RESEARCH ARTICLE


Nonlinear Modeling and Analysis of R.C. Framed Buildings Located in a Near-Fault Area



Fabio Mazza*, Mirko Mazza
Dipartimento di Strutture, Universita della Calabria, 87036 Rende (Cosenza), Italy.


Article Metrics

CrossRef Citations:
40
Total Statistics:

Full-Text HTML Views: 785
Abstract HTML Views: 2044
PDF Downloads: 849
Total Views/Downloads: 3678
Unique Statistics:

Full-Text HTML Views: 410
Abstract HTML Views: 1177
PDF Downloads: 581
Total Views/Downloads: 2168



Creative Commons License
© Mazza and Mazza; Licensee Bentham Open

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Correspondence: * Address correspondence to this author at the Dipartimento di Strutture, Universita della Calabria, 87036 Rende (Cosenza), Italy.Tel: +39 (0)984-496908; Fax: +39 (0)984-494045; E-mail: fabio.mazza@unical.it


Abstract

Structural damage to r.c. buildings located in a near-fault area has been observed during strong ground motions, with long-duration horizontal pulses and high values of the ratio between the peak value of the vertical acceleration and the analogous value of the horizontal acceleration. The design provisions of current seismic codes are generally not very accurate for assessing the structural effects of near-fault ground motions. In the present work, six- and twelve-storey r.c. spatial frames are designed according to the provisions of the Italian seismic code, considering horizontal and vertical seismic loads in a high-risk seismic region and assuming low and high ductility classes. A lumped plasticity model based on the Haar-Kàrmàn principle is used to describe the inelastic behavior of the r.c. frame members. In particular, the lumped plasticity model for a column includes a piecewise linearization of the bounding surface of the axial load-biaxial bending moment elastic domain, at the end sections where inelastic deformations are expected. Moreover, the lumped plasticity model for a girder takes into account the potential plastic hinges along the span, due to the vertical ground motion, so avoiding the computational effort required by the sub-discretization of the frame member. The nonlinear dynamic response of the test structures is studied with reference to the horizontal and vertical components of near-fault records. The occurrence of a directivity effect at arbitrary orientations is checked rotating the horizontal components of the selected motions, rather than considering only fault-normal and fault-parallel orientations.

Keywords: R.c. spatial frames, lumped plasticity model, axial load-biaxial bending, near-fault ground motions, nonlinear dynamic analysis.