RESEARCH ARTICLE


Experimental Investigation and Modelling of Carbonation Process in Cement Materials



Son Tung Pham*
Laboratoire de Génie Civil et Génie Mécanique (LGCGM), Department Civil Engineering, National Institute of Applied Sciences of Rennes, INSA-Rennes, 20 Avenue des Buttes de Coësmes, CS 70839, 35708 Rennes Cedex 7, France


Article Metrics

CrossRef Citations:
7
Total Statistics:

Full-Text HTML Views: 332
Abstract HTML Views: 331
PDF Downloads: 270
Total Views/Downloads: 933
Unique Statistics:

Full-Text HTML Views: 224
Abstract HTML Views: 236
PDF Downloads: 226
Total Views/Downloads: 686



Creative Commons License
© 2013 Son Tung Pham

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Civil Engineering Department, National Institute of Applied Sciences, France; Tel.: +33(0)667059404; E-mail: spham@insa-rennes.fr


Abstract

Cement mortar and cement paste samples were prepared and subjected to accelerated carbonation test at 20°C, 65% humidity relative, 20% or 50% concentration of CO2. The carbonation depth was determined using classical phenolphthalein test. The mass fractions of Ca(OH)2 and CaCO3 were calculated from thermogravimetric analysis. We studied different factors that influence the carbonation process such as: concentration of CO2, type of material, surface exposure to CO2, porosity accessible to water, duration of carbonation. Based on the experimental results, a numerical simulation was developed to predict the carbonation depth. This physicochemical and deterministic model relies upon a detailed description of the carbonation mechanism as it takes into account the chemical kinetics, the microstructural and hydrous evolutions induced.

Keywords: Carbonation, Thermogravimetric analysis, Modelling, Cement materials.