The Open Dentistry Journal

ISSN: 1874-2106 ― Volume 14, 2020

The Temperature Dependence of Micro-Leakage between Restorative and Pulp Capping Materials by Cu Diffusion

Kamalak H1, Mumcu A2, Altin S*, 3
1 Inonu University, Faculty of Dentistry, Department of Restorative Dentistry, 44280, Malatya, Turkey
2 Inonu University, Scienctific and Technological Research Center, 44280, Malatya, Turkey
3 Inonu University, Science and Art Faculty, Physics Department, 44280 Malatya, Turkey


We used the Cu ions for the leakage analysis between pulp capping and restorative materials. Theoretically, Cu has more advantages than Ag ions due to their smaller radii (rCu2+=73 pm and rAg2+=94 pm), lower mass density (dCu=8.96 g/cm3 and dAg=10.49 g/cm3) and higher radio opacity which can be more useful by X-ray or EDX detectors, cheaper price and more abundance in planet when compared with Ag element which is generally used in the leakage studies. The micro leakage between dental restorations and pulp capping materials has been determined by using Micro Computed Tomography, Scanning Electron Microscopy and EDX analysis. It is found that the leakage has temperature dependent mechanism which increases with the increasing temperature. As a result, using Cu solution for leakage studies in dentine is an effective and easy method which can be used in dental science.

Keywords: Cu diffusion, microleakage in dentin, x-ray micro tomography.

Article Information

Identifiers and Pagination:

Year: 2015
Volume: 9
First Page: 140
Last Page: 145
Publisher Id: TODENTJ-9-140
DOI: 10.2174/1874210601509010140

Article History:

Received Date: 25/11/2015
Revision Received Date: 18/3/2015
Acceptance Date: 21/3/2015
Electronic publication date: 31 /3/2015
Collection year: 2015

Article Metrics:

CrossRef Citations:

Total Statistics:

Full-Text HTML Views: 2164
Abstract HTML Views: 1263
PDF Downloads: 399
Total Views/Downloads: 3826

Unique Statistics:

Full-Text HTML Views: 926
Abstract HTML Views: 681
PDF Downloads: 256
Total Views/Downloads: 1863
Geographical View

© Kamalak et al.; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License ( which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

* Address correspondence to this author at the Inonu University, Science and Art Faculty, Physics Department, 44280, Malatya, Turkey; Tel: +90 422 377 3739; Fax: +90 422 341 03 19; E-mail:


"Thank you for your magnificent and marvelous support throughout the publication stages. I would like to endorse my experience with you as a Junior Researcher and a recent graduate of the Dental school. Once again Thank you for your Great Help and Guidance throughout the stages of Publication. You guys are a great team and I am proud to be a Young Bentham author."

Asra Sabir Hussain
The University of Edinburgh Business School, UK

"My experience with Bentham Open was a valuable one because the quality of the services and analysis of my paper contributed in improving what we intended to convey to the readers."

José Ricardo Kina
Department of Surgery and Integrated Clinic,
Araçatuba School of Dentistry, São Paulo State University

"The Publication Manager was very cooperative and replied my mails and guided me without any delays; however the reviewing process was too long."

Mahtab Memarpour
Prevention of Oral and Dental Disease Research Center,
Department of Pediatric Dentistry, School of Dentistry,
Shiraz University of Medical Sciences, Shiraz,

Browse Contents

Webmaster Contact:
Copyright © 2020 Bentham Open