The Open Petroleum Engineering Journal




(Discontinued)

ISSN: 1874-8341 ― Volume 12, 2019
RESEARCH ARTICLE

Production Analysis of Tight Sandstone Reservoir in Consideration of Stress-Sensitive Permeability



Yinghao Shen1, *, Xinyu Yang2, Yuelei Zhang3
1 Unconventional Natural Gas Research Institute, China University of Petroleum, Beijing, P.R. China
2 CNPC Bohai Drilling Engineering Company Limited, Tianjin, P.R. China
3 CNODC Brasil Peteoleo e Gas Ltda, Rio de Janeiro, Brazil

Abstract

Background:

Tight sandstone reservoirs play an important role in the oil industry. The permeability of tight sandstone reservoir generally has stronger stress sensitivity than that of conventional reservoir because of the latter’s poor physical properties. However, the production analysis of tight sandstone reservoir did not fully considered the stress-sensitive permeability yet.

Objective:

This paper proposed a production analysis method considering the stress- sensitive permeability.

Method:

This paper firtstly investigated the stress sensitivity characteristics and the effect of stress-sensitive permeability on a tight reservoir. Decline-type curves that consider stress-sensitive permeability are then established, and a systematic analysis method was built for the production analysis to obtain the single-well controlled dynamic reserves and reservoir physical properties.

Results:

A field analysis was performed in combination with Block Yuan-284 of Changqing Oilfield. Results show that with the reduction of reservoir pressure, stress sensitivity leads to the decline in reservoir permeability and the increase in seepage resistance, thus reducing the actual single-well controlled reserve and radius.

Conclusion:

By utilizing the analysis method based on the decline curves, we can effectively predict the single-well controlled dynamic reserves of such reservoirs and evaluate the characteristic parameters of reservoirs.

Keywords: Unconventional reservoir, Stress sensitive, Tight sandstone, Production analysis, Decline-type curves.


Article Information


Identifiers and Pagination:

Year: 2017
Volume: 10
First Page: 82
Last Page: 93
Publisher Id: TOPEJ-10-82
DOI: 10.2174/1874834101710010082

Article History:

Received Date: 22/08/2016
Revision Received Date: 07/02/2017
Acceptance Date: 10/03/2017
Electronic publication date: 28/04/2017
Collection year: 2017

© 2017 Shen et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


* Address correspondence to this author the Unconventional Natural Gas Research Institite, China University of Petroleum, 18th Fuxue Road, Beijing, P.R. China; Tel: +86 18210117563; E-mail: shenyinghao@126.com



Track Your Manuscript:


Endorsements



"I have to express my sincere appreciation for your hard and professional work. Thank you very much!"


Si Zhang
Institute for Strength and Vibration of Mechanical Structures,
Yangtze University, Jingzhou,
Hubei Province,
China

"My experiences in publishing a paper with Bentham Open is good. I must say that the speed of publication in The Open Petroleum Engineering Journal is very fast. It takes only two month for the pioneer reviewing process. The delay was caused by me. And what’s more, the publisher’s office is quite helpful. I guess they are dealing with thousands emails every week, but they process my request in a very short period of time."


Xin Ma
School of Science, Southwest Petroleum University, Chengdu, China


Browse Contents



Webmaster Contact: info@benthamopen.net
Copyright © 2023 Bentham Open