The Open Construction & Building Technology Journal




ISSN: ― Volume ,

Rocking Behaviour of Multi-Block Columns Subjected to Pulse-Type Ground Motion Accelerations



Giovanni Minafò1, *, Giuseppina Amato2, Lorenzo Stella2
1 University of Palermo, Palermo, Italy
2 Queen’s University of Belfast, Belfast, UK

Abstract

Ancient columns, made with a variety of materials such as marble, granite, stone or masonry are an important part of the European cultural heritage. In particular columns of ancient temples in Greece and Sicily which support only the architrave are characterized by small axial load values. This feature together with the slenderness typical of these structural members clearly highlights as the evaluation of the rocking behaviour is a key aspect of their safety assessment and maintenance. It has to be noted that the rocking response of rectangular cross-sectional columns modelled as monolithic rigid elements, has been widely investigated since the first theoretical study carried out by Housner (1963). However, the assumption of monolithic member, although being widely used and accepted for practical engineering applications, is not valid for more complex systems such as multi-block columns made of stacked stone blocks, with or without mortar beds. In these cases, in fact, a correct analysis of the system should consider rocking and sliding phenomena between the individual blocks of the structure. Due to the high non-linearity of the problem, the evaluation of the dynamic behaviour of multi-block columns has been mostly studied in the literature using a numerical approach such as the Discrete Element Method (DEM). This paper presents an introductory study about a proposed analytical-numerical approach for analysing the rocking behaviour of multi-block columns subjected to a sine-pulse type ground motion. Based on the approach proposed by Spanos et al. (2001) for a system made of two rigid blocks, the Eulero-Lagrange method to obtain the motion equations of the system is discussed and numerical applications are performed with case studies reported in the literature and with a real acceleration record. The rocking response of single block and multi-block columns is compared and considerations are made about the overturning conditions and on the effect of forcing function’s frequency.

Keywords: Columns, equation of motion, numerical analysis, overturning, rocking.


Article Information


Identifiers and Pagination:

Year: 2016
Volume: 10
Issue: Suppl 1: M9
First Page: 150
Last Page: 157
Publisher Id: TOBCTJ-10-150
DOI: 10.2174/1874836801610010150

Article History:

Received Date: 30/6/2015
Revision Received Date: 15/8/2015
Acceptance Date: 26/8/2015
Electronic publication date: 29/04/2016
Collection year: 2016

© Minafò et al; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.


* Address correspondence to this author at the University of Palermo, Palermo, Italy; Tel: +3909123896749; E-mail: giovanni.minafo@unipa.it



Track Your Manuscript:


Endorsements



"We greatly appreciate the efficient, professional and rapid processing of our paper by your team. The editors are so kind and professional to send us the reviewers' feedback in time. Those comments were all valuable and very helpful for us in revising and improving our paper."


Hailong Zhao
School of Civil Engineering,
Tianjin University, Tianjin,
China


Browse Contents



Webmaster Contact: info@benthamopen.net
Copyright © 2021 Bentham Open