LETTER


Path Loss Measurement and Channel Modeling with Muscular Tissue Characteristics



Yu-Ping Qina, , Shuang Zhanga, b, c, d, , Hai-Yan Liue, Yi-He Liua, *, , You-Zhi Lia, Xue Penga, Xiu Maa, Qi-Li Lia, Xuan Huanga
a The Engineering & Technical College, Chengdu University of Technology, Leshan, 614000, China
b College of Computer Science, Neijiang Normal University, Neijiang, 641000, P.R. China
c The Department of Electrical and Computer Engineering, Faculty of Science and Technology, University of Macau, Macau SAR 999078, China
d The State Key laboratory of Analog & Mixed-signal VLSI, University of Macau, Macau SAR 999078, China
e Pengan County People's Hospital, Nanchong, 638285, P.R. China


Article Metrics

CrossRef Citations:
1
Total Statistics:

Full-Text HTML Views: 742
Abstract HTML Views: 482
PDF Downloads: 186
ePub Downloads: 169
Total Views/Downloads: 1579
Unique Statistics:

Full-Text HTML Views: 421
Abstract HTML Views: 331
PDF Downloads: 165
ePub Downloads: 147
Total Views/Downloads: 1064



Creative Commons License
© Qin et al.; Licensee Bentham Open

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

* Address correspondence to this author at the Engineering & Technical College, Chengdu University of Technology, Leshan, 614000, China; Tel: (+86)8322343466; E-mail: liu_yihe@163.com†Authors who made equal contributions


Abstract

Background:

The galvanic coupling intra-body communication has low radiation and strong anti-interference ability, so it has many advantages in the wireless communication.

Method:

In order to analyze the effect of muscle tissue’s characteristics upon the communication channel, we selected the muscle of pig buttock as the experimental sample, and used it to study the attenuation property with the galvanic coupling intra-body communication channel along the parallel direction and the transverse direction relative to the muscular fibre line as well as on the surface of destroyed muscular fibre; the study frequency ranges from 1kHz to 10MHz.In the isotropic experiment, in order to destroy muscle’s fibre characteristics, we grinded the muscle four times, at least five minutes for each time. 0dbm sine-wave signal was input to measure the channel attenuation parameter S21 when the transmitter and the receiver were placed at different positions and different distances d1 and d2 (20mm, 40mm, 60mm), so as to analyze channel loss.

Conclusion:

Within the same frequency range and at the same communication distance, the maximum error of channel attenuation was 10dB; within the same frequency, as the communication distance was increased, the channel attenuation rose gradually, with 4dB increased every 20mm. The conclusion provides the basis for building the theoretical model in the future.

Keywords: Galvanic coupling intra-body communication, Parallel, Transverse, Isotropic, Channel loss.