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Abstract: Mannose-Binding Lectin (MBL) is a member of the collectin family and is an important protein in the immune system. It
is  a  pathogen  pattern-recognition  molecule  that  binds  to  specific  carbohydrate  motifs  on  the  surface  of  many  pathogens.  MBL
activates complement via lectin pathway. Single nucleotide polymorphisms in the MBL gene influence serum MBL concentration
and function. MBL deficiencies increase the risk of infection and disease-specific complications, especially in those who are already
immune compromised with pre-existing conditions. This review discusses the molecular genetics of human MBL and the association
of  MBL polymorphisms  with  liver  diseases  including  liver  fibrosis,  viral  hepatitis  B,  viral  hepatitis  C,  and  infection  post-liver
transplantation.
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1. MBL PROTEIN

The complement system, a major component of innate immunity, provides immediate defence against infection and
has a pro-inflammatory response. It consists of plasma and membrane proteins, which mediate 3 pathways, namely
classical, alternative and the most recently described lectin [1]. Activation of these pathways of cascading enzymatic
reactions results in the deposition of fragments that promote inflammatory and immune response. The classical pathway
is activated when Immunoglobulin M or Immunoglobulin G antibody bind to antigens such as viruses and bacteria that
the resulting immune complexes are recognised by C1q, the first component of the classical pathway. The activation of
lectin  pathway  is  similar  to  the  classical  pathway  except  that  pathogens  are  directly  recognised  by  a  lectin,  which
includes MBL. MBL is an equivalent of C1q.

Lectins are associated with MBL associated serine proteases (MASPs) that are structurally and functionally similar
to C1q-associated proteases C1r and C1s. MASPs also cleave C2 and C4. The major effect of the complement system,
regardless of the pathway, is the deposition of the complement fragment C3b on the target (Fig. 1). The effects are
membrane modification and promotion of the inflammatory response. Complement fragments including C3b deposit in
large  numbers  on  microbes  and  unwanted  materials  such  as  apoptotic  cells  and  necrotic  tissue.  This  coating  or
opsonisation  of  bacteria  and  altered-self  elements  allows  specific  receptors  on  peripheral  blood  cells,  especially
phagocytes, to bind these ligands. Additionally, activation of complement results in the formation of the membrane
attack complexes (C5b-9), which perturb the bacterial cell membrane, thereby causing lysis of the microbes. Activation
of  the  complement  system  leads  to  the  release  of  pro-inflammatory  peptides.  Additionally,  complement  is  also
bactericidal  as  C3a  and  C4a  directly  kill  microorganisms  [2].
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Fig. (1). Classical, lectin and alternative pathways of complement activation.
CHO: Carbohydrate, MASPs: MBL Associated Serine Proteases.

Fig. (2). Schematic representations of MBL gene structure, MBL polypeptide structure and MBL oligomeric structure.
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Mannose-Binding Lectin (MBL),  also known as mannose-binding protein,  was first  discovered by Kawasaki  in
1978 when a protein was extracted from rabbit liver using mannan particles from Saccharomyces cerevisiae as a probe
[3]. Five years later MBL was isolated from the human liver [4]. MBL is mainly produced by the liver but low amounts
have been found in the small intestine and testis tissue [5]. Lectins that are dependent upon the presence of calcium ions
are  named  C-type  lectins.  MBL  belongs  to  the  class  of  collectins  in  the  C-type  lectin  superfamily.  It  circulates
throughout the body and is able to recognise a wide variety of common pathogens by repeating carbohydrate sequences
present on microbial surfaces. MBL has an oligomeric structure (400-700 kDa), built  of subunits that contain three
identical polypeptide chains of 25 kDa each [6, 7]. Each polypeptide consists of a cysteine-rich N terminal region, a
collagen-like  region,  a  hydrophobic  neck region,  and a  carbohydrate  recognition  domain  (Fig.  2).  The  collagenous
regions of three such chains interact to give a classical triple helix. MBL in serum primarily consists of trimers and
tetramers  of  9  and  12  polypeptides  respectively,  but  the  oligomers  can  range  from dimers  to  hexamers  [6].  These
higher-order oligomers are essential for the function of MBL [8].

MBL binds carbohydrates through the c-terminal Carbohydrate-Recognition Domain (CRD) [9]. CRD is able to
form bonds with hydroxyl groups on specific ligands, including mannan, N-acetylglucosamine and glucose [10]. These
carbohydrates are found on pathologic microorganisms, such as bacteria, fungi, parasitic protozoans and viruses. The
CRD also recognises molecular structures of dying host cells, including nucleic acids and the metalloproteases [6]. Thus
MBL acts as a recognition molecule for Pathogen-Associated Molecular Patterns (PAMPS) which play a role in the
initiation and regulation of the immune response [11]. On the other hand, carbohydrates that are found on mammalian
glycoproteins, such as D-galactose and sialic acid, have no affinity for MBL protein. MBL protein is, therefore, able to
distinguish self from non-self in initiating the innate immune pathway.

2. MBL2 GENE

There are two human MBL genes. MBL-1 is a pseudogene and only MBL-2, which comprises four exons, encodes
the  protein  product  MBL [12].  The relative  efficiency of  MBL function  for  an  individual  is  largely  determined by
polymorphisms within  this  MBL2 gene [13].  There  are  three  point  mutations  or  Single  Nucleotide  Polymorphisms
(SNPs) within the first exon of MBL2 leading to MBL variant proteins [14]. They are designated ‘B’, ‘C’ and ‘D’, in
contrast to the normal or wild-type, which is designated ‘A’. Allele B represents a point mutation at codon 54 causing
substitution of a glycine with an aspartic acid (GGC to GAC) [14]. Allele C represents a point mutation in codon 57
causing a glycine to be substituted with a glutamic acid (GGA to GAA) [15]. Allele D represents a point mutation in
codon  52  causing  an  arginine  to  be  substituted  with  a  cysteine  (CGT  to  TGT)  [16].  Allele  ‘B’,  ‘C’  and  ‘D’  are
collectively  referred  to  as  ‘O’.  Generally,  wild-type  A/A  is  associated  with  the  highest  MBL  levels,  A/O  with
intermediate and O/O with low or absent MBL. Within any given population there are different functional levels of
circulating MBL, due to the differences in the frequency of MBL 2 genetic polymorphisms. B allele is frequent among
Caucasians, South Americans and Asians; C allele is only frequent among Africans but is rare elsewhere, and D allele
has low frequency among all populations [17]. Among normal British Caucasians, the prevalence of A/A was 60%, A/B
was 21%, A/C was 5%, A/D was 10% and O/O was 4% [17].

The MBL variant proteins are unstable and probably have a shorter half-life in the circulation [18]. They have a
lower molecular weight and do not effectively bind mannan or activate complement. They interfere with the formation
of higher order oligomers [19]. This genetically determined MBL deficiency status influences the susceptibility, and the
course of the disease, of numerous types of infectious, autoimmune, neoplastic, metabolic and cardiovascular diseases,
although the conclusion is still a subject under discussion [6].

3. MBL AND ITS ROLE IN LIVER DISEASE

In a large normal population of 566 blood donors, the median serum MBL level was 1.3µg/ml (range 0-8.4µg/ml)
with 10% having a very low MBL level (<0.1 µg/ml) [20]. Studies have shown that liver cirrhosis does not seem to
have any impact on the serum MBL level as 10.7% cirrhotic patients were also found to have very low levels of MBL
(<0.1 µg/ml). This was confirmed in a larger Hungarian study [21], which found that among patients with liver cirrhosis
of  various aetiologies,  the median MBL level  was 1.118 µg/ml,  and was not  statistically different  compared to the
healthy control (1.027 µg/ml). Analysing subsets of liver disease did not reveal any particular liver disorder with lower
MBL level. However, in cirrhotic patients, the risk for infection was significantly higher among MBL deficient patients
and there is a shorter time to develop infectious complications when compared to non-deficient MBL cirrhotics.

In patients with Acute Liver Failure (ALF) low levels and poor functionality of the complement system has been
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known  for  some  time  [22]  leading  to  poor  outcomes  as  patients  are  more  prone  to  infection  and  systemic  sepsis.
Recently it has been shown that there are significant changes in the lectin levels of patients with ALF and furthermore
high MBL levels were associated with survival [23].

In contrast,  activation of the MBL/MASP activates the complement system leading to a pro-inflammatory state
resulting in deposition of excess fibrogenic extra-cellular proteins resulting in fibrosis. Data in linking MBL and liver
fibrosis  is  limited.  Nevertheless,  it  has  been  shown that  among  HCV patients,  those  with  severe  liver  fibrosis  had
significant higher mean serum MBL level compared to those with mild fibrosis [24], which is thought to be due to the
increased complement activation as well as the increased activity of the pro-inflammatory MBL/MASP1 complexes
Recombinant MASP-1 has been shown to stimulate quiescent human stellate cells to differentiate into their active state.
The cytokines produced subsequently increase extracellular matrix that is important in the pathogenesis of liver fibrosis
[25, 26]. Similarly, higher serum levels of MBL have been found in patients with advanced periportal fibrosis due to
schistosomiasis [27].

4. MBL AND HEPATITIS B VIRUS (HBV)

Chronic Hepatitis B Virus (HBV) infection affects an estimated 240 million people worldwide and leads to a broad
spectrum  of  liver  diseases,  ranging  from  asymptomatic  carriers  to  self-limiting  acute  hepatitis,  chronic  infection,
fulminant  hepatic  failure,  liver  cirrhosis,  and  hepatocellular  carcinoma  [28].  In  a  study  of  Chinese  patients  with
compensated cirrhosis compared to normal controls, codon 54 mutation of MBL was associated with progression of
disease in chronic hepatitis B infection and the development of spontaneous bacterial peritonitis [29]. Other studies
have shown that in HBV infection, patients with MBL polymorphism resulting in low levels of circulating MBL are
significantly more prone to viral persistence, the occurrence of cirrhosis and hepatocellular cancers, HBV acquisition,
and  a  higher  mortality  in  HBV associated  ALF [30  -  34].  These  findings,  therefore,  may  indicate  that  MBL has  a
protective role against HBV infection. However, there are some studies which contest these findings [35, 36].

With a mother to child transmission rate of HBV in the region of 5 -10%, intra-uterine transmission of HBV may be
related to a failure of HBV infected mothers to stimulate an increase in foetal MBL levels to combat the virus. It has
been shown that non-infected neonates of HBV mothers have an induced increase in MBL levels conferring protection
whilst neonates born with HBV have a significantly lower level of MBL [37].

5. MBL AND HEPATITIS C VIRUS (HCV)

Chronic Hepatitis C infection (HCV) is a worldwide public health problem. Approximately 75% of infected patients
fail  to  clear  the virus leading to chronic liver  disease [38].  Patients  with HCV infection and either  heterozygote or
homozygote  codon  54  mutation  have  a  significantly  increased  rate  of  progression  to  chronic  hepatitis  or  cirrhosis
suggesting that MBL polymorphisms may influence the course of HCV infection [39 - 41]. It has also been suggested
that MBL-2 gene polymorphism is associated with the risk of developing pre-transplant HCV-induced hepatocellular
cancer  and could be utilised in  predicting hepatocellular  cancer  risk  [42].  However,  some studies  show conflicting
results and do not support the MBL deficiency progression theory [20, 43, 44].

Response to interferon-based therapies may be determined by MBL levels as it has been shown that patients with
higher levels of MBL are better responders to treatment and viral clearance [39, 44].

6. MBL POLYMORPHISMS AND INFECTION POST LIVER TRANSPLANTATION

Following  liver  transplantation,  the  donor’s  liver  influences  the  MBL status  of  the  recipient,  as  the  liver  is  the
primary source of MBL production. Therefore, if the recipient receives a liver with an exon 1 MBL2 variant genotype
with decreased MBL level production and its suboptimal function, it is highly plausible that the recipient is at increased
risk of infection post-liver transplantation. Several studies have suggested this to be the case, finding that the presence
of MBL variant alleles in the MBL gene of the donor's liver, but not in the recipient, was associated with a strongly
increased incidence of clinically significant infections after transplantation [45 - 47].

Studies have shown that recipients of MBL-deficient livers had almost a 3-fold greater likelihood of developing a
clinically  significant  infection,  particularly  an  increased  risk  of  cytomegalovirus  infection  [46,  47].  A  study  has
suggested that MBL-2 polymorphisms is involved in the development of acute cellular rejection post liver transplant in
HCV positive recipients, but no other studies have been performed to observe if MBL polymorphism plays a role in non
HCV cellular rejection [48].
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However, not all studies showed the same association. A large single-centre study involving 290 donor livers failed
to find any association between the donor MBL genotypes and the risk of bacterial infection after liver transplantation
[49]. Cevera et al. concurred with this finding but concluded that although liver transplantation from an exon 1 MBL 2
variant genotype was not associated with a higher incidence of infection, the reduced levels of MBL contributed to
poorer outcome as infectious events were of higher severity. They proposed that MBL2 genotyping be performed as
deficiency could represent a major risk factor for infection-related mortality [50].

7. POTENTIAL REASONS TO ACCOUNT FOR CONFLICTING MBL2 ASSOCIATION STUDIES

The role of MBL in the susceptibility to various diseases, including liver diseases, is sometimes controversial. For
the same disease, association, or the lack of it, have been reported.

Potential reasons to explain the conflicting results in MBL2 association studies are the techniques used for MBL2
genotyping, the size of the samples studied, and the choice of controls [51, 52]. With regards to MBL2 genotyping
techniques,  there  are  currently  several  genotyping  methods,  such  as  multiplex  PCR  [53],  real-time  PCR  with
fluorogenic  probes  [54],  and  melting  temperature  assay  [55],  which  are  not  entirely  similar.  Therefore  there  is  a
suggestion that a blind double check on randomly chosen samples with direct sequencing should always be considered
in this kind of study [51], to ensure reliability and reproducibility of the results. With regards to the choice of control,
the selection of the control population as well as the possibility of replicating the results in other ethnic groups, is a
crucial point in MBL2 association studies, since the frequencies of MBL2 polymorphisms show some variability within
different populations [17].

8. THE ROLE OF MBL REPLACEMENT THERAPY IN LIVER DISEASES

While there are some phase 1 [56 - 58] and phase 2 studies [59, 60] to demonstrate that MBL replacement therapy is
safe and well tolerated, its clinical role has not yet been defined and it remains a research tool to date. Additionally, the
lack  of  a  well-established  association  between  MBL  deficiency  and  liver  diseases  does  not  suggest  that  there  is  a
potential role for such replacement therapy.

CONCLUSION

Although the data is conflicting and no clear-cut association can be concluded between MBL polymorphisms and
numerous liver diseases including liver fibrosis, viral hepatitis B, C and infection post-liver transplantation, the balance
of opinion would be that MBL levels do contribute to disease progression and outcomes. Although plausible, MBL
replacement therapy, which is still in its infancy stage, is unlikely to play any significant role in liver diseases. Further
larger studies are required before MBL polymorphisms can be accepted, or refuted, as having an association with liver
diseases.
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