RESEARCH ARTICLE


Scaffold Stiffness Influences Cell Behavior: Opportunities for Skeletal Tissue Engineering



Roel G.M Breuls1, 3, Timothy U Jiya2, 3, Theo H Smit*, 1, 3
1 Department of Physics and Medical Technology, VU University Medical Center, Research Institute MOVE, Amsterdam, The Netherlands
2 Department of Orthopedics, VU University Medical Center, Amsterdam, The Netherlands
3 Sketetal Tissue Engineering Group Amsterdam (STEGA), The Netherlands


Article Metrics

CrossRef Citations:
162
Total Statistics:

Full-Text HTML Views: 895
Abstract HTML Views: 1080
PDF Downloads: 432
Total Views/Downloads: 2407
Unique Statistics:

Full-Text HTML Views: 538
Abstract HTML Views: 641
PDF Downloads: 303
Total Views/Downloads: 1482



Creative Commons License
© Breuls et al.; Licensee Bentham Open.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.

* Address correspondence to this author at the Department of Physics and Medical Technology, VU University Medical Center, Research Institute MOVE, Amsterdam, The Netherlands; Tel: 020-4448023; E-mail: th.smit@vumc.nl


Abstract

Skeletal defects resulting from trauma, tumors, or abnormal development frequently require surgical treatment to restore normal tissue function. To overcome the limitations associated with conventional surgical treatments, several tissue engineering approaches have been developed. In particular, the use of scaffolds enriched with stem cells appears to be a very promising strategy. A crucial issue in this approach is how to control stem cell behavior. In this respect, the effects of growth factors, scaffold surface characteristics, and external ‘active’ loading conditions on stem cell behavior have been investigated. Recently, it has become clear that the stiffness of a scaffold is a highly potent regulator of stem cell differentiation. In addition, the stiffness of a scaffold affects cell migration, which is important for the infiltration of host tissue cells. This review summarizes current knowledge on the role of the scaffold stiffness in the regulation of cell behavior. Furthermore, we discuss how this knowledge can be incorporated in scaffold design which may provide new opportunities in the context of orthopedic tissue engineering.

Keywords: Orthopaedics, tissue engineering, scaffold, substrate stiffness, cell mechanics, bone, cartilage, tendon, mechanotransduction.