REVIEW ARTICLE


Contrast Mechanisms for Tumor Cells by High-frequency Ultrasound



Yada Juntarapaso1, Chiaki Miyasaka2, Richard L. Tutwiler1, Pavlos Anastasiadis3, 4, *
1 Department of Acoustics, The Pennsylvania State University, University Park, PA, USA
2 Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, USA
3 Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, School of Medicine, Baltimore, MD, USA
4 Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, School of Medicine, Baltimore, MD, USA


Article Metrics

CrossRef Citations:
1
Total Statistics:

Full-Text HTML Views: 1305
Abstract HTML Views: 587
PDF Downloads: 313
ePub Downloads: 264
Total Views/Downloads: 2469
Unique Statistics:

Full-Text HTML Views: 613
Abstract HTML Views: 339
PDF Downloads: 226
ePub Downloads: 195
Total Views/Downloads: 1373



Creative Commons License
© 2018 Juntarapaso et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this authors at the Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, School of Medicine, Baltimore, MD, USA; Tel: +1 (410) 706-4499; E-mails: panast@som.umaryland.edu, rlt1@psu.edu


Abstract

Scanning Acoustic Microscopy (SAM) is a powerful technique for both the non-destructive determination of mechanical and elastic properties of biological specimens and for the ultrasonic imaging at a micrometer resolution. The implication of biomechanical properties during the onset and progression of disease has been established rendering a profound understanding of the relationship between mechanoelastic and biochemical signaling at a molecular level crucial. Computer simulation algorithms were developed for the generation of images and the investigation of contrast mechanisms in high-frequency and ultra-high frequency SAM. Furthermore, we determined the mechanical and elastic properties of HeLa and MCF-7 cells. Algorithms for simulating V(z) responses were developed based on the ray and wave theory (angular spectrum). Theoretical simulations for high-frequency SAM array designs were performed with the Field II software. In these simulations, we applied phased array beam formation and dynamic apodization and focusing. The purpose of our transducer simulations was to explore volumetric imaging capabilities. The novel transducer arrays designed in this research aim at improving the performance of SAM systems by introducing electronic steering and hence, allowing for the 4D imaging of cells and tissues.

Keywords: High-frequency ultrasound, Focused ultrasound, Scanning acoustic microscopy, Phased arrays, Dynamic apodization, Cancer metastasis, Tumor microenvironment, Biomechanical properties.