The Open Construction & Building Technology Journal




ISSN: ― Volume ,
RESEARCH ARTICLE

Risk-Based Decision Making Method for Selecting Slope Stabilization System in an Abandoned Open-Pit Mine



Mahnoush Gharehdaghi1, Hesam S. Tehrani1, Ali Fakher2, *
1 School of Civil Engineering, College of Engineering, University of Tehran, Tehran, Iran
2 Department of Civil Engineering, University of Tehran, Tehran, Iran

Abstract

Background:

The construction and stabilization of deep excavations are associated with several uncertainties due to heterogeneous geological conditions. Therefore, the conventional methods of slope stability analysis do not provide reasonable results.

Aim:

Hence, it is logical to perform reliability analysis and also risk assessment to make a wiser decision under uncertainty for choosing the proper stabilization method of slopes.

Methods:

In this regard, a real case study, a 50-meter-deep abandoned open-pit mine, is considered. In the past, the studied deep excavation was located in a rural area, away from the important structures. However, due to the development of the city, the open-pit mine is now located in the city. Furthermore, the Kan River is located on the eastern side of the excavation. Deterministic analysis showed that that Factor of Safety is not sufficient for permanent condition; thus, the deep excavation may have destructive impacts on the adjacent structures and infrastructures by putting them in danger in the case of failure.

Results:

These circumstances resulted in using reliability analysis and risk assessment using non-deterministic approach. Random Set Finite Element Method (RS-FEM), a non-probabilistic method, is used in determining how much the slope is reliable. The upper and lower bounds of probability of excessive displacement and probability of failure are obtained using RS-FEM by Plaxis2D software. Afterward, HAZUS is successfully used to quantify the economic risk of different stabilization alternatives by defining various scenarios in order to consider the consequences of excavation failure on adjacent utilities and infrastructures.

Conclusion:

The best alternative is defined as the stabilization method with the lowest economic risk. As a result, it is noticeable that this paper provides a comprehensive methodology for decision making, based on reliability analysis and risk assessment, in stabilizing slopes.

Keywords : Deep excavation, Open-pit mine, Slope stability, Reliability analysis, Random set, Finite element, Risk assessment.


Article Information


Identifiers and Pagination:

Year: 2020
Volume: 14
Issue: Suppl-1, M2
First Page: 198
Last Page: 217
Publisher Id: TOBCTJ-14-198
DOI: 10.2174/1874836802014010198

Article History:

Received Date: 13/10/2019
Revision Received Date: 10/12/2019
Acceptance Date: 15/01/2020
Electronic publication date: 24/08/2020
Collection year: 2020

© 2020 Gharehdaghi et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


* Address correspondence to this author at Department of Civil Engineering, University of Tehran, Tehran, Iran; Tel: +98 9123380360; E-mail: Afakher@ut.ac.ir



Track Your Manuscript:


Endorsements



"We greatly appreciate the efficient, professional and rapid processing of our paper by your team. The editors are so kind and professional to send us the reviewers' feedback in time. Those comments were all valuable and very helpful for us in revising and improving our paper."


Hailong Zhao
School of Civil Engineering,
Tianjin University, Tianjin,
China


Browse Contents



Webmaster Contact: info@benthamopen.net
Copyright © 2021 Bentham Open