REVIEW ARTICLE


Nanotechnology for Stimulating Osteoprogenitor Differentiation



A. Ibrahim1, 2, 3, 4, *, N.W. Bulstrode1, 2, I.S. Whitaker3, 4, D.M. Eastwood1, D. Dunaway1, 2, P. Ferretti2
1 Department of Plastic Surgery, Great Ormond Street Hospital For Children NHS Trust, London, UK
2 Stem Cell and Regenerative Medicine Section, UCL Great Ormond Street Hospital Institute of Child Health, University College London, UK
3 Reconstructive Surgery and Regenerative Medicine Research Group, The Welsh Centre for Burns & Plastic Surgery, Swansea, UK
4 European Centre of Nano Health, Swansea University Medical School, Swansea, UK


Article Metrics

CrossRef Citations:
7
Total Statistics:

Full-Text HTML Views: 1320
Abstract HTML Views: 430
PDF Downloads: 222
ePub Downloads: 231
Total Views/Downloads: 2203
Unique Statistics:

Full-Text HTML Views: 823
Abstract HTML Views: 283
PDF Downloads: 156
ePub Downloads: 177
Total Views/Downloads: 1439



Creative Commons License
© Ibrahim et al.; Licensee Bentham Open

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution-Non-Commercial 4.0 International Public License (CC BY-NC 4.0) (https://creativecommons.org/licenses/by-nc/4.0/legalcode), which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

* Address correspondence to this author at the Royal College of Surgeons Research Training Fellow, Stem Cell and Regenerative Medicine Section, UCL GOS Institute of Child Health, 30 Guilford Street, London WC1N 1EH, UK; Tel: (+44) 020 7905 2715; Fax: (+44) 020 7905 2953; E-mail: amel.ibrahim.11@ucl.ac.uk


Abstract

Background:

Bone is the second most transplanted tissue and due to its complex structure, metabolic demands and various functions, current reconstructive options such as foreign body implants and autologous tissue transfer are limited in their ability to restore defects. Most tissue engineering approaches target osteoinduction of osteoprogenitor cells by modifying the extracellular environment, using scaffolds or targeting intracellular signaling mechanisms or commonly a combination of all of these. Whilst there is no consensus as to what is the optimal cell type or approach, nanotechnology has been proposed as a powerful tool to manipulate the biomolecular and physical environment to direct osteoprogenitor cells to induce bone formation.

Methods:

Review of the published literature was undertaken to provide an overview of the use of nanotechnology to control osteoprogenitor differentiation and discuss the most recent developments, limitations and future directions.

Results:

Nanotechnology can be used to stimulate osteoprogenitor differentiation in a variety of way. We have principally classified research into nanotechnology for bone tissue engineering as generating biomimetic scaffolds, a vector to deliver genes or growth factors to cells or to alter the biophysical environment. A number of studies have shown promising results with regards to directing ostroprogenitor cell differentiation although limitations include a lack of in vivo data and incomplete characterization of engineered bone.

Conclusion:

There is increasing evidence that nanotechnology can be used to direct the fate of osteoprogenitor and promote bone formation. Further analysis of the functional properties and long term survival in animal models is required to assess the maturity and clinical potential of this.

Keywords: Nanofibre, Nanomaterials, Nanoparticles, Nanoscaffolds, Nanotechnology, Osteogenic differentiation, Osteoprogenitor cells.