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        Abstract



        This study proposes a novel chaotic quantum-behaved particle swarm optimization (CQPSO) algorithm for solving short-term hydrothermal scheduling problem with a set of equality and inequality constraints. In the proposed method, chaotic local search technique is employed to enhance the local search capability and convergence rate of the algorithm. In addition, a novel constraint handling strategy is presented to deal with the complicated equality constrains and then ensures the feasibility and effectiveness of solution. A system including four hydro plants coupled hydraulically and three thermal plants has been tested by the proposed algorithm. The results are compared with particle swarm optimization (PSO), quantum-behaved particle swarm optimization (QPSO) and other population-based artificial intelligence algorithms considered. Comparison results reveal that the proposed method can cope with short-term hydrothermal scheduling problem and outperforms other evolutionary methods in the literature.
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      1. INTRODUCTION


      The short-term hydrothermal scheduling (SHTS) as a significant and constrained optimization problem plays a vital role in power system. The complex and nonlinear peculiarities of SHTS problem make finding the efficient global optimal solution a huge challenge. The objective of SHTS is the determination of power generations among hydro plants and thermal plants with the result that the fuel cost of thermal plants is minimized over a schedule horizon of one day when meeting various hydraulic and electrical operational constraints. Usually, the constraints include system load balance, initial and terminal reservoir storage volume limits as well as water dynamic balance as the equality constraints and power limits of thermal plants and hydro plants, reservoir storage volume limits as well as discharge limits of hydro plants as the inequality constraints.


      In the past few decades, many methods are implemented for solving the SHTS problem such as dynamic programming (DP) [1], linear programming (LP) [2] and Lagrange relaxation (LR) [3]. DP algorithm can actually tackle a quite general class of dynamic optimization problems, including the ones with nonlinear constraints. It has been widely used to solve short-term hydrothermal scheduling problem. However, the disadvantage of DP is obvious with the growth of computational and dimensional requirements in a larger system. The linear programming method is aimed at linearizing the hydro power generation depending on water discharge so as to ignore the head change effect and reduce the accuracy of the solution. The basic idea of Lagrange relaxation method is to relax demand and reserve requirements using Lagrange multipliers. LR method is efficient in dealing with large-scale problems, however, it is easy to generate dual optimal solution which rarely satisfies the power balance and reserve constraints. Additionally, the convergence and accuracy of LR depend on the Lagrange multipliers updating methods. In general, those traditional methods have lost the superiority when faced with the complicated nonlinear constraints and the non-convex short-term hydrothermal scheduling problem.


      Other than the above methods, many artificial intelligence algorithms have been successfully applied to overcome the drawbacks of traditional algorithms in many areas including short-term hydrothermal scheduling problem [4, 5]. Typical algorithms such as evolutionary programming (EP) [6], genetic algorithm (GA) [7], differential evolution (DE) [8, 9] clonal selection (CS) [10] and particle swarm optimization (PSO) [11] have obtained good effect. However, those algorithms are easy to trap into the local optimum and sensitive to initial point which may debase the solution quality as well as effectiveness. The main disadvantage of PSO algorithm maybe is that, it does not guarantee to be global convergent, and sensitive to initial point although it converges fast. Compared with PSO, quantum-behaved PSO has lesser parameters to control and better search capability. However, the conventional QPSO algorithm still suffers slow convergence for complex and large-scale SHTS problems. Hence, in this paper, a chaotic local search technique is employed to enhance local search capability in exploring the global best solution. The chaotic optimization method takes advantage of the universality, randomicity, sensitivity dependence on initial conditions and it is more likely to acquire the global optimum solution. Thus, the proposed chaotic quantum behaved particle swarm optimization (CQPSO) algorithm is implemented to solve short-term hydrothermal scheduling problem in a four hydro plants and three thermal plants system. The simulation results show that the proposed method is able to obtain higher quality solutions.


      This paper is organized as follows. Section 2 describes the mathematical formulation of SHTS problem. Section 3 introduces the PSO and QPSO briefly. Section 4 proposes a chaotic quantum behaved particle swarm optimization algorithm for solving SHTS problem. Section 5 presents the simulation experiments and results. Finally, the conclusions are provided in section 6.

    


    
      2. PROBLEM FORMULATION


      The objective of the SHTS problem is to minimize the total cost of thermal plant as much as possible while making full use of hydro resource. Generally, the scheduling period and the scheduling time interval are set to 24h and 1h respectively. The objective function and related equality and inequality constraints can be simulated as follows.


      
        2.1. Objective Function


        The objective function of the problem is formulated as follows:


        
          
            	[image: ]

            	(1)
          

        


        Taking the valve-point effects into consideration, the fuel cost function can be expressed as the sum of a quadratic function and a sinusoidal function as follows:
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            	(2)
          

        


        where F is the total fuel cost; fi(Psi,t) is fuel cost of the ith thermal plant at time interval t; Psi,t is the generation of the ith thermal plant at time interval t; asi, bsi and csi are cost coefficients of the ith thermal plants; dsi, esi are value-point effects coefficients of the ith thermal plants; Ns is the number of thermal plants; T is the number of intervals over a scheduling horizon.

      


      
        2.2. Constraints


        
          2.2.1. System Load Balance
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              	(3)
            

          


          where Nh is the number of hydro plants; Phj,t is the generation of the jth hydro plant at time interval t; PD,t is the load demand at time interval t; PL,t is the power loss at time interval t, which can be calculated by Kron’s formula [6]:
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              	(4)
            

          


          where B, B0, B00 are power loss coefficients. The power generation of hydro plants is represented as a function of reservoir storage volume and water discharge as:
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              	(5)
            

          


          where Vj,t is reservoir storage volume of the jth hydro plant at time interval t; Qj,t is water discharge of the jth hydro plant at time interval t; C1j, C2j, C3j, C4j, C5j and C6j represent hydro power generation coefficients.

        


        
          2.2.2. Output Power Constraints
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          where Psi,min and Psi,max are the minimum and maximum power generation of the ith thermal plant; Phj,min and Phj,max are the minimum and maximum power generation of the jth hydro plant;

        


        
          2.2.3. Thermal Unit Ramp Rate Limits
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          where URi and DRi are ramp-up and ramp-down rate limits of the ith thermal unit respectively.

        


        
          2.2.4. Reservoir Storage Volume Limits
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          where Vj,min and Vj,max are the minimum and maximum reservoir storage volume limits of the jth hydro plant.

        


        
          2.2.5. Water Discharge Limits
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          where Qj,min and Qj,max are the minimum and maximum water discharge limits of the jth hydro plant.

        


        
          2.2.6. Initial and Terminal Reservoir Storage Volumes Limits
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              	(10)
            

          


          where Vj,B and Vj,E are the initial and terminal reservoir storage volumes limits of the jth hydro plant.

        


        
          2.2.7. Water Dynamic Balance
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              	(11)
            

          


          where Ij,t, Sj,t are the nature inflow and water spillage of the jth hydro plant at time interval t; Nj is number of upstream plants directly connected with hydro plant j; τhj is the time delay from the upstream hydro plant h to plant j.

        

      

    


    
      3. OVERVIEW OF QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION


      
        3.1. Particle Swarm Optimization


        Particle swarm optimization (PSO) algorithm was put forward by Eberhart and Kennedy in 1995. It is a population based stochastic algorithm to find an optimum solution of a problem [12]. The algorithm is different from evolutionary algorithms; however it is much simpler since it has no use for selection. In PSO, each candidate solution named as “particle” flies around the solution space and lands on the optimal position. All the particles are evolved by competition and cooperation according to fitness functions. Each particle has a memory and keeps track of its own personal best solution (Pbest) and the global best solution (Gbest).


        Assume that there are N particles in a D-dimensional space, the position and velocity vectors particle can be represented as xi = (xi1, xi2… xiD) and vi = (vi1, vi2… viD) where i = 1, 2… N. The updating formulas of position and velocity of the ith particle can be described as follows:
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            	(12)
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        where w is velocity inertia weight; r1 and r2 are two random numbers from the interval [0, 1]; c1 and c2 are the cognitive and social parameters; k is the current iteration; Pbest stands for the best solution of the all swarm founded at time k and Gbest represents the best solution until time k.

      


      
        3.2. Quantum Behaved Particle Swarm Optimization


        Though PSO algorithm is characterized by fast convergence, but it has no guarantee to be global convergence. In order to solve this problem, QPSO, as a variant of PSO, was proposed by Sun et al. [13] in 2004, when they were inspired by quantum mechanics and fundamental theory of particle swarm. In QPSO, quantum theory is applied in the searching process. Because of the uncertainty principle of quantum mechanics, the position and velocity of a particle cannot be determined synchronously in quantum world. New state of each particle is determined by wave function ψ(x,t) [14]. In literature [15], Clerc and Kennedy analyze the trajectory of each particle in PSO and assume that each particle can converge to its local attractor which can guarantee the global convergence. The local attractor is defined as follows:
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            	(14)
          

        


        where ϕ = c1r1/ (c1r1 + c2r2); r1 and r2 are values generated according to a uniform in range [0, 1]; c1 and c2 are the cognitive and social parameters. According to the Monte Carlo method, the particles update their positions by the following iterative equation:
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            	(15)
          

        


        where β is a design parameter called contraction-expansion coefficient; u and rd are probability distribution random numbers in the interval [0, 1]. Mbest is the mean of the Pbest position of all particles and it can be formulated as:
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            	(16)
          

        


        The steps of QPSO are depicted as follows from Coelho [16, 17].


        
          	Step 1: Initialize randomly the initial particles in the feasible range using a uniform probability distribution function.


          	Step 2: Evaluate the fitness value of each particle.


          	Step 3: Compare the fitness of each particle with Pbest value. If current fitness value is better than Pbest then set current fitness value to Pbest.


          	Step 4: Compare Pbest values with current Gbest value. If Pbest values are better than Gbest, replace Gbest with current Pbest.


          	Step 5: Calculate the Mbest using Eq.(16).


          	Step 6: Update the position of the particles according to Eq.(15).


          	Step 7: Repeat Step 2 to Step 7 until termination criteria is met.

        

      

    


    
      4. CHAOTIC QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION FOR SOLVING SHTS


      Chaos is a deterministic, random-like mathematical phenomenon which takes place in nonlinear systems and strongly affected by the initial conditions [18]. This kind of unpredictability of random behavior is also helpful in dealing with SHTS problem. Thus, chaos was widely utilized in order to generate high quality solutions.


      
        4.1. Logistic Map


        Logistic map is a kind of one dimensional chaotic system which is firstly introduced by Robert May [19]. It demonstrates that how complex behavior arises from a simple deterministic system without need of any random sequence. In our study, Logistic map is coupled with QPSO to enhance the global convergence rate of QPSO and the logistic map can be expressed by:
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            	(17)
          

        


        where α is a control parameter between 0.0 and 4.0; z0 is the initial condition of [image: ] {0.25, 0.50, 0.75} for fear of a regular sequence. When α = 4.0, a chaotic sequence is generated.

      


      
        4.2. Chaotic Local Search


        In QPSO algorithm, when the solution cannot be improved through a certain iteration times, chaotic local search is considered to generate a new particle which helps to find a new solution. Chaotic local search technique is employed to enhance local search capability in exploring the global best solution. The process of chaotic local search can be described as follows:


        
          	Set kc= 0, where kc is the iteration count of chaotic local search. Initialize randomly z0 in the feasible range;


          	Calculate the the fitness value of current particle. Compare the fitness of each particle with Pbest value. If current fitness value equals to Pbest then kc = kc +1, otherwise set kc = 0;


          	If kc = kcmax, where kcmax is the maximum iteration count of chaotic local search. Chaotic local search is used in QPSO algorithm, and set kc = 0. The updating formulas of position of the current particle can be described as follows:
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            	(18)
          

        


        where xi is the position of the ith particle; zk is the chaotic sequence generated by Eq.(17); r is a metabolic search radius which decides the range of searching space can be formulated as:
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            	(19)
          

        


        where rmax and rmin are maximum value and minimum value of r respectively; kmax is the maximum iteration and k is the current iteration. In our study, rmax is set to 0.95 and rmin is set to 0.5.

      


      
        4.3. Initialization


        The initial population is generated in a feasible region which consists of water release of Nh hydro plants and the power generations of Ns thermal plants in T intervals over a schedule horizon of one day. Each randomly generated element covers the entire search space and is initialized as:
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            	(20)
          

        


        where μ1 and μ2 are probability distribution random numbers in the interval [0, 1]. Hence, an individual can be expressed by an array as follows:
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            	(21)
          

        

      


      
        4.4. Constraints Handling


        Though the initial population is generated in a valid region, it may not satisfy all the equality and inequality constrains synchronously. In many cases, penalty function has been used to handle constraints and obtained good effect. However, the weakness of penalty function is obvious that the quality of solutions is closely related to the choice of penalty parameters. Inspired by [20], a new method is introduced about handling the equality constraints in this paper. The equality and inequality constraints handling strategy is planned as follows.


        
          4.4.1. Inequality Constraints Handling


          Refer to the formulas in section 2, the inequality constraints consist of water discharge limits in Eq.(9), reservoir storage volume limits in Eq.(8) as well as output power constraint in Eq.(6). Taking no account of prohibited discharge zones, the handling strategy of water discharge limits is as follows:
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          As the same with water discharge limits strategy, the handling method of reservoir storage volume limits can be applied as follows:
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              	(23)
            

          


          Refer to the output power constraint of thermal unit, these variables are kept in a feasible range due to impose of
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              	(24)
            

          

        


        
          4.4.2. Equality Constraints Handling


          There are two equality constraints of water dynamic balance and system load balance to be resolved though they are more complicated than inequality constraints. In order to simplify the water dynamic balance constraint, the water spillages are neglected and a novel reservoir volume handling strategy can be found in Fig. (1).


          The system load balance constraints handling strategy executes after the water dynamic balance procedure. Balanced water discharge Qj,t is updated according to Fig. (1), and Vj, t can be calculated by Eq.(11). It is obvious that all the needed variables in Eq.(3) are ascertained and the change of the state variables of thermal plants has no effect on the constraints handling for hydro plants. Thus, the proposed system load balance handling strategy can be found in Fig. (2).

        

      


      
        4.5. Selection Operation


        Generally speaking, the proposed constraints handling strategy takes a long time in the early iterations, but it can also reduce the running time as the target value (total fuel cost F) becoming smaller. In addition, all of the modified particles in each generation will never violate the constraints. This kind of method by parting constraints handling and objective function simplified section operation largely when compared with penalty function methods and three simple feasibility-based selection comparison rules adopted in [21]. The section operation of global best solution (Gbest) is formulated as:
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            	(25)
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Fig. (1)

        Pseudo codes of reservoir volume handling strategy.

        The steps of CQPSO are depicted as follows:


        
          	Initialize randomly the initial particles in the feasible range according to Eq.(20), set iteration number k = 0, judge whether the particles are violate the constraints, and then handle constraints follow with the Figs. (1) and (2).


          	Evaluate the fitness value of each particle, and update Pbest and Gbest.


          	Calculate the Mbest using Eq.(16), update the position of the particles according to Eq.(15).


          	Chaotic local search scheme is implemented to generate a new particles and modify the offspring according to Eq.(18).


          	Calculate particle fitness again, if the current particle fitness is better than Pbest, then replace Pbest with current fitness; If the current global optimal value is superior to global optimal, then replace Gbest with the current global optimal.


          	If the iteration number k equals to the maximum iteration number kmax, break the procedure and output the optimal solution of SHTS; otherwise, k = k+1 and go back to step 3.

        

      

    


    
      5. SIMULATION EXPERIMENTS


      In order to verify the effectiveness of proposed CQPSO algorithm, it has been tested on four hydro plants coupled hydraulically and three thermal plants system. In addition, the traditional PSO and QPSO algorithm are utilized for comparison. Both algorithms are coded by MATLAB R2014a programming language and run on a 2.93 GHz PC with 2 GB of RAM.


      The detail data of four hydro plants and three thermal plants system can be found in [8]. The problem is solved by CQPSO and the population size (Np) and the maximum iteration number (kmax) are set 50 and 1500, respectively. The scheduling period is divided into 24 intervals of one day. Here prohibited operating zones of hydro plants are not considered. There are two cases taken into consideration. It is necessary to point out that all of the follow case will never violate the constraints because of the proposed equality constraints handling strategy.


      [image: ]
Fig. (2)

      Pseudo codes of system load balance handling strategy.

      
        Case 1: Value-point Effects is Considered


        In this case, the value-point effects are considered and the transmission losses are neglected. To run the program 20 times, the optimal fuel cost and the average CPU time of proposed CQPSO algorithm and other artificial intelligence algorithms, including MHDE [8], CSA [10] and QOTLBO [22] are given in Table 1. The symbol ‘-’ means the respective value cannot be obtained according the original paper. Obviously CQPSO is superior for solving the SHTS problem of this test system by obtaining the optimal fuel cost with simulation time of 154.6s. The result comparison in the table has indicated that the proposed CQPSO algorithm can obtain solutions of better quality and higher robustness than the other methods. Its simulation time is good enough though some of other algorithms previously proposed have less time than the CQPSO. The comparison of the convergence characteristics is depicted in Fig. (3). It is observed that the searching ability and convergence rate are improved in the proposed CQPSO algorithm. The best schedule result of optimal hydro discharges and the optimal thermal generation obtained by the CQPSO algorithm are shown in Table 2. Based on the above optimal result, the optimal reservoir storage volume and optimal hydro generation can be calculated by formula (11) and (5) respectively. The hourly reservoir storage volumes of four hydro plants are shown in Fig. (4). It can be seen from this figure that the volumes satisfy their initial and final volume constraints and the bound constraints. The total generation of each schedule interval and the total power demand are shown in Fig. (5). It can be found that the optimal result will not violate all of the system constraints.


        [image: ]
Fig. (3)

        Convergence characteristics for case 1.

        
          Table 1 Comparison of simulation results for case 1.


          
            
              
                	Method

                	Minimum cost ($)

                	Average cost ($)

                	Maximum cost ($)

                	CPU time (s)
              

            

            
              
                	MHDE [8]

                	41856.50

                	-

                	-

                	31
              


              
                	CSA [10]

                	42440.574

                	-

                	-

                	109.12
              


              
                	QOTLBO [22]

                	42187.49

                	42193.46

                	42202.75

                	21.6
              


              
                	PSO

                	42886.613

                	43474.174

                	43893.142

                	70.4
              


              
                	QPSO

                	41910.958

                	42077.327

                	42290.026

                	110.7
              


              
                	CQPSO

                	40989.820

                	41220.048

                	41343.252

                	51.5
              

            
          


        


        
          Table 2 Optimal hydro discharge and thermal generation for case 1.


          
            
              
                	Hour

                	Hydro discharge (104 m3)

                	Thermal power (MW)
              


              
                	Q1,t

                	Q2,t

                	Q3,t

                	Q4,t

                	Ps1,t

                	Ps1,t

                	Ps1,t
              

            

            
              
                	1

                	10.2178

                	9.3298

                	20.2613

                	8.8759

                	36.5463

                	126.0370

                	229.7972
              


              
                	2

                	9.1368

                	7.1820

                	19.2544

                	7.3848

                	109.8551

                	211.7697

                	140.1393
              


              
                	3

                	9.6459

                	6.5576

                	19.4342

                	8.1820

                	24.4956

                	125.4209

                	232.2091
              


              
                	4

                	9.6995

                	7.7044

                	29.9999

                	8.0582

                	102.8291

                	40.2673

                	229.5763
              


              
                	5

                	8.9220

                	7.1976

                	23.1773

                	8.7948

                	102.7000

                	124.9082

                	139.7599
              


              
                	6

                	8.7120

                	9.2769

                	17.3405

                	8.0073

                	102.6736

                	124.9079

                	229.5235
              


              
                	7

                	8.6709

                	6.1667

                	14.8253

                	7.4806

                	175.0000

                	209.8180

                	230.1476
              


              
                	8

                	9.1580

                	8.6202

                	14.6216

                	16.8001

                	20.0453

                	209.8169

                	319.8594
              


              
                	9

                	9.9018

                	7.3033

                	15.4067

                	15.9997

                	103.4103

                	209.8239

                	319.4229
              


              
                	10

                	8.1948

                	7.9247

                	15.9186

                	15.1351

                	102.7299

                	209.8158

                	319.2797
              


              
                	11

                	8.5710

                	10.0305

                	15.8516

                	15.6576

                	103.8099

                	209.8162

                	319.2794
              


              
                	12

                	10.1380

                	6.1447

                	19.9330

                	16.7290

                	174.9988

                	209.8158

                	319.2790
              


              
                	13

                	7.5895

                	11.0777

                	14.9540

                	17.4826

                	102.6748

                	209.8171

                	319.2794
              


              
                	14

                	7.9344

                	6.1315

                	28.7997

                	17.0121

                	102.6736

                	209.8163

                	319.2794
              


              
                	15

                	7.1356

                	7.7380

                	15.0530

                	18.2715

                	102.6735

                	124.9080

                	319.2790
              


              
                	16

                	5.8203

                	7.8071

                	15.9904

                	14.8778

                	102.6735

                	294.7237

                	229.5195
              


              
                	17

                	5.0016

                	6.6501

                	19.5098

                	16.4194

                	102.6734

                	209.8158

                	319.2793
              


              
                	18

                	5.8185

                	13.2088

                	13.0580

                	17.7778

                	102.6735

                	209.8158

                	319.2794
              


              
                	19

                	5.0112

                	7.5769

                	14.9019

                	15.8503

                	102.6735

                	209.8158

                	319.2792
              


              
                	20

                	10.0542

                	10.1393

                	15.3120

                	19.5066

                	102.6735

                	209.8158

                	229.5196
              


              
                	21

                	5.8088

                	6.8073

                	14.8748

                	17.4938

                	102.6709

                	124.9079

                	229.5196
              


              
                	22

                	9.0025

                	7.6751

                	10.1147

                	18.6095

                	20.0055

                	124.9080

                	229.5196
              


              
                	23

                	5.3654

                	9.9044

                	12.4956

                	19.9970

                	20.0000

                	124.9070

                	229.5193
              


              
                	24

                	9.4895

                	13.8452

                	11.9320

                	20.0000

                	21.0904

                	128.6517

                	139.7697
              

            
          


        


        [image: ]
Fig. (4)

        Optimal hourly reservoir storage volumes for case 1.
      


      
        Case 2: Value-point Effects, Transmission Losses and Ramp-rate Limits are Considered


        In this case, value-point effects, transmission losses and ramp-rate limits are considered. To run the program 20 times, the optimal fuel cost and the average CPU time of proposed CQPSO algorithm compared with MHDE [8] and SPPSO [23] are given in Table 3. The best, average and worst total cost of thermal plant found by CQPSO are 41785.665$, 41972.366$ and 42098.316$ respectively. It is obvious that the proposed CQPSO method has a higher performance than QPSO and other method. Fig. (6) shows the convergence of PSO, QPSO and CQPSO for the trial run that produced the minimum cost solution. The optimal hydro discharges, the optimal thermal generation, and the total transmission losses obtained by CQPSO accompany with the system power demand are demonstrated in Table 4. The hourly reservoir storage volumes of four hydro plants are shown in Fig. (7). The Optimal hourly power generation, transmission losses and load demand are shown in Fig. (8). It is important to note that all control and state variables remained within their permissible limits.
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Fig. (5)

        Optimal power generation and load demand for case 1.

        
          Table 3 Comparison of simulation results for case 2.


          
            
              
                	Method

                	Minimum cost ($)

                	Average cost ($)

                	Maximum cost ($)

                	CPU time (s)
              

            

            
              
                	MHDE [8]

                	42679.87

                	-

                	-

                	40
              


              
                	SPPSO [11]

                	42740.23

                	43622.14

                	44346.97

                	32.7
              


              
                	PSO

                	44431.089

                	44711.496

                	45158.586

                	151.1
              


              
                	QPSO

                	42375.926

                	42971.683

                	43389.563

                	134.5
              


              
                	CQPSO

                	41785.665

                	41972.366

                	42098.316

                	64.5
              

            
          


        


        
          Table 4 Optimal hydro discharge, thermal generation and power loss for case 2.


          
            
              
                	Hour

                	

                	Hydro discharge (104 m3)

                	

                	Thermal power (MW)

                	Power loss(MW)
              


              
                	Q1,t

                	Q2,t

                	Q3,t

                	Q4,t

                	Ps1,t

                	Ps1,t

                	Ps1,t
              

            

            
              
                	1

                	8.2245

                	7.9191

                	29.6237

                	9.1369

                	102.6595

                	124.7263

                	229.5104

                	10.5015
              


              
                	2

                	10.1855

                	10.7757

                	19.9313

                	7.4709

                	102.6561

                	209.6966

                	139.7385

                	7.4810
              


              
                	3

                	7.2637

                	7.1659

                	29.7072

                	6.7772

                	102.6509

                	124.9049

                	229.4984

                	10.4278
              


              
                	4

                	10.2128

                	6.2541

                	19.3666

                	6.9397

                	102.6533

                	124.8233

                	139.7579

                	6.1761
              


              
                	5

                	10.6099

                	9.3396

                	15.8075

                	11.5044

                	20.0000

                	124.3139

                	139.6987

                	4.4665
              


              
                	6

                	5.8312

                	9.2429

                	16.2382

                	9.9546

                	102.6176

                	209.8158

                	139.7594

                	7.4303
              


              
                	7

                	12.1564

                	7.0913

                	18.2705

                	13.4959

                	102.6735

                	124.9079

                	319.2793

                	16.9544
              


              
                	8

                	8.2605

                	6.4284

                	16.9478

                	11.9905

                	102.6114

                	209.8155

                	319.2792

                	17.9783
              


              
                	9

                	8.9624

                	6.4645

                	14.2832

                	10.0717

                	102.6727

                	294.7237

                	319.2764

                	19.5343
              


              
                	10

                	7.4292

                	10.3183

                	20.7605

                	19.6889

                	102.6700

                	209.7698

                	319.2793

                	18.3792
              


              
                	11

                	11.5798

                	9.1713

                	14.4692

                	17.2266

                	102.6603

                	294.7166

                	229.5196

                	13.6742
              


              
                	12

                	7.7718

                	6.0132

                	19.6893

                	10.0783

                	102.6733

                	294.7235

                	409.0384

                	28.0507
              


              
                	13

                	6.7269

                	6.8159

                	15.6891

                	18.6106

                	137.1163

                	209.8157

                	319.2794

                	19.9164
              


              
                	14

                	9.3596

                	8.8527

                	15.6208

                	19.2345

                	102.6714

                	124.9079

                	319.1813

                	17.2822
              


              
                	15

                	10.0835

                	8.2008

                	18.7433

                	18.0866

                	102.5806

                	124.9079

                	319.2793

                	17.2309
              


              
                	16

                	5.3518

                	9.7178

                	11.4705

                	14.6726

                	102.6734

                	294.7233

                	229.5075

                	13.4458
              


              
                	17

                	5.0855

                	8.3598

                	20.3461

                	16.7670

                	102.6219

                	209.7787

                	319.2793

                	18.1973
              


              
                	18

                	8.7348

                	12.9170

                	17.0700

                	19.8221

                	102.6735

                	209.8022

                	319.2794

                	18.4002
              


              
                	19

                	6.9129

                	6.4645

                	13.1685

                	17.5592

                	102.6735

                	209.6555

                	319.2785

                	18.1637
              


              
                	20

                	5.7935

                	9.0423

                	13.8961

                	14.6919

                	102.6735

                	294.7237

                	229.5196

                	13.3989
              


              
                	21

                	6.8254

                	7.5790

                	13.8209

                	17.7822

                	102.0285

                	209.8150

                	139.3596

                	7.9770
              


              
                	22

                	8.1673

                	10.8562

                	15.1082

                	19.0893

                	20.0000

                	122.8864

                	229.5054

                	9.2802
              


              
                	23

                	8.3810

                	10.2764

                	13.1953

                	19.1190

                	20.0000

                	124.5950

                	224.2423

                	8.9311
              


              
                	24

                	5.0901

                	6.7331

                	14.7397

                	18.1287

                	20.0000

                	124.4392

                	229.5119

                	8.9268
              

            
          


        


        [image: ]
Fig. (6)

        Convergence characteristics for case 2.
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Fig. (7)

        Optimal hourly reservoir storage volumes for case 2.

        [image: ]
Fig. (8)

        Optimal power generation and load demand for case 2.
      

    


    
      CONCLUSION


      In this paper, a chaotic quantum-behaved particle swarm optimization (CQPSO) algorithm has been proposed to solve the short-term hydrothermal scheduling problem with a set of equality and inequality constrains. In CQPSO, chaotic local search technique is employed to enhance local search capability and convergence rate in exploring the global best solution. Additionally, a novel equality constrains handling strategy ensures all control and state variables in each generation will never violate the constraints. Finally, a four hydro plants and three thermal plants system has been applied to verify the effectiveness and feasibility of the proposed method. Taken the value-point effects and transmission losses into consideration, the simulation results show that CQPSO can obtain the better feasible fuel cost than all the population-based artificial intelligence algorithms considered.

    

  


  
    
      CONFLICT OF INTEREST


      The authors confirm that this article content has no conflict of interest.

    


    ACKNOWLEDGEMENTS


    The authors would like to thank the editors and the reviewers for their constructive comments. This work was supported by Chongqing University Innovation Team under Grant KJTD201312 and the National Natural Science Foundation of China (Nos.51207064 and 61463014).


    REFERENCES


    
      
        	

        	
      


      
        	[1]

        	Chang S., Chen C., Fung I., Luh P.B.. Hydroelectric generation scheduling with an effective differential dynamic programming., IEEE Trans. Power Syst.. 1990; 5: 737-743.

        [CrossRef]
      


      
        	[2]

        	Chang G., Aganagic M., Waight J.. Experiences with mixed integer linear programming based approaches on short-term hydro scheduling., IEEE Trans. Power Syst.. 2001; 16: 743-749.

        [CrossRef]
      


      
        	[3]

        	Salam M., Mohamed K.. Hydrothermal scheduling based Lagrangian relaxation approach to hydrothermal coordination., IEEE Trans. Power Syst.. 1998; 13: 226-235.

        [CrossRef]
      


      
        	[4]

        	Sun X., Sun L.. Harmonic frequency estimation based on modified-MUSIC algorithm in power system., Open Electr. Electron. Eng. J.. 2015; 9: 38-42.

        [CrossRef]
      


      
        	[5]

        	Li Q., Tao Y., Han Y., Zhang Q.. The forecast and the optimization control of the complex traffic flow based on the hybrid immune intelligent algorithm., Open Electr. Electron. Eng. J.. 2014; 8: 245-251.

        [CrossRef]
      


      
        	[6]

        	Sinha N., Chakrabarti R., Chattopadhyay P.K.. Fast evolutionary programming techniques for short-term hydrothermal scheduling., IEEE Trans. Power Syst.. 2003; 18: 214-220.

        [CrossRef]
      


      
        	[7]

        	Sasikala J., Ramaswamy M.. Optimal gamma based fixed head hydrothermal scheduling using genetic algorithm., Expert Syst. Appl.. 2010; 37: 3352-3357.

        [CrossRef]
      


      
        	[8]

        	Lakshminarasimman L., Subramanian S.. A modified hybrid differential evolution for short-term scheduling of hydrothermal power systems with cascaded reservoirs., Energy Convers. Manage.. 2008; 49: 2513-2521.

        [CrossRef]
      


      
        	[9]

        	Lakshminarasimman L., Subramanian S.. Short-term scheduling of hydrothermal power system with cascaded reservoirs by using modified differential evolution., IEE Proc., Gener. Transm. Distrib.. 2006; 153: 693-700.

        [CrossRef]
      


      
        	[10]

        	Swain R.K., Barisal A.K., Hota P.K., Chakrabarti R.. Short-term hydrothermal scheduling using clonal selection algorithm., Int. J. Electr. Power Energy Syst.. 2011; 33: 647-656.

        [CrossRef]
      


      
        	[11]

        	Zhang J., Wang J., Yue C.. Small population-based particle swarm optimization for short-term hydrothermal scheduling., IEEE Trans. Power Syst.. 2012; 27: 142-152.

        [CrossRef]
      


      
        	[12]

        	Kennedy J., Eberhart R.C.. , . IEEE International Conference on Neural Networks. Perth, Australia: 1995. Particle swarm optimization; p. 1942.-1948.
      


      
        	[13]

        	Sun J., Xu W., Feng B.. , . Conference on Cybernatics and intelligent Systems. Singapore: 2004. A global search strategy of quantum-behaved particle swarm optimization.
      


      
        	[14]

        	Turgut O.E., Turgut M.S., Coban M.T.. Chaotic quantum behaved particle swarm optimization algorithm for solving nonlinear system of equations., Comput. Math. Appl.. 2014; 68: 508-530.

        [CrossRef]
      


      
        	[15]

        	Clerc M., Kennedy J.. The particle swarm - explosion, stability, and convergence in a multidimensional complex space., IEEE Trans. Evol. Comput.. 2002; 6: 58-73.

        [CrossRef]
      


      
        	[16]

        	Coelho and L. D. Santos. A quantum particle swarm optimizer with chaotic mutation operator., Chaos Solitons Fractals. 2008; 37: 1409-1418.

        [CrossRef]
      


      
        	[17]

        	Coelho and L. D. Santos. Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems., Expert Syst. Appl.. 2010; 37: 1676-1683.

        [CrossRef]
      


      
        	[18]

        	Turgut O.E.. Hybrid Chaotic Quantum behaved Particle Swarm Optimization algorithm for thermal design of plate fin heat exchangers., Appl. Math. Model.. 2015; 29: 298-309.

      


      
        	[19]

        	May R.M.. Simple mathematical models with very complicated dynamics., Nature.. 1976; 261(5560): 459-467.

        [CrossRef] [PubMed]
      


      
        	[20]

        	Lu Y., Zhou J., Qin H., Wang Y., Zhang Y.. An adaptive chaotic differential evolution for the short-term hydrothermal generation scheduling problem., Energy Convers. Manage.. 2010; 51: 1481-1490.

        [CrossRef]
      


      
        	[21]

        	Yuan X., Cao B., Yang B., Yuan Y.. Hydrothermal scheduling using chaotic hybrid differential evolution., Energy Convers. Manage.. 2008; 49: 3627-3633.

        [CrossRef]
      


      
        	[22]

        	Kumar Roy P., Sur A., Pradhan D.K.. Optimal short-term hydro-thermal scheduling using quasi-oppositional teaching learning based optimization., Eng. Appl. Artif. Intell.. 2013; 26: 2516-2524.

        [CrossRef]
      


      
        	[23]

        	Zhang J., Wang J., Yue C.. Small population-based particle swarm optimization for short-term hydrothermal scheduling., IEEE Trans. Power Syst.. 2012; 27: 142-152.

        [CrossRef]
      

    

  


  

OEBPS/Images/TOEEJ-11-23_F5.jpg
g 8§ & 8

[re———
8 8

38 5 8






OEBPS/Images/TOEEJ-11-23_eq24.jpg





OEBPS/Images/TOEEJ-11-23_eq8.jpg





OEBPS/Images/TOEEJ-11-23_eq7.jpg
N,t=12,..T






OEBPS/Images/TOEEJ-11-23_eq23.jpg
E Vs <V
Vs> Vi
Vi <V <

=





OEBPS/Images/TOEEJ-11-23_eq10.jpg





OEBPS/Images/TOEEJ-11-23_eq2.jpg





OEBPS/Images/TOEEJ-11-23_F6.jpg





OEBPS/Images/TOEEJ-11-23_eq16.jpg
My =My My, .
X

. <ok
My, = 2P





OEBPS/Images/TOEEJ-11-23_eq19.jpg





OEBPS/Images/TOEEJ-11-23_eq20.jpg
Qs = Oy + 14D, e ~ Q)

{P. =P min + 10 (P prax — B uin)





OEBPS/Images/TOEEJ-11-23_eq14.jpg





OEBPS/Images/TOEEJ-11-23_eq4.jpg





OEBPS/Images/TOEEJ-11-23_F4.jpg





OEBPS/Images/TOEEJ-11-23_F1.jpg
for j=1:Ny

i=V

v,

AV,

while|aV,| 10
aAV, =4,
forr=1:T

9,=0,
Check 0,,;

end
AV,

v,
end
end

MZQA, W

7

ravaV;

=Y Vie





OEBPS/Images/TOEEJ-11-23_eq3.jpg





OEBPS/Images/TOEEJ-11-23_eq11.jpg
M
Vie=Vior+ Ly =05 =83+ Y Gy + S,
=

j=12....N,,t=12,...T





OEBPS/Images/TOEEJ-11-23_eq15.jpg
{;{;‘ =p},+ B-|Mi,, —xt,| - m(w), if rd20.5

S g e
xE=pl - B|ME,, 5k

“In(l/u), if rd <0.5





OEBPS/Images/toeej.jpg
ISSN: 1874-1290

alnl \r

I'he Open

C Fr1r ‘T F o

LHEMBGHHQJQ%%EL
@4 @4

A Chaotic Quantum Behaved Particle Swarm
Optimization Algorithm for Short-term
Hydrothermal Scheduling






OEBPS/Images/TOEEJ-11-23_eq5.jpg
\'{ T





OEBPS/Images/TOEEJ-11-23_eqsym.jpg





OEBPS/Images/TOEEJ-11-23_eq13.jpg





OEBPS/Images/TOEEJ-11-23_eq21.jpg
Gr Bu B
Gr By By - By

Ovr By, By,





OEBPS/Images/TOEEJ-11-23_F2.jpg





OEBPS/Images/TOEEJ-11-23_eq12.jpg





OEBPS/Images/TOEEJ-11-23_eq18.jpg
=xf+r 2z -1





OEBPS/Images/TOEEJ-11-23_F8.jpg





OEBPS/Images/TOEEJ-11-23_eq25.jpg
_[r@) if f@H<aG,
-1

P

G

otherwise





OEBPS/Images/TOEEJ-11-23_eq6.jpg





OEBPS/Images/TOEEJ-11-23_eq9.jpg





OEBPS/Images/TOEEJ-11-23_eq22.jpg
Qe 10y <Oy
Qs =1 smee 05> Qe
0, 1£0,.<0,<0;





OEBPS/Images/TOEEJ-11-23_eq1.jpg





OEBPS/Images/TOEEJ-11-23_F3.jpg





OEBPS/Images/TOEEJ-11-23_eq17.jpg
z,

=az(1-z)





OEBPS/Images/TOEEJ-11-23_F7.jpg





