The Open Construction & Building Technology Journal

ISSN: 1874-8368 ― Volume 13, 2019

Double-Leaf Infill Masonry Walls Cyclic In-Plane Behaviour: Experimental and Numerical Investigation

André Furtado1, Hugo Rodrigues2, *, António Arêde1, Humberto Varum1
1 CONSTRUCT-LESE, Department of Civil Engineering, Faculdade de Engenharia da Universidade do Porto, Porto, Portugal
2 RISCO - School of Technology and Management, Polytechnic Institute of Leiria, Leiria, Portugal



The infill masonry walls are widely used in the construction of reinforced concrete buildings for different reasons (partition, thermal and acoustic demands). Since the ‘60s decade, one of the most common typology in the southern Europe was the double-leaf infill walls. Recent earthquake events proved that this specific typology have an important role in the seismic response of reinforced concrete structures in terms of stiffness, strength and failure mechanisms. However, modelling approaches of these specific infill panels cannot be found over the literature.


Due to this, the major goal of the present manuscript is to present a simplified modelling strategy to simulate the double-leaf infill masonry walls seismic behaviour in the software OpenSees.


For this, two different modelling strategies were proposed, namely through a global and an individual modelling of the panels. An equivalent double-strut model was assumed and both strategies were compared and calibrated with experimental results from a full-scale in-plane test of a double-leaf infill masonry wall.


The numerical results obtained by each strategy are very accurate in terms of prediction of the specimen’ initial stiffness, maximum strength and strength degradation.


From the force evolution throughout the tests, it was observed differences lower than 10%. Globally, the individual modelling approach reached better results.

Keywords: Infill Masonry walls, Double-leaf panel, In-plane behaviour, Experimental testing, Numerical modelling, Simplified macro-model.

Article Information

Identifiers and Pagination:

Year: 2018
Volume: 12
First Page: 35
Last Page: 48
Publisher Id: TOBCTJ-12-35
DOI: 10.2174/1874836801812010035

Article History:

Received Date: 08/11/2017
Revision Received Date: 05/01/2018
Acceptance Date: 23/01/2018
Electronic publication date: 28/02/2018
Collection year: 2018

Article Metrics:

CrossRef Citations:

Total Statistics:

Full-Text HTML Views: 2735
Abstract HTML Views: 1287
PDF Downloads: 872
ePub Downloads: 610
Total Views/Downloads: 5504

Unique Statistics:

Full-Text HTML Views: 960
Abstract HTML Views: 616
PDF Downloads: 525
ePub Downloads: 264
Total Views/Downloads: 2365
Geographical View

© 2018 Furtado et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the RISCO - School of Technology and Management, Polytechnic Institute of Leiria, Leiria, Portugal; E-mail:


"We greatly appreciate the efficient, professional and rapid processing of our paper by your team. The editors are so kind and professional to send us the reviewers' feedback in time. Those comments were all valuable and very helpful for us in revising and improving our paper."

Hailong Zhao
School of Civil Engineering,
Tianjin University, Tianjin,

Browse Contents

Webmaster Contact:
Copyright © 2019 Bentham Open