RESEARCH ARTICLE


Time-to-Boundary Function to Study the Development of Upright Stance Control in Children



Carmen D'Anna1, Maurizio Schmid1, Andrea Scorza1, *, Salvatore A. Sciuto1, Luisa Lopez2, Silvia Conforto1
1 Department of Engineering, Università degli Studi Roma Tre, Rome, Italy
2 Rehabilitation Center for Developmental Disorders, Villaggio Eugenio Litta, Grottaferrata, Rome, Italy


Article Metrics

CrossRef Citations:
4
Total Statistics:

Full-Text HTML Views: 983
Abstract HTML Views: 401
PDF Downloads: 171
ePub Downloads: 151
Total Views/Downloads: 1706
Unique Statistics:

Full-Text HTML Views: 488
Abstract HTML Views: 279
PDF Downloads: 148
ePub Downloads: 130
Total Views/Downloads: 1045



Creative Commons License
© 2017 D'Anna et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Department of Engineering, Università degli Studi Roma Tre, Rome, Italy; Tel: +39 06 5733 3357; E-mail: andrea.scorza@uniroma3.it


Abstract

Background:

The development of postural control across the primary school time horizon is a complex process, which entails biomechanics modifications, the maturation of cognitive ability and sensorimotor organization, and the emergence of anticipatory behaviour. Postural stability in upright stance has been thus object of a multiplicity of studies to better characterize postural control in this age span, with a variety of methodological approaches. The analysis of the Time-to-Boundary function (TtB), which specifies the spatiotemporal proximity of the Centre of Pressure (CoP) to the stability boundaries in the regulation of posture in upright stance, is among the techniques used to better characterize postural stability in adults, but, as of now, it has not yet been introduced in developmental studies. The aim of this study was thus to apply this technique to evaluate the development of postural control in a sample population of primary school children.

Methods:

In this cross-sectional study, upright stance trials under eyes open and eyes closed were administered to 107 healthy children, divided into three age groups (41 for Seven Years' Group, Y7; 38 for Nine Years' Group, Y9; 28 for Eleven Years' Group, Y11). CoP data were recorded to calculate the Time-to-Boundary function (TtB), from which four spatio-temporal parameters were extracted: the mean value and the standard deviation of TtB minima (Mmin, Stdmin), and the mean value and the standard deviation of the temporal distance between two successive minima (Mdist, Stddist).

Results:

With eyes closed, Mmin and Stdmin significantly decreased and Mdist and Stddist increased for the Y7 group, at Y9 Mmin significantly decreased and Stddist increased, while no effect of vision resulted for Y11. Regarding age groups, Mmin was significantly higher for Y9 than Y7, and Stdmin for Y9 was higher than both Y7 and Y11; Mdist and Stddist resulted higher for Y11 than for Y9.

Conclusion:

From the combined results from the spatio-temporal TtB parameters, it is suggested that, at 9 years, children look more efficient in terms of exploring their limits of stability than at 7, and at 11 the observed TtB behaviour hints at the possibility that, at that age, they have almost completed the maturation of postural control in upright stance, also in terms of integration of the spatio-temporal information.