The Open Construction & Building Technology Journal




ISSN: 1874-8368 ― Volume 13, 2019
RESEARCH ARTICLE

Innovative Structural Solutions for Prefab Reinforced Concrete Hall-Type Buildings



Stefano Sorace1, Gloria Terenzi2, *
1 Polytechnic Department of Engineering and Architecture, University of Udine. Via delle Scienze 206, 33100 Udine, Italy
2 Department of Civil and Environmental Engineering, University of Florence. Via S. Marta 3, 50139 Florence, Italy

Abstract

Background:

The anti-seismic design of prefab reinforced concrete buildings is usually carried out with a conventional ductility-based approach. This implies a remarkable plastic demand on columns, as well as damages to the connections of structural and non-structural members, for seismic events with comparable intensity to the basic design earthquake normative level.

Objective:

In view of this, a study was developed and aimed at extending to the field of new prefab reinforced concrete structures the application of advanced seismic protection strategies, capable of guaranteeing undamaged response up to the maximum considered earthquake normative level.

Method:

A benchmark building was designed as demonstrative case study for this purpose, in the three following hypotheses: (a) according to a traditional ductility-based approach; (b) by incorporating dissipative bracings, equipped with fluid viscous dampers; (c) by placing a seismic isolation system at the base, composed of a set of double curved surface sliders.

Results:

The results of the verification analyses show that the targeted performance for the design solutions b) and c) is obtained with sizes of columns and plinths notably smaller than those for the conventional design. This allows compensating the additional cost related to the incorporation of the protective devices, for the dissipative bracing system, and limiting additional costs below 25%, for the base isolation solution. At the same time, a supplemental benefit of the latter is represented by greater protection of contents and plants, as they are fully supported by the seismically isolated ground floor.

Conclusion:

The study highlights the advantages offered by the two advanced seismic protection technologies in an unusual field of application, guaranteeing an enhanced performance of structural and non-structural elements, as well as reduced member sizes, as compared to the traditional ductility-based design.

Keywords: Prefab structures, Industrial buildings, Ductility-based design, Dissipative braces, Viscous dampers, Base isolation.


Article Information


Identifiers and Pagination:

Year: 2019
Volume: 13
First Page: 149
Last Page: 163
Publisher Id: TOBCTJ-13-149
DOI: 10.2174/18748368019130149

Article History:

Received Date: 17/02/2019
Revision Received Date: 31/03/2019
Acceptance Date: 26/05/2019
Electronic publication date: 29/07/2019
Collection year: 2019

Article Metrics:

CrossRef Citations:
0

Total Statistics:

Full-Text HTML Views: 504
Abstract HTML Views: 418
PDF Downloads: 265
ePub Downloads: 170
Total Views/Downloads: 1357

Unique Statistics:

Full-Text HTML Views: 269
Abstract HTML Views: 252
PDF Downloads: 180
ePub Downloads: 115
Total Views/Downloads: 816
Geographical View

© 2019 Sorace and Terenzi.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


* Address correspondence to this author at the Department of Civil and Environmental Engineering, University of Florence. Via S. Marta 3, 50139 Florence, Italy; Tel: +39552758887; E-mail: gloria.terenzi@unifi.it


Endorsements



"We greatly appreciate the efficient, professional and rapid processing of our paper by your team. The editors are so kind and professional to send us the reviewers' feedback in time. Those comments were all valuable and very helpful for us in revising and improving our paper."


Hailong Zhao
School of Civil Engineering,
Tianjin University, Tianjin,
China


Browse Contents



Webmaster Contact: info@benthamopen.net
Copyright © 2019 Bentham Open