RESEARCH ARTICLE


Molecular Identification of Mycobacterium Species of Public Health Importance in Cattle in Zimbabwe by 16S rRNA Gene Sequencing



Leah Padya1, 2, Nyasha Chin'ombe1, *, Marcelyn Magwenzi1, Joshua Mbanga2, Vurayai Ruhanya1, Pasipanodya Nziramasanga1
1 Department of Medical Microbiology, University of Zimbabwe, Harare, Zimbabwe
2 Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo, Zimbabwe


Article Metrics

CrossRef Citations:
9
Total Statistics:

Full-Text HTML Views: 5152
Abstract HTML Views: 2354
PDF Downloads: 860
Total Views/Downloads: 8366
Unique Statistics:

Full-Text HTML Views: 2211
Abstract HTML Views: 1279
PDF Downloads: 570
Total Views/Downloads: 4060



Creative Commons License
© Padya et al.; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

* Address correspondence to this author at the Department of Medical Microbiology, University of Zimbabwe, Harare, Zimbabwe; E-mail: Nyasha.Chinombe@gmail.com


Abstract

Mycobacterium species are naturally found in the environment as well as in domestic animals such as cattle. So far, more than 150 species of Mycobacterium, some of which are pathogenic, have been identified. Laboratory isolation, detection and identification of Mycobacterium species are therefore critical if human and animal infections are to be controlled. The objective of this study was to identify Mycobacterium species isolated in cattle in Zimbabwe using 16S ribosomal RNA gene amplification and sequencing. A total of 134 cow dung samples were collected throughout Zimbabwe and mycobacteria were isolated by culture. Only 49 culture isolates that were found to be acid-fast bacilli positive by Ziehl-Neelsen staining. The 16S rRNA gene was successfully amplified by PCR in 41 (84%) of the samples. There was no amplification in 8 (16%) of the samples. Out of the 41 samples that showed amplification, 26 (63%) had strong PCR bands and were selected for DNA sequencing. Analysis of the DNA sequences showed that 7 (27%) belonged to Mycobacterium neoaurum, 6 (23%) belonged to Mycobacterium fortuitum, 3 (12%) to Mycobacterium goodii, 2 (1%) to Mycobacterium arupense, 2 (1%) to Mycobacterium peregrinum or M. septicum and 1 isolate (0.04%) to Mycobacterium elephantis. There were 5 (19%) isolates that were non-mycobacteria and identified as Gordonia terrae, a close relative of Mycobacterium. The study therefore provided a molecular basis for detection and identification of Mycobacterium species in animals and humans.

Keywords: Mycobacterium species, cattle, cow dung, 16S rRNA gene, sequencing..