF3 34.5 Deletion of ICP34.5 promoter 
Substitution with DF3/MUC1 
promoter/enhancer sequences 

promoter 

DF3/MUC1 expressing tumour 
cells 

[139, 249] 

KeM34.5 G207 backbone 
Insertion of Musashi1 promoter 

driving ICP34.5 
Malignant glioma [265, 266] 

rQNestin34.5 G207 backbone 
Insertion of rQNestin promoter 

driving ICP34.5 
Brain tumours [234] 
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shown, for the first time, that the NV1023 HSV vector 
expressing the tk gene can track to draining lymph nodes 
following direct intratumoral injection and infect metastatic 
melanoma cells in the SLNs. Nodal metastases can be then 
successfully identified by [

18
F] FIAU-PET imaging. These 

findings are encouraging and translation to clinic is feasible. 
If successfully implemented, this imaging system has the 
potential for improving patient care by enabling: (1) a more 
sensitive non-invasive method for the detection of lymph 
nodes invaded by cancer, (2) delineation of the extent and 
anatomic location of regional metastases, (3) provide better 
pre-surgical assessment of disease extent in patients with 
suspected positive lymph nodes, and (4) provide guidance 
for adjuvant radiotherapy or chemotherapy to patients with 
lymph node metastases. 

 SPECT acquires information on the concentration of 
gamma emitting radionuclides, such as 

111
In, 

123
I, 

201
Ti, or 

99
mTc. In enveloped viruses such as HSV, the lipophilic 

111
In-oxine tracer can transverse the viral envelope and be 

stabilized, likely by rechelation to cystein-rich viral capsid 
protein such as glycoprotein D and/or ICP5/VP22 [271]. 
Using this technique, labelled HSV has been used to quantify 
viral mass distribution in a rodent brain tumour model [272]. 

 Current research on imaging HSV-1-tk gene expression is 
focusing on: 1) methods for exact quantification of HSV-1-
TK expression, 2) improved HSV-1-TK probes for PET and 
SPECT, 3) translation of this imaging paradigm into other 
vector systems, 4) imaging follow-up in cancer therapy 
strategies, 5) imaging transcriptional activation, and 6) 
multimodal imaging by fusing the HSV-1-tk gene with 
further imaging genes. 

Bioluminescence Imaging (BLI) 

 BLI exploits the emission of visible photons at specific 
wavelengths based on energy-dependent reactions catalyzed 
by luciferases. Luciferases comprise a family of 
photoproteins that emit detectable photons in the presence of 
oxygen and ATP during metabolism of substrates such as 
luciferin into oxyluciferin. BLI has been used to monitor 
tumour cell growth and regression, to visualize the kinetics 
of tumour cell clearance by chemotherapeutics, and to track 
gene expression (Fig. 3). The most used luciferase systems 
are based on firefly luciferase (Fluc) and Renilla luciferase 
(R-luc) genes [273-275]. 

 In two recent studies luciferase imaging has been used to 
compare the transcriptional dynamics of IE and strict-late 
viral promoters in the context of oncolytic HSV vectors 
[276] and to develop a rapid method to generate multiple 
oncolytic HSV vectors [277], respectively. In the first study, 
it has been demonstrated that incorporation of a strict-late 
promoter-driven luciferase cassette into the vector would be 
useful for assessing tumour oncolysis in preclinical tumour 
treatment studies. In the second, an HSVQuik system, 
together with luciferase-labeled tumour models, has been 
shown to expedite the process of generating and evaluating 
oncolytic HSV vectors for cancer gene therapy application. 

 The ability to image two or more biological processes in 
a single animal can greatly increase the utility of luciferase 
imaging by offering the opportunity to distinguish the 
expression of two reporters biochemically. Combining genes 
encoding light-generating enzymes such as Fluc and R-luc 

with the new generation of supersensitive charged coupled 
device (CCD) cameras has opened the door to sensitive in 
vivo measurements/imaging of gene expression in living 
animals. The luciferases from Renilla and firely have 
different substrates, coelenterazine and D-luciferin, 
respectively, and can be imaged in tumours in the same 
living mouse with kinetics of light production being 
separable in time by separate injections of these two 
substrates. Recently, dual bioluminescent imaging has been 
used to monitor both gene delivery and efficacy of TRAIL-
induced apoptosis in tumours in vivo, following treatment 
with a replication-deficient HSV-1 vector [278]. 

FACTORS THAT MAY AFFECT HSV VECTORS 
EFFICACY 

 The two principal factors that affect the efficacy of HSV-
based vectors in gene therapy are: (1) the immune response 
to viral vectors, and (2) the complexity of the tumour mass. 

Immune Response to HSV Infection 

 Innate and adaptive immunity are both important in 
determining which HSV-based vector is more suitable for a 
certain strategy of gene therapy [279, 280]. 

 Inferring immune consequences to HSV vectors via wt 
HSV infections is one approach to determining their utility. 
A second strategy is to employ animal models to establish 
the efficacy and type of immune responses that will ensue 
from using a particular HSV-based vector. However, we do 
not have a complete understanding of the components that 
modulate HSV wt infection or HSV vectors delivery and this 
may be due in part to the animal experimental models that do 
not resemble completely the natural host. In this regard, a 
recent substantial improvement may come from the 
development of humanized mice as a novel tool for the study 
of HSV infection and the derived immune response [281]. 

1. Immune Response to Wild Type HSV 

 HSV induce both innate and adaptive immunity in the 
infected host. The principal component of innate immunity 
that control HSV infection are: macrophages [282], 
polymorphonuclear leukocytes (PMNLs), natural killer (NK) 
cells and innate NK-like T cells (iNKT) [283, 284], and 
dendritic cells (DCs) [282]. Dendritic cells have a crucial 
role and function as a bridge between innate and adaptive 
immunity. Adaptive response to HSV infection include the 
cellular response mediated by CD4

+
 and CD8

+
 T cells and 

the humoral response by B cells and antibodies. 

 Chemokines [285, 286] and cytokines [279, 287] have an 
important role in the coordination and development of innate 
and adaptive immune response to HSV-1. Control of HSV-1 
during primary infection requires recruitment of PMNLs 
macrophages and NK cells by specific chemokines, and 
culminates in the induction of antigen specific responses by 
T cells which control viral replication through lysis of 
infected cells and cytokine production. Effective innate 
control of viral replication may lower latent viral burden 
present in sensory ganglia, and reduce the frequency of 
subsequent reactivation. Cytokine production at the site of 
infection and in the sensory ganglion has been reported to 
affect the course of HSV infection. Several cytokines have 
been detected in these tissue during HSV infection both in 
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human and in experimental animals. The cytokines detected 
include IFN- , -  and - , IL-1, -2, -4, -5, -6, -10, -12 and -23 
and also TNF-  [279, 287]. IFN-  and -  limit the early 
acute replication of HSV [288]. IFN-  production and the 
presence of CD4

+
 and CD8

+ 
T cells are key regulators of 

viral clearance during acute infection. Other 
proinflammatory cytokines are involved in regulation of 
viral replication and reactivation in sensory ganglia, such as 
IL-1, -6, -12 and TNF- . IL-12 has important roles in the 
development of Th1 response and in cell-mediated 
immunity. It has been reported that IL-23 is expressed in the 
brain during infection [289]. It is suggested a major role for 
IL-23 in the proinflammatory response [287, 289, 290]. The 
role of Th2 type cytokines in HSV infection has not been 
well established. IL-4 and IL-10 expression has been 
detected early during the infection in sensory ganglia of 
HSV-susceptible mouse strains [291]. 

1.1. Innate Immunity 

 The innate immune system serves as the first line of 
defence against HSV infection [292] by producing and 
releasing important cytokines [282] and chemokines [286] 
following recognition of viral signals via Toll-like receptors 
(TLRs) [293]. The principal effector mechanisms underlying 
viral innate defences are phagocytosis, components of the 
complement cascade [294], NK cells mediated cytotoxicity, 
interferon type 1 and type 2 [295, 296], apoptosis [297], and 
autophagy [298, 299]. 

 The role of macrophages in the control HSV infection 
consists mainly in the phagocytosis of virion and infected 
cells apoptotic bodies that are recognized by receptors or 
through the presence of opsonines, such as specific fractions 
of complement or specific antibodies. Phagocytosis of 
infected cells apoptotic bodies is important for three main 
reasons: (1) to inhibit or restrict HSV infection, (2) to 
prevent undesirable inflammatory responses and (3) to 
initiate specific immune responses. In this regard, 
macrophages can function as APC. The complement system 
fulfils multiple functions, including the recognition of 
infected cells and communication with and activation of 
adaptive immunity [300]. All the complement cascades 
culminate in the central cleavage of C3 and in the generation 
of its active fragments C3a and C3b. Opsonization of virions 
or infected cells by covalently attached C3b favours their 
phagocytosis, amplification of complement activation and 
assembly of the C5 convertase. Cleavage of C5 induces the 
formation of multiprotein pore complex (the membrane-
attack complex (MAC), which leads to cell lysis. NK cells 
require activation by type I interferons or proinflammatories 
cytokines, such as IL-12, IL-15 and IL-18, before becoming 
fully functional effector cells. In many situations, DCs are 
the main source of the type I interferon and IL-12 that is 
necessary for NK-cells activation, and in turn IFN-  
produced by NK cells can affect the maturation and effector 
functions of DCs, as well as other leukocytes that are 
responding to the infection [301]. NK cells contribute to host 
defence against HSV infection by their ability to rapidly 
secrete cytokines and chemokines, as well as to directly kill 
HSV-infected host cells. However, it remains unclear 
whether there is cognate recognition of the HSV-1 infected 
cells by NK cells or whether the effect of HSV-1 on NK 
cells are an indirect result of high-level production of type I 

IFN and other cytokines that is induced by HSV infection. 
There are no reports of any viral proteins encoded by HSV 
that preferentially modulate or function as decoys or ligands 
of known NK-cell receptors. iNKT cells are restricted to the 
monomorpic MHC class-I-like molecule CD1d for foreign 
and self-glycolipid antigens [284]. NKT cells are involved in 
the innate response to HSV in mice [302]. Recent studies 
confirmed the predominant role of NKT cells in controlling 
early viral replication and in determining mortality, 
neuroinvasion, loss of sensory neurons, lesions and level of 
latency [303]. Type 1 interferons are produced in two 
distinct ways: (1) by infected cell detecting components of 
virus replication within them, and (2) by innate immune cells 
detecting the presence of viruses through TLRs. 
Plasmacytoid dendritic cells are the principal producers of 
type 1 interferons, in particular IFN- . Type 2 interferon 
which is produced early after infection by NK cells and later 
by CD4

+ 
cells has been shown to

 
be a crucial cytokine for the 

control of HSV infection. Apoptosis is initially triggered and 
subsequently blocked during a wt HSV-1 infection. 
Proapoptotic factors include the viral ICP0 gene transcript 
[304] and as yet unknown viral or cellular facilitator 
proteins. Seven viral gene products and two cellular proteins 
have been proposed to act in the prevention of apoptosis 
during infections [295, 297]. Together, these signals set up 
an apoptotic balance, which presumably delay cell death, 
until progeny virions are produced [297]. Autophagy is a 
process required for HSV-1 virion degradation and protect 
against CNS viral disease [305]. Furthermore, autophagy has 
been shown to enhance the presentation of endogenous viral 
antigens on MHC class 1 molecules during HSV-1 infection 
[299]. HSV activates innate immunity through both TLR-
dependent and TLR-independent mechanisms [292, 306, 
307]. 

 The HSV TLR-dependent response entails TLR2, TLR3, 
TLR2/TLR6 heterodimer, TLR8 and TLR9. Viral or host 
glycoproteins/lipopeptides responsible for TLR2 agonist 
activity are currently unknown. In this regard, it has been 
reported that fragments of gD can induce an IFN-  response, 
implying that gD could interact with TLRs [308]. It has been 
found that glycoprotein-dependent and TLR2-indipendent 
innate immune recognition evokes a set of proinflammatory 
cytokines such as: TNF- , IL-1  [309]. TLR2 recognition 
may be particularly important during HSV-1 encephalitis, as 
microglia strongly express TLR2 [309, 310]. Recently, it has 
been shown that the complex of the four glycoproteins gB, 
gD, gH and gL, which are essential for viral 
attachment/entry (Fig. 2), expressed on the surface of Cos7 
cells mediates monocyte-derived DC recognition via a 
nucleic acid-independent and TLR-independent pathway, 
leading to the up-regulation of CD40, CD83, CD86 and 
HLA-DR and to the production of IFN-  and IL-10, but not 
IL-12p70 [311]. TLR3, TLR8 and TLR9 are recognized by 
virus-derived double stranded RNA (poly-I:C), virus-derived 
single stranded RNA (ssRNA) and unmethylated CpG 
motifs, respectively. TLR3 seems to be the dominant TLR 
involved in recognition of HSV-1, and patients with 
dominant-negative TLR3 mutations were recently found to 
be highly susceptible to herpes simplex encephalitis (HSE) 
[312]. This result does suggest that dsRNA detection is a 
critical step in innate recognition of HSV-1 infection 
implicating TLR3 which is expressed in human neurons, 
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microglia, and astrocytes [313]. It has also been found that 
TLR2 and TLR9 can act in synergy to induce an early 
cytokine response, thereby restricting viral load in the brain 
[265]. An accumulating body of evidence has demonstrated 
that in addition to the membrane-bound type DNA-sensing 
receptor TLR9, there are cytosolic DNA receptors that can 
also evoke these response [314]. In this regard, it has been 
observed that HSV-1 induces IFN-  production via TLR9-
dependent and –independent pathways [306]. 

 The multiplicity of TLRs detecting HSV infection 
necessitates a robust ability of the virus to effectively block 
multiple innate signalling pathways to survive and, in the 
case of viral vectors, to be effective. Therapeutically 
delivered HSV-based vectors may contain elements that 
stimulate these responses; depending on the application, this 
may or may not be desirable. 

1.2. Adaptive Immunity 

 In contrast to an innate response, adaptive responses are 
mediated by immune cells specific for an antigen. The clonal 
selection of lymphocytes gives the immune system the 
capacity to recognize and have memory for specific 
pathogens and to mount a rapid and potent response against 
subsequent attacks from that pathogen. Antigen-presenting 
cells (APCs), such as DCs, take up pathogens, become 
activated and migrate to lymphnodes where they interact 
with T cells and differentiate into T cells helper type 1 (Th1) 
or T cells helper type 2 (Th2). Th1 responses rely on the 
presence of the cytokines IFN-  and IL-1, whereas Th2 
responses occur in presence of IL-4 and IL-10. Typically, the 
Th2 pathway will elicit a humoral response characteristically 
producing antibodies of IgG1 isotype and are not 
inflammatory in nature. Alternatively, responses that proceed 
down to Th1 pathway typically produce antibodies of IgG2b 
isotype, and activate cytotoxic T cell lymphocytes (CTLs) 
and a host of proinflammatory cytokines. 

1.3. HSV Immune-Evasion Strategies 

 Different studies identified several HSV-encoded 
mechanisms which interfere with antiviral host innate and 
adaptive immunity including: (1) nonspecific degradation of 
host mRNA by the RNAse vhs [315]; (2) block of DC 
activation. It has been demonstrated, for the first time, that 
vhs can block the induction of DC activation by TLR-
independent pathways [316]; (3) inhibition of PKR by US11 
[317] and -34.5 [226]; (4) defective CD1d recycling from 
the endosome to the cell surface. HSV has developed an 
immune-evasion strategy that impair CD1d-mediated antigen 
presentation, suggesting a role for NKT cells in antiviral 
response [318]; (5) inhibition of MHC-I peptide loading by 
ICP47, thus disabling CTLs from recognizing cell infected 
with HSV [319]; (6) suppression of interferon response and 
TLR-dependent inflammatory response by ICP0 [320, 321]; 
(7) inhibition of apoptosis and interferon. In HSV-1, 
antiapoptotic activity has been assigned to immediate-early 
proteins ICP4, ICP27, US3, ICP22, gD, and others [295, 
297], whereas ICP0 was found to be necessary (and 
sufficient) to induce the initial apoptosis induction event 
associated with HSV-1 infection [304]. Granzyme B or Fas 
caspase-activation and apoptosis have been shown to be 
inhibited by gJ [322]. The latency-associated transcript 
(LAT) has been also shown to inhibit apoptosis and promote 

neuronal survival [323, 324]; (8) inhibition of autophagy by 
ICP34.5 [21, 325]. It has been recently reported that -34.5 is 
involved in the inhibition of autophagy through the 
inhibition of Beclin 1, a critical factor involved in this 
pathway [21]; (9) evasion of immunity mediated by antibody 
and complement. Glycoprotein C binds complement 
component C3b, preventing the activation of the complement 
cascade [326]; while glycoproteins E and I form a high-
affinity receptor that binds the Fc region of immunoglobulin 
G (IgG) inhibiting complement activation and antibody-
dependent cellular cytotoxicity [327]. Recently, it has been 
shown that gC and gE can block antibody access to 
neutralizing domains on glycoproteins involved in entry as a 
novel mechanism of immune evasion by HSV-1 [328]. 

 Taken together these data suggest that HSV evasion of 
innate and adaptive immunity is multifactorial and complex, 
and relies on the partially redundant activities of various 
HSV proteins. Reviewing these viral strategies of HSV 
immune evasion is important to understand whether their 
inclusion within an HSV vector system would be beneficial 
or detrimental to a particular application. 

2. Effect of Innate and Adaptive Immunity on Vector 

Efficacy 

 HSV1-based vector are particularly amenable to gene 
therapy applications within the CNS. Because aspects of the 
innate immune response to HSV-1 vectors in CNS are 
largely unknown, it is important to develop new tools for 
such studies. In this regards, Zeier and colleagues [329] have 
recently compared the host response of a replication-
defective HSV-1 vector to that of a replication-competent 
HSV-1 using microarray analysis. Pathway analysis revealed 
that both the replicating and nonreplicating vectors induced 
robust antigen presentation but only mild interferon, 
chemokine, and cytokine signalling responses. The ICP4 
deleted replication-defective vector was restricted in several 
of the TLR receptor-signalling pathways, indicating reduced 
stimulation of innate immune response. These array analyses 
suggest that although the replication-defective vector induces 
detectable activation of immune response pathway, the 
number and magnitude of the induced response is 
dramatically restricted compared to the replicating vector 
and with the exception of antigen presentation, host gene 
expression induced by nonreplicating vector resembles mock 
infection. 

 Innate immunity is critically important in limiting wt 
viral infections and in the context of HSV oncolytic therapy, 
this branch of the immune system appears to be a potent 
obstacle for achieving oncolytic vector replication and 
tumour destruction [330]. In this regard, drugs that inhibit 
innate immune response have been shown to enhance glioma 
virotherapy [235]. Moreover, both the antitumor efficacies as 
well as the intratumoral viral titers were found to be 
significantly increased with the concurrent depletion of 
mononuclear cells and the elimination of antiviral cytokines 
[235]. 

 Following activation of innate immunity, the adaptive 
component of the immune system is recruited to the site of 
infection and participates in both the killing of virally 
infected cells and the production of antibodies against 
foreign antigens. The induction of an immune response 
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against antiviral products can represent the major problem 
and may reduce the effectiveness of HSV-1-derived vectors. 
In fact, immune responses arising from the delivery of 
recombinant HSV vectors can be due to several factors, such 
as: viral particles components copurified packaging cell 
debris, different routes of delivery, multiple injections of the 
vectors, low-level de novo viral gene product expression. As 
a consequence of this last aspect, replication-defective 
vectors may contains ORFs that are expressed at low levels 
even in the absence of immediate-early gene products, 
augmenting the potential for antigen processing and 
subsequent MHC class I presentation. 

 HSV-based vectors have been used in a variety of diverse 
applications including gene transfer for gene therapy, as 
oncolytic viruses, or as a vaccination platform. In the case of 
gene transfer, an immune response against the vector or the 
transgene would be detrimental to sustained transgene 
expression, weakening the efficiency of the therapy. 
Targeted oncolytic viruses must replicate in and destroy 
cancer cells selectively enhancing, at the same time, tumour-
specific immunity. Alternatively, when using HSV as a 
vaccination platform the preferred outcome is a directed 
immune response to the transgene. The desired results of 
different applications in gene therapy might be opposites and 
would require different strategies in constructing HSV-based 
vectors. 

 To prolong the effect of transgenes expressed from viral 
vectors in gene transfer therapy, it has been shown that 
treatment with cyclosporine A can reduce the inflammatory 
response to a HSV vector leading to improved transgene 
expression [331], while immunomodulative treatment with 
Linomide seems to facilitates the spread and expression of 
ICP34.5-negative vector in CNS [332]. 

 In oncolytic virotherapy, CTLs have been implicated as 
the critical responders to viral antigens presented on the 
surface of tumour cells. CTLs are subsequently redirected to 
tumour cell antigens, thereby enhancing the efficacy of 
oncolytic HSV-1 by inducing antitumor immunity [144, 
333]. In this regard, the inclusion of genes encoding for 
various cytokines into viral vectors to enhance antitumor 
immune responses has been also tested and found to be 
beneficial in several preclinical models of cancer [204, 206]. 
As a further improvement in oncolytic virotherapy, it has 
been observed that apoptotic bodies produced upon viral 
infection and their subsequent engulfment by APCs can 
potentiate cytotoxic T lymphocyte activity and the anti-
tumour response. The potential to exploit this in conjunction 
with OV therapy to enhance anti-tumour immunity is only 
beginning to be realized and needs to be further investigated 
[330]. 

 ICP34.5-deleted HSV vectors have been extensively used 
both in gene transfer therapy and in oncolytic virotherapy. 
However, immune response to these vectors has not been 
thoroughly elucidated. It has shown that infection with 
ICP34.5-deleted HSV vectors results in alterations in 
splenocyte subsets and cytokine expression [334]. The 
viruses carrying IL-4 or IL-10 transgenes or even the 
ICP34.5-deleted HSV vectors without transgenes have been 
shown to induce Th2 type cytokine response, whereas the wt 
HSV-1 induces Th1 type cytokine response in 
immunological cell populations. However, in the CNS the 

cytokine expression was more variable [334]. Moreover, it 
has been reported that virus R8306, expressing IL-4 
transgene suppressed IFN-  and induced IL-23 expression 
during the acute infection but decreased its expression during 
the later time points. Furthermore, R8308 virus without 
transgenes or R8308 with IL-10 transgene induced IFN-  as 
well as IL-23 responses in the brain. The virus R3616 with 
the deletion of both ICP34.5 genes causes differences in the 
splenocyte subsets in comparison to the wild-type infection, 
inducing a stronger proliferation of CD4+ and CD8+T cells, 
as well as of the CD11c+ antigen presenting cells [334]. This 
indicate an additional role of ICP34.5 as to those already 
observed, such as immune evasion and inhibition of the host 
interferon response [335, 336]. The immune responses 
evoked by the ICP34.5-deleted vectors used in the clinical 
cancer therapies (G207, 1716, NV1020 and OncoVex) have 
not been reported and can therefore not yet be compared 
with the reported results. The immunological reactions due 
to the HSV vector are needed to be studied in more detail. 
The specific Th1 or Th2 type cytokine responses can be used 
to benefit the therapy. The ICP34.5-deleted HSV vectors are 
excellent basis and platform for the development of even 
more attenuated and safe vectors, such as to avoid some of 
the risk factors described above. 

 Concerning the use of viral vector as vaccines, numerous 
strategies have attempted to influence or direct the immune 
response toward either a Th1 type or Th2 type; the presence 
of particular cytokines is one way to accomplish this goal. 
The presence of IFN-  and IL-1 will push the development 
of a Th1-type response. This type of response is useful when 
cellular immunity and inflammation are desired. The 
presence of IL-4 and IL-10 will skew a response toward the 
Th2 type. These cytokines bring about a strong humoral 
response, avoiding the often unnecessary, and dangerous, 
inflammation and presence of CTLs. The preferred cytokine 
gene can be inserted into the HSV-based vector, allowing for 
its coexpression with the antigen of interest, increasing the 
likelihood that a particular response is established. Another 
consideration when attempting to direct an adaptive response 
is the choice of transgene within the vector, since whole 
gene products may contain several different epitopes, which 
can be T or B cell epitopes. Expressing only a portion of an 
antigen of interest, including a specific epitope, or 
coexpressing an epitope that is a strong inducer of a known 
response type, can push the response toward one that is more 
humoral or cellular in nature. 

2.1. Effect of Pre-Existing Adaptive Anti HSV Immunity on 
Vector Efficacy 

 The main aspect of adaptive immunity that should be 
taken into consideration when using HSV vectors in different 
gene therapy strategies is due to the presence of anti HSV 
antibodies in a high percentage of the population. It is 
conceivable that these antibodies may interfere with HSV-
based vectors either by directly neutralizing the infectivity of 
viral vector particles or else by triggering the rapid clearance 
of vector-transduced cells. 

 The effect of pre-existing immunity on HSV-1 vectors 
delivery has been extensively studied using oncolytic virus 
recombinants. It has been shown that pre-existing immunity 
to HSV-1 does not seem to affect oncolytic HSV-1 therapy 
when the virus is administered intraneoplastically [337]. 
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Further, the presence of neutralizing antibodies and cell 
mediated immunity to HSV-1 did not alter the efficacy of an 
oncolytic HSV-1 after intraportal administration to mice 
with diffuse liver metastases [242]. Moreover, multiple 
injections can be applied without being affected by immune 
resistance to the viral vector [279]. Even though these results 
are encouraging, the impact of pre-existing immunity on 
HSV-1 cancer gene therapy and virotherapy still needs to be 
carefully evaluated by further studies. More research in 
laboratory and in clinics would be required to address all 
these issues. 

 Concerning the effect of pre-existing immunity on HSV 
vectors used as vaccine tools, Brockman and colleagues [98] 
have shown that cellular and humoral immune responses to a 
model antigen (E. coli -galactosidase), encoded by a 
replication-defective HSV-1 vector (deleted in the gene 
encoding ICP8), were unaffected by pre-existing immunity 
in mice, when the vaccine was delivered via the 
subcutaneous route [98]. On the contrary, in a more recent 
study it was shown that humoral as well as cellular immune 
responses against a different model antigen (ovalbumin) 
encoded by the vaccine were strongly diminished in HSV-1-
seropositive mice. This inhibition could be observed in mice 
infected with wild-type HSV-1 or with a replication-
defective vector. Although these data clearly indicate that 
pre-existing antiviral host immunity impairs the efficacy of 
HSV-1-derived vaccine vectors, they also show that 
vaccination under these constraints might still be feasible 
[338]. 

2.2. Strategies to Protect HSV Vector from Host Immunity: 
The Trojan Horse 

Oncolytic viruses can be efficiently neutralized by antiviral 

antibodies in the blood stream or sequestered by phagocytic 

cells in the liver and spleen, and they often fail to extravasate 

and migrate in tumour deposits or in the tissue to which 

tumour metastasize. As an alternative to the administration 

of naked viruses, virus-infected carrier cells are currently 

under investigation as vehicles (“Trojan horse”) to deliver 

oncolytic viruses more reliably, uniformly and efficiently to 

sites of tumour growth in the body even in virus-immune 

individuals [339]. The enhanced delivery of viruses by 

carrier cells is a current development that has been addressed 

in only a small number of studies, according to the cell type 

utilized for virus delivery: tumour cells, mesenchymal 

progenitor cells, neuronal stem cells, T-cells, 

monocyte/dendritic cells or endothelial progenitor cells. 

Coukos and colleagues [340] conducted the first study on 

cell carrier-mediated oncolytic virus delivery in which a 

human teratocarcinoma cell line was infected with an 

oncolytic HSV, for the intraperitoneal therapy of epithelial 

ovarian cancer (EOC). In this study, it was reported that the 

oncolytic effect of HSV1716 was enhanced by the utilization 

of the carrier cell line. 

The Complexity of the Tumour Mass 

 Targeted virotherapy has emerged as an effective and 
potent strategy for the fight against cancer. However, clinical 
trials have demonstrated that therapeutic benefit in response 
to oncolytic virotherapy has been limited [146, 341]. These 
trials suggest that the virus failed to distribute throughout the 

tumour mass. Long-term viral persistence in the tumour 
tissue without tumour eradication suggests that viral spread 
is the limiting factor and that a barrier mechanism exists 
within the tumour tissue to hinder spread. Tumour tissue 
extracellular matrix (ECM) is a major barrier for transport of 
macromolecules. Tumour ECM is characterized by a 
complex network composed of elastic fibers and collagen 
interdispersed with glycosaminoglycans and proteoglicans, 
which form a fluid-saturated gel-like medium. Because of 
the presence of the tumour ECM, a number of high-
molecular-weight agents, including viral vectors, fail to 
penetrate the tumour tissue and exhibit limited therapeutic 
effectiveness [342]. 

 Several strategies have been developed to enhance 
oncolytic HSV spread through ECM, among them the 
use/expression of enzymes that can degrade tumour ECM, or 
viral induced apoptosis inside tumour ECM. 

1. Enzyme Treatment or Expression 

 It has been recently demonstrated that degradation of the 
fibrillar collagen network by collagenase, in a human 
melanoma xenograft, favours the regression of tumour 
vasculature and improves the distribution and the efficacy of 
oncolytic HSV in tumour tissue [343]. Successively, it has 
been shown that human matrix metalloproteinases-1 and -8 
(MMP-1 or MMP-8), which degrade fibrillar collagens, 
proteoglycans, and other structural matrix components, 
enhance efficacy of oncolytic HSV therapy [344]. Therefore, 
intratumoral expression of MMPs seems to be a promising 
strategy for improving viral spread and therapeutic potential 
of oncolytic viruses by modulation of tumour ECM. 

 However, some concerns about strategies that cause 
degradation of ECM exist. While degradation of ECM with 
enzymes, such as collagenase and MMPs, may improve viral 
penetration and distribution, on the other hand may also 
increase tumour spread. In fact, MMPs and collagenase have 
been shown to play an important role in tumour invasion and 
metastasis [345]. Even if, there is also some emerging 
evidence that MMP-8 does not promote tumorigenesis or 
metastasis and may be antimetastatic [346]. Therefore, 
further thorough and detailed studies are required to gain an 
improved understanding of the potential risk associated with 
combined replicating oncolytic virus and ECM-degrading 
enzyme. 

2. Viral-Induced Apoptosis 

 Induction of apoptosis in the tumour mass can facilitate 
the release and distribution of viruses. Interestingly, 
apoptosis induced during viral DNA replication seems to 
compromise viral production, whereas apoptosis induced 
after virion assembly enhances viral release and 
dissemination from infected cells [297, 347]. Apoptosis is 
significantly elevated in tumour tissue treated with oncolytic 
viruses and chemotherapeutics, as chemotherapy-induced 
cell death occurs mainly by the apoptotic pathway. 
Therefore, tumour cell apoptosis could be at the basis of the 
strong synergy observed between oncolytic HSV with 
various chemotherapeutics [348]. As it has been described 
above, interstitial collagen fibers and the narrow spacing (~ 
20 nm) between cancer cells are major barriers hindering the 
movement of large viral particles and limit the success of 
oncolytic virotherapy. The void space produced by cancer 
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cell apoptosis might enhance the initial spread and efficacy 
of oncolytic HSV. At this regard, it has been reported that 
Paclitaxel plus TRAIL pretreatment, two inducing agents of 
apoptosis, enhances oncolytic HSV intratumoral delivery/ 
penetration and antitumor efficacy [349]. These observations 
emphasize the important relationship between induction of 
the apoptotic pathway and viral spread in solid-tumour 
tissue. The formation of apoptotic bodies, a morphological 
characteristic of apoptosis, can also facilitate the dispersal of 
viral particles throughout the tumour mass. Apoptotic bodies 
can also be rapidly phagocytosed by neighbouring cells, such 
as macrophages and tumour cells, and disperse the virus 
throughout the intercellular spaces. Viral dissemination 
through apoptotic bodies may be one of the major 
contributors for the synergistic therapeutic effect of 
oncolytic virotherapy and chemotherapy. 

3. How to Investigate Viral Spread Inside Tumour ECM 

 Viral spread within the tumour mass cannot be 
investigated using conventional monolayer cell cultures, 
because these models poorly mimic the solid tumour 
microenvironment. An alternative is multicellular tumour 
spheroids (MTSs), which have gained in importance as an in 
vitro model of solid tumours [350]. The 3-dimensional (D) 
MTSs are intermediate in complexity between standard 2-D 
monolayer cultures in vitro and tumour tissues in vivo. They 
consist entirely of tumour cells and therefore fall to represent 
the native 3-D architecture and heterogeneity of solid 
tumours in vivo. As an example, glioblastoma (GBM) biopsy 
material obtained at surgery, has been cultured in the form of 
multicellular spheroids, where the essential phenotypic 
characteristics of the tumour tissue are retained [351]. Direct 
transplantation of such “organotypic” spheroids into rodent 
brains forms lesions that eventually recapitulate all the 
histopathological infiltration, angiogenesis, endothelial 
proliferations and dilated, thrombotic vessels [352]. The 
effect of oncolytic G207 virus, currently used in clinical 
therapy, has been assessed on a set of xenograft phenotypes 
that follow these biological features described above [347]. 
The study highlights the favourable cellular responses to 
G207 treatment seen from a clinical viewpoint, such as 
reduced tumour cell proliferation, more frequent events of 
tumour cell death, and a strongly attenuated tumour vascular 
compartment. However, these beneficial changes were only 
observed in areas of active viral replication, leaving non-
transduced tumour tissues unaffected. 

NEW PERSPECTIVES IN TUMOUR ONCOLYTIC 
VIROTHERAPY 

Oncolytic Virotherapy for the Cancer Stem Cells 

 From a variety of malignancies, investigators have 
identified a subpopulation of cells, which are capable of 
initiating and sustaining tumour growth in vivo [347, 353]. 
These cells, which have been called “tumour initiating”, 
“cancer stem cells (CSCs)” or “cancer stem-like cells”, were 
found to possess characteristics of adult organ stem cells 
such as self-renewal and multilineage differentiation, 
implicating a transformed stem cell as the cell of tumour 
origin. The indication that there are distinctive 
subpopulations of cells within tumours with stem-like 
properties has led the investigators to identify a variety of 
cell-surface markers that can be used to isolate and study 

these cells. Recent discoveries indicate that CSCs embody 
chemo- and radioresistance and have been correlated with 
advanced disease and resistance to current therapies, and 
thus help explain the treatment resistance of many cancers. 
There also seems to be a direct link between epithelial-
mesenchimal transition phenomena and CSCs. Cancer cure 
is predicated upon effectively targeting and eradicating the 
CSC population. Oncolytic viruses have undergone many 
developments and through multiple generations offer an 
effective way to specifically target and eradicate CSCs, 
while still maintaining the ability to affect the general 
tumour cell population [354]. Recent studies have explored 
the activity of oncolytic adenovirus against CSCs derived 
from breast cancer [355] and brain tumours [356]. Recently, 
Wakimoto and colleagues [357] have reported a novel 
therapeutic strategy for glioblastoma-derived cancer stem-
like cells (GBM-SCs) using oncolytic HSV-1. The authors 
have shown, for the first time, the efficacy of oncolytic HSV 
against GBM-SCs and correlate this cytotoxic property with 
specific oncolytic HSV mutations. Moreover, the new 
glioma models, derived from neurospheres enriched for 
GBM-CD133 positive SCs that very efficiently formed 
highly invasive and/or vascular tumours upon intracerebral 
implantation into immunodeficient mice, provide powerful 
tools for testing experimental therapeutics and studying 
invasion and angiogenesis 

MicroRNA in Oncolytic Virotherapy 

 A key issue in developing a safe and effective oncolytic 
virotherapy is the achievement of maximal killing of tumour 
cells while maintaining tumour specificity of viral targeting. 
In this regard, HSV oncolytic vectors have been developed 
where different cancer-specific promoters were incorporated 
in front of an essential viral gene to achieve selective viral 
replication (in) and specific killing of cancer cells [139, 234, 
249, 266]. However, nonspecific toxicity to normal tissue 
due to leaky promoters has remained a problems [358, 359] 
and suggests that improved stringency of oncolytic viral 
targeting needs to be developed. One approach to achieve 
this is to take advantage of unique tissue-associated patterns 
of expression of microRNAs (miRNA). Differential miRNA 
expression profile between normal and cancer cells have 
been shown by microarray analysis of clinical samples and 
several miRNA signatures within the genome have been 
proven to be promising biomarkers for prognosis and 
diagnosis of cancers [360, 361]. Recent studies have also 
shown that some miRNA are overexpressed and some are 
down-regulated in several cancer cells compared with their 
normal tissue of origin, suggesting that these miRNA may 
play a role as oncogenes or tumour suppressor in the 
tumourigenesis of various human cancer [362, 363]. These 
observations represent an important step toward the potential 
application of miRNA-based virotherapy for the treatment of 
cancer [364]. There are possibly two different strategies that 
can be used to target cancer by miRNA. The first, is to take 
advantage of the differential miRNA expression between 
cancer and non-neoplastic tissue. In this regard, Lee CY and 
co workers [365], have demonstrated that inclusion of 
specific miRNA target sequence into the 3’-UTR of an 
essential HSV-1 gene is a viable strategy for restricting viral 
replication and oncolysis to cancer cells while sparing 
normal tissue. Using this strategy, it is possible to further 
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enhance tumour specificity and to improve regulation of 
oncolytic viral replication by increasing the copy number of 
miRNA target sequences. In addition, target sequences of 
more than one miRNa species can be incorporated into 3’-
UTR because miRNA expression patterns differ across 
normal tissue of different origins. Through synergistic 
effects of various regulatory elements in the promoter 5’-
UTR or 3’UTR stringent regulation of viral gene expression 
and viral replication will be possible to develop a highly 
effective and tumour-specific virotherapy for cancer 
treatment. 

 The second strategy to target cancer by miRNA is to 
modify the expression of few deregulated miRNA in 
tumours using non-lytic viral vectors for miRNA 
replacement or inhibition. Most therapeutically useful 
miRNAs seem to be expressed at low levels in tumours but 
are highly expressed, and therefore tolerated, in normal 
tissue. In an elegant study, Kota and colleagues [366] have 
demonstrated that hepatocellular carcinomas (HCC) exhibit 
reduced expression of miR-26a, a miRNA that is normally 
expressed at high level in diverse tissue. Systemic 
administration of this miRNA in a mouse model of HCC 
using adeno-associated virus (AAV) results in inhibition of 

cancer cell proliferation, induction of tumour-specific 
apoptosis, and dramatic protection from disease progression 
without toxicity. These findings suggest that delivery of 
miRNA that are highly expressed and therefore tolerated in 
normal tissue but lost in disease cells may provide a general 
strategy for miRNA replacement therapy. HSV vectors, such 
as amplicon, could be used in these last described 
experimental studies. 

CONCLUSION 

 Herpes simplex virus-based vectors for gene therapy 
exist in three forms: amplicons, replication-defective vectors 
and replication-competent vectors. This review focuses on 
the progress using replication-defective and replication-
competent HSVs. Replication-defective vectors have reached 
a developmental stage that has completely eliminated 
toxicity, and these vectors are therefore safe for the target 
cells, even when infected at high multiplicities. Furthermore, 
these vectors have proven suitable and powerful tools for 
different types of experimental gene therapy settings in small 
animals, as well as for studies of neural functions, as it is 
shown in Table 1. However some difficulties that still remain 
to be resolved in many cases, account for the fact that these 
vectors are only now reaching the clinics for neurological 

 

Fig. (3). Monitoring of virus transduction in a model of subcutaneous hepatocellular carcinoma (HCC) [367]. To follow HSV-1 C-gal-Luc 

strain replication in the tumour mass the virus was inoculated into the experimental tumour, developed on the right flank of athymic mice, 

and localization and intensity of luciferase expression was monitored by in vivo bioluminescence imaging. (A) Overlay 

luminescent/photographic and photographic images of a representative animal at 3 and 17 days post-infection. The arrows indicate the 

location of tumours. Intensity of light emission is represented by an artificial colour code normalized to allow comparison of different 

acquisitions. The maximum (red) and minimum (blue) correspond to 10
7
 and 10

5
 photons/s, respectively. (B) Quantification of luciferase 

activity over time. The average light emission in photons/s (n=7) is reported. 
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disorders. For the first time, a defective recombinant vector 
(NP2) expressing preproenkephalin is now moving into a 
clinical trial to treat pain due to malignancy. 

 Replication-defective and replication-competent HSV 
vectors for vaccination have been extensively studies in 
preclinical models but none of them have reached the clinical 
phase due to the possibility of adverse effects. Both vector 
types have been used for vaccination against HSV or for 
other viral infections, following accommodation of 
heterologous genes into the HSV genome backbone (Table 
2). While replication-competent HSV vectors are 
advantageous in many applications for their persistence, 
replication-defective vectors may also induce a durable 
immune response. The efficacy of either vector might 
potentially be affected by the pre-existing immunity to HSV 
viral antigens in the host. Live attenuated HSV vaccines 
compared to replication-defective vectors have many clear 
advantages for two reasons: (1) they provide a vehicle for 
complete presentation of all viral antigens to the host’s 
immune system, stimulating both humoral and cell-mediated 
immune responses and (2) can be efficiently propagated with 
ease in cell cultures and are therefore extremely cost-
effective vaccines. However, it is important that in the 
construction of HSV vectors for vaccination should be taken 
into account the presence of those viral genes whose 
expression favours the immune evasion of the virus. The 
ideal vector has to be rationally designed by removing the 
genes that allow HSV to avoid the immune system. Whether 
these vectors will prove to be more effective in combination 
with cytokine adjuvants, to redirect the immune response to 
the desired phenotype, or booster immunizations with other 
vectors or the appropriate subunit antigen will await future 
studies. 

 While antitumor strategies using replication-defective 
HSV-1 vectors to deliver therapeutic transgenes have yielded 
encouraging results, the fasting growing area in HSV-1 
vector-mediated cancer treatment lays with replication-
competent HSV-1 oncolytic viruses. HSV vector delivery to 
tumour cells is a challenge because of three major obstacles: 
inadequate penetration in tumour interstitial space; 
significant uptake of HSV vectors in normal organ; and host 
immune response to HSV vector. These problems common 
to all HSV vectors, have not been solved completely 
although they can be reduced using the strategies discussed 
above. These strategies can be used alone or in different 
combinations, depending on the method of administration 
and the type of tumours. In the future the challenge is to 
refine what has been developed since now or to acquire new 
strategies for overcoming the difficulties encountered in 
defeating cancer. Improving HSV vectors can follow several 
directions in order to: (1) enhance the distribution of viral 
vectors in tumour tissue; (2) develop novel devices that can 
reduce the dissemination of viral vectors in healthy tissues; 
(3) search and design new viral vectors that can target unique 
markers either on tumour cell membranes, on extracellular 
matrix, or in the microenvironment; (4) search and design 
new HSV vectors that can be activated selectively in 
tumours; (5) engineer the genome of HSV so the vectors will 
have the balanced (appropriate) immunogenic potential and 
plasma half-life for the different therapeutic strategies; (6) 
combine the HSV oncolytic potential with administration of 
cutting-edge molecular targeted medicines; (7) develop 

novel devices, such as virus-infected cells as a Trojan horse 
vehicle, to evade antiviral mechanism encountered in the 
bloodstream, prevent uptake by off-target tissues, and act as 
microscale factories to produce oncolytic HSV upon arrival 
in tumour beds; (8) develop new animal models that closely 
mimic that peculiar disease; (9) get advantage from the 
recent studies on microRNAs; (10) attack tumour stem cells 
by engineering oncolytic HSV due to the fact that cancer 
stem cells possess enhanced tumour-forming capability and 
are resistant to current anticancer therapies. 

 It is believed that research in these directions will lead to 
the development of new technologies and vectors that can 
improve efficacy and reduce toxicity in HSV-based tumour 
therapy, yielding oncolytic vectors to be used in clinical 
trials. 

 The findings reported in this review demonstrate the 
importance of understanding basic virology in the design of 
vector system and the powerful approach of exploiting 
favourable properties of the parent virus in generation of 
HSV vectors for gene therapy. Most of the studies have 
revealed a complex set of interaction between HSV and host, 
which underlie the mechanism responsible for the journey of 
the virus from initial epithelium attachment, entry and lytic 
infection, to latent infection in sensory ganglia, and 
subsequent reactivation. Each of these properties has to be 
exploited in different way for the generation of HSV vectors 
with therapeutic application as diverse as neurological 
diseases, cancer and vaccine. A great understanding of the 
mechanism of the host immune responses by HSV vectors is 
essential for the development of next generation safe gene 
therapy HSV vectors. The different layers of protection that 
are targeted by HSV immune evasive strategies necessitate 
to be extensively studied to find ways in which HSV vectors, 
for the different branches of gene therapy, can be designed 
and administered. On the other side, there is the need to 
continue to gain information concerning genetic structure, 
function and mechanisms underlying human diseases. Our 
ability to use these information for clinical applications will 
determine if the technology described here eventually 
becomes established in clinical practice. 
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