The Open Biochemistry Journal

ISSN: 1874-091X ― Volume 13, 2019

Conformational States and Kinetics of the Calcium Binding Domain of NADPH Oxidase 5

Chin-Chuan Wei*, 1, Nicole Motl1, Kelli Levek1, Liu Qi Chen1, Ya-Ping Yang2, Tremylla Johnson1, Lindsey Hamilton1, Dennis J Stuehr2
1 Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL 62026, USA
2 Department of Pathobiology, the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA


Superoxide generated by human NADPH oxidase 5 (NOX5) is of growing importance for various physiological and pathological processes. The activity of NOX5 appears to be regulated by a self-contained Ca2+ binding domain (CaBD). Recently Bánfi et al. suggest that the conformational change of CaBD upon Ca2+ binding is essential for domain-domain interaction and superoxide production. The authors studied its structural change using intrinsic Trp fluorescence and hydrophobic dye binding; however, their conformational study was not thorough and the kinetics of metal binding was not demonstrated. Here we generated the recombinant CaBD and an E99Q/E143Q mutant to characterize them using fluorescence spectroscopy. Ca2+ binding to CaBD induces a conformational change that exposes hydrophobic patches and increases the quenching accessibilities of its Trp residues and AEDANS at Cys107. The circular dichroism spectra indicated no significant changes in the secondary structures of CaBD upon metal binding. Stopped-flow spectrometry revealed a fast Ca2+ dissociation from the N-terminal half, followed by a slow Ca2+ dissociation from the C-terminal half. Combined with a chemical stability study, we concluded that the C-terminal half of CaBD has a higher Ca2+ binding affinity, a higher chemical stability, and a slow Ca2+ dissociation. The Mg2+-bound CaBD was also investigated and the results indicate that its structure is similar to the apo form. The rate of Mg2+ dissociation was close to that of Ca2+ dissociation. Our data suggest that the N- and C-terminal halves of CaBD are not completely structurally independent.

Keywords: NADPH oxidase, fluorescence, circular dichroism, calcium binding, kinetics.

Article Information

Identifiers and Pagination:

Year: 2010
Volume: 4
First Page: 59
Last Page: 67
Publisher Id: TOBIOCJ-4-59
DOI: 10.2174/1874091X01004010059

Article History:

Received Date: 10/12/2009
Revision Received Date: 01/2/2010
Acceptance Date: 18/2/2010
Electronic publication date: 18/5/2010
Collection year: 2010

Article Metrics:

CrossRef Citations:

Total Statistics:

Full-Text HTML Views: 1204
Abstract HTML Views: 1115
PDF Downloads: 266
Total Views/Downloads: 2585

Unique Statistics:

Full-Text HTML Views: 749
Abstract HTML Views: 738
PDF Downloads: 190
Total Views/Downloads: 1677
Geographical View

© Wei et al.; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http: // which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

* Address correspondence to this author at the Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL 62026-1652, USA; Tel: 618-650-2454; Fax: 618-650-3556; E-mail:


"We have always had a fruitful cooperation and long-term experience of publishing with Bentham Open."

"A number of our original papers have appeared in its different journals, as the Bentham Open Publishers provides sufficient research in the field of science and technologies (belonging to the pharmaceutical, biotechnology, biomedical industries etc). The staff of the Bentham Open always treat our papers very seriously and gently during the rutile paper reviewing process, so far we always felt their kindness and highly cooperative support. Today, Bentham Open is providing a great support to science and research, giving opportunities of high standard publishing as well as promoting and enhancing selected papers around the world through communication and exchange of global scientific education."

Kholmirzo T. Kholmurodov
Leading Scientist
FLNP (Frank Laboratory of Neutron Physics) JINR (Joint Institute of Nuclear Research) Moscow region, Russia

Browse Contents

Webmaster Contact:
Copyright © 2019 Bentham Open