RESEARCH ARTICLE


Correlation of High Interleukin 17A and Interleukin 6 Levels with High Virus Load Among Subtype C HIV-infected, Antiretroviral Therapy-naive Zimbabwean Patients: A Cross-sectional Study



Tommy Mlambo1, Mqondisi Tshabalala1, Tsitsi Bandason2, Kudakwashe Mhandire3, Bonface Mudenge4, Lynn Sodai Zijenah1, *
1 Department of Immunology, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
2 Biomedical Research and Training Institute, Harare, Zimbabwe
3 Department of Chemical Pathology, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe
4 Flow Cytometry Laboratories and Medical Centre, Harare, Zimbabwe


Article Metrics

CrossRef Citations:
2
Total Statistics:

Full-Text HTML Views: 3562
Abstract HTML Views: 1659
PDF Downloads: 825
ePub Downloads: 699
Total Views/Downloads: 6745
Unique Statistics:

Full-Text HTML Views: 2013
Abstract HTML Views: 863
PDF Downloads: 518
ePub Downloads: 423
Total Views/Downloads: 3817



Creative Commons License
© 2019 Mlambo et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Department of Immunology, University of Zimbabwe College of Health Sciences, Harare, Zimbabwe; Tel: +263712631198; E-mail: lzijenah@gmail.com


Abstract

Introduction:

In response to the human immunodeficiency virus (HIV) infection, activated immune cells produce several cytokines that alter the immune response and HIV disease progression. We quantified Th1/Th2/Th17 cytokines in an antiretroviral therapy naïve (ART) cohort to investigate their correlation with traditional markers of HIV disease progression; CD4+ T-lymphocytes and virus load (VL).

Methods:

We enrolled 247 HIV-infected ART-naïve participants into the study. CD4+ T- and CD8+ T-lymphocytes were enumerated using flow cytometry. VL was quantified using the Cavidi ExaVirTM Load assay. IL-2, IL-4, IL-6, IL-10, IL-17A, TNF-α, and IFN-γ levels were quantified using the BD Cytometric Bead Array Human Th1/Th2/Th17 cytokine assay. The Kendall’s rank correlation coefficient was used to determine the correlation between log10 transformed data for cytokine levels and CD4+ T- and CD8+ T-lymphocytes, CD4/CD8 ratio, and VL.

Results:

The median CD4+ T- and CD8+ T-lymphocyte counts were 458 cells/µL (IQR:405-556) and 776 cells/µL (IQR:581-1064), respectively. The median CD4/CD8 ratio was 0.6 (IQR: 0.45-0.86). The median VL was log103.3.copies/mL (IQR:2.74-3.93). Low CD4+ T-lymphocyte counts (p=0.010) and CD4/CD8 ratio (p=0.044) were significantly correlated with high VL. There was no significant correlation of cytokine levels with CD4+ T-, CD8+ T-lymphocyte counts and CD4/CD8 ratio. However, high levels of IL-17A (p=0.012) and IL-6 (p=0.034) were significantly correlated with high VL.

Conclusion:

Our study contributes to the little knowledge available on the role of cytokine profiles in the immune response to subtype C HIV infection.

Keywords: HIV, CD4+ T- and CD8+ T-lymphocytes, CD4/CD8 ratio, Cytokines, IL-6 and IL-17A.