LETTER


Measuring Public Transit Accessibility Based On Google Direction API



Jin Haitao1, 2, 3, Jin Fengjun1, Hao Qing1, 3, *, Zhu He1, Yang Xue2
1 Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing100101, China
2 Beijing Transportation Information Center, Beijing100073, China
3 University of Chinese Academy of Sciences, Beijing100049, China


Article Metrics

CrossRef Citations:
2
Total Statistics:

Full-Text HTML Views: 1834
Abstract HTML Views: 464
PDF Downloads: 345
ePub Downloads: 267
Total Views/Downloads: 2910
Unique Statistics:

Full-Text HTML Views: 983
Abstract HTML Views: 316
PDF Downloads: 281
ePub Downloads: 212
Total Views/Downloads: 1792



Creative Commons License
© 2019 Haitao et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

* Address correspondence to this author at the Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; E-mail: haoq.16b@igsnrr.ac.cn


Abstract

Background:

Accessibility is considered as an important indicator for the public transit service level. Transit accessibility is generally evaluated by its distance to transit access points such as bus stops and metro stations, and methods of measuring the access distances to transit points have been relying heavily on geographic data of transit facilities, built environments and pedestrian routes. Data collection and analysis are tedious for researchers in conventional approaches. As the application of cloud computing is on the rise, open services provided by Google Cloud Platform may simplify the procedure of accessibility measurement if the outputs of the open computing services could be validated.

Aims and Objectives:

This paper aims to develop a method of measuring public transit accessibility based on Google Direction API rather than local data analysis. A mechanism of API (Application Program Interface) probing is introduced. In a case study, the metropolitan area of Beijing was sliced into gridded spaces, with transit access distance of each cell space calculated by Google Direction API. The access distances in the API feedbacks were compared with transit access numbers in each cell area in order to validate the method with their correlation coefficient.

Results and Conclusion:

It was found that Google Direction API generally gave shorter access distances in cell areas with more public access points. The conclusion is that open cloud services such as Google Direction API may serve as alternative solutions to public transit accessibility measurement. Transit researchers and agencies may take advantage of such open API services to avoid the tediousness of collecting and processing geographic data sets on transit facilities.

Keywords: Public transportation, Public transit accessibility, Cloud computing, Google direction API, API probing, ArcGIS.