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Abstract: A new analytical solution is obtained for the motion of high-altitude earth satellites.  The basic idea is to study 
the joint effects of direct solar radiation pressure and the gravitation of the Earth, Moon and the Sun on the orbits of the 
satellites. The mathematical model includes the zonal harmonics of the geopotential effects up to 

4
J . The order of magni-

tude of each perturbing term is assessed. The formulae for the all perturbations forces are obtained up to the fourth order 
(where the mean motion of the moon (~ 10-2) is considered a small quantity of first order). The short, intermediate and 
long-period terms are eliminated from the Hamiltonian using a perturbation technique based on the Lie-Deprit-Kamel 
transform through three canonical transformations. The solution is intended to be used for ephemeris predictions for orbit-
ers whose orbital semimajor axes are in the range of 15000 to 70000 kms. 
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1. INTRODUCTION 

The study of the effect of direct solar radiation pressure 
on the orbits of the artificial satellites was discussed in a lot 
of literatures, starting from pioneering works of [1-4] and 
other of [5-9]. Also the theory of third body perturbations on 
an artificial satellite motion was developed by many authors 
in the past. The formulae for secular and periodic perturba-
tions in orbital elements were obtained with the use of dif-
ferent methods [10-17]. But the joint effects of radiation 
pressure and the gravitational attraction of the Earth, Moon 
and Sun are rarely mentioned in the literature.  

Musen (1960) [1] derived first order expressions for the 
rates of change in the osculating elements caused by the di-
rect solar radiation pressure. He used the method of variation 
of vector elements. 

Kaula (1962) [18] just developed the Lunar and Solar 
disturbing function for a close satellite and developed a quasi 
potential for the radiation pressure effects for use it in the 
equation of motion. He did not obtain the solution.  

Sehnal (1975) [19] discussed the direct solar radiation 
pressure, as one of the non-gravitational forces, from all its 
different aspects.  

Anselmo et al. (1983) [20] had analyzed the perturba-
tions due to solar radiation pressure, only, on the orbit of a 
high artificial satellite. The latter was modeled in a simpli-
fied way (axisymmetric body), which seems suitable to de-
scribe the main effects for existing telecommunication satel-
lites. He used the regularized general perturbation equations,  
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by expressing the force in the moving Gauss' reference frame 
and by expanding the results in terms of some small parame-
ters, referring both to the orbit (small eccentricity and incli-
nation) and to the spacecraft's attitude. He used the general 
perturbation equations in Gauss' form and he neglected the 
oblateness of the Earth. 

The present work considers the motion of an earth satel-
lite orbiting at a high altitude in an orbit with semimajor axis 
in the range of 15000 to 70000 km at low inclination 
   I !10

o , with no restriction on the orbital eccentricity. The 
mathematical model includes the non sphericity of the 
earth’s gravitational field up to J4 besides the effects of the 
lunar and solar gravitational attractions and solar radiation 
pressure. The disturbing function is developed completely 
apart from considerations of order [21]. Then the orders are 
assigned such that the terms are retained whenever their con-
tributions are of fourth order, where the mean motion of the 
moon (~ 10-2) is considered small quantity of the first order. 
The Hamiltonian has been formed in terms of a set of ten 
canonical elements representing the Delaunay variables 
augmented by the arguments of latitude of the moon and sun 
and their conjugate momenta. Then the short, intermediate 
and long-period terms are eliminated from the Hamiltonian 
with analytical perturbation technique based on the Lie-
Deprit-Kamel transform [22, 23]. 

Finally a procedure for the computation of the position 
and velocity at any time is presented.  

2. THE FORCE FUNCTION 

2.1. The Force Functions Due to the Gravitational Effects 

Firstly we derive the equations of motion of the satellite 
under the gravitation effects of the earth (as primary), and 
the moon and sun (as perturbations). Let the subscripts 0, 1, 
2, 3 refer respectively to the earth, satellite, moon, and sun. 
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The equations of motion of the four point masses 
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m in an 
inertial frame are 
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i( )  is the position vector of anyone of the four 

bodies with respect to the inertial frame and 
ij
r is the dis-

tance between the mass points . 
It is convenient to refer the satellite and the moon to the 

earth and the sun to the centre of mass of the earth-moon 
system. Denoting the new position vectors by i

r , we have 
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The equations of motion (1) must be transformed accord-
ingly where the partials in Eq.(1) transform as: 
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Making use of 

Eqs (1), (2.1), and (2.2)  
the equations of motion of 

1
m  can be  written  as: 
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In order to express U in terms of the new variables, we first 
choose the centre of mass of the entire system as origin of 

the inertial frame, with this choice  
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Combining Eq. (2.1) and Eq. (4) then: 
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with these relations we can express U in terms of the new 
coordinates. 

Next, we have to express the partials in Eq. (3) explicitly 
in terms of the new coordinates. In doing so we make use of 

the relation: 
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Fig. (1). Relative positions of the earth, satellite, moon and sun. 

C 

 

1r


 

13's  13s  

Earth

Sun 

Satellite 

23r


 

12r


 

03r


 

3r


 

13r


 

ξ 

ζ 

3  

0  

2  

η 

1  

(3) 

(0) 

Moon 

(1) 

2
r


 

(2) 



Analytical Solution for the Combined Solar Radiation The Open Astronomy Journal, 2010, Volume 3    115 

  

�
3

1

r
03

= �
1

r
03

3
 r

3
+

m
2

m
0
+m

2

r
2
( ,    

  

�
3

1

r
) 3

= �
1

r
) 3

3
(r

3
�

m
(

m
(
+m

)

r
)
)  

Substituting these derivatives into Eq. (3) it follows, after 
some simplifications, that: 
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This may be, better, written as 
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  represents the disturbing function due 

to the attractions of the moon and of the sun. In the follow-
ing subsections we develop 

  
U

grav.
 in forms suitable to any 

subsequent analysis. 

2.2. Development of the Gravitational Disturbing  
Function  

The first step in the development of the disturbing func-
tion requires the expansion of 
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Clearly the first and third of these may be expanded with 
the aid of Legendre polynomials, while for the second a bi-
nomial expansion will serve, so that:  
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In order to determine the truncation point for each series 
we evaluate the coefficients and retaining terms with nu-
merical values up to  10

!8  then the above expressions yield 
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The next step is to express 
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the orbital elements of the orbiter, the moon, the earth and 
the sun. It is readily clear from Fig. (2) that the base vectors 
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Fig. (2). Geometric relation between the angle SAB    and the orbital 
elements of any two orbits A and B. 

IB 
IA 

Ar


 

Br


 

A 

B 

uBuA 

A 


sAB 

Reference Plane 
Origin  

 
 
 
 
 
 
 
 
 



116    The Open Astronomy Journal, 2010, Volume 3 Saad et al. 

                                  

  

r̂
A
=

cosu
A

cos  
A

sŝ u
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Adopting reference frame is an equatorial system with 

the positive X-axis toward the vernal equinox, Z- axis to-
ward the north pole of the equator, and the Y-axis complet-
ing a right handed system. We note in the development of 
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Substituting Eqs. (8) into Eq. (7) and dropping the sub-
script '1' designating the satellite, we obtain the force func-
tion 
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2.3. The Force Functions Due to the Oblateness 

We have so far considered the earth as a point mass in-
troducing the effect of earth oblateness we can write the dis-
turbing function in the form: 
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where 
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U represents the contribution of the ob1ateness of 
the earth to the disturbing function. Assuming an axially 
symmetric geopotential truncated beyond the fourth zonal 

harmonic, the disturbing function due to earth oblateness 
acquires the form (e. g. Fitzpatrick (1970) [24]) 
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2.4. The Force Functions Due to Solar Radiation  
Pressure 

Consider !  to be the absolute value of the acceleration 
of the satellite arising from the solar radiation pressure. Then 
the disturbing function for the radiation pressure will be 
given by (see the earlier section, ‘the Angles 
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The order of magnitude of the radiation pressure accel-
eration depends on the area to the mass ratio of the satellite. 
If the area to the mass ratio of the satellite is of O
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the disturbing acceleration due to the radiation pressure is of 
fourth order. 
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K

o
and 

 
K

�
 Hori (1966) [25] 

Our set then consists of the ten elements 

l = mean anomaly,                           
  
L =  (µ  a) /(  
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g = argument of perigee, 
  
G  =  L (1 -  e2 )1/2                     (13) 

  
h =! "!

2
                                       H G c=

  
   = longitude of the node measured, from the node of the 
moon's orbit  

  
k

o
= u

2
,                                             

  
K

o
        

  
k
!
= u

3
,                                            

 
K

!
               

 In terms of this set the Hamiltonian becomes 

   
F =

µ2

2L2
! n

2
k

o
! n

3
k
"
+U

grav.
+U

ob.
+ R

#
                          (14) 

3. THE HAMILTONIAN 
Regarding n2 (the mean motion of the moon) as the small 

parameter of the problem, therefore the perturbing terms in 
the Hamiltonian can be grouped and expressed in expandable 
form as: 

  

F =
n=0

5

!
" n

n!
 F

n
                   (" = n

2
)               (15) 

with 

  

F
o
=
µ2

2L
2

    (16.1) 

 
F

1
= !K

o
    (16.2) 

 
F

2
= !

2
"3

z
2
+ AK

#
   (16.3) 

  
F

3
= 0      (16.4) 

  

F
4
= F

4m

m=1

5

!                       (16.5) 

  

F
41
= A

1

L
4
x

1

! 2
 ,  F

42
= A

3

L
4
x

3

! 2
, F

43
= "

3
! 4

z
3
, F

44
= "

4
!5

z
4
, F

45
= R

#
.  

  

F
5
= A

2

L
6
x

2

!3
    (16.6) 

where 

 

x1 =!o
+!1 cos  h+ (!2 "!1 cos  h+!3 cos  2h)cos  2u

+(!3 "!1 cos  h+!2 cos  2h)cos  2k
o
" (!4 sin  2h+!5sin h)sin  2u

"(!6 sin  h+!7sin 2h)sin  2k
o
+!8 cos  2h cos  2(u+ k

o
)

+[!9 cos  2h+ (4!10 +!1 )cos  h]cos(u " k
o
)+ 2!10 sin  h sin  2(u+ k

o
)

"[(!6 "!5 )sin  h+!11 sin  2h]sin  2(u " k
o
)

  

 

x
2
=!

12
cos  h cos(u+ k

o
)+!

14
cos  h cos(u " k

o
)+!

16
cos  3h cos 3(u " k

o
)

+(!
17

cos  h+!
18

cos  3h)[cos(3u " k
o
)+ cos(u " 3k

o
)]

"!
20

sin  3h sin 3(u " k
o
)"!

21
sin  h sin(u+ k

o
)"!

22
sin  h sin(u " k

o
)

"(!
23

sin  h+!
18
sin 3h)[sin(3u " k

o
)" sin(u " 3k

o
)]

 

x3 =!24 +!25 cos  2(h+") cos  2u+!25 cos  2k# $!26 sin  2(h+") sin 2u

+!27 cos  2(h+") cos  2(u+ k# )+!28 cos  2(h+") cos  2(u $ k# )

$!29 sin  2(h+") sin  2(u $ k# )

 

  
z

2
=

1

L
6

(!
30
+

3

2
!

2
cos  2u),

 
  
z

3
=

1

L
8

(!
31

sin  u+!
32

sin  3u),

 
 z4 =

1

L
10

(!33 +!34 cos  2u+!35 cos  4u)  

  

R
!
= "

1

2
! r[(1" cc

3
) cos(h+#)cos(u + k

$
)+

(1+ cc
3
) cos(h+#)cos(u " k

$
)" (c " c

3
) sin(h+#) sin(u + k

$
)

"(c+ c
3
) sin(h+#) sin(u " k

$
)]

= "
1

4
! r %

ij
{

j="1

1

&
i="1

1

& cos[g + i(h+#)+ jk
$

]cos f

"sin[g + i(h+#)+ jk
$

]sin f }

 

the A’s and ! ’s are zero order quantities defined by:   

  
A= !2n

3
/ "2     

  

A
1
=

9

2!4

k
2
m

2

µ2
a

2

3
,    

  

A
2
=

75

32!5

k
2
m

2

µ3
a

2

4
,     

  

A
3
=

9

2!4

k
2
m

3

µ2
a

3

3
,  

  

!
2
=

1

2"2
R

2µ4
J

2
,   

  

!
3
=

3

"4
R

3µ5
J

3
,  

  

!
4
= "

3

8#4
R

4µ6
J

4
,  

 
! ="

2
#"

3
,  

and 
  
!

i
(i = 0,1,2,.....,30)  are functions of ci and si, given 

by:  

  
!

0
= (4 3)" 2(s2

+ s
2

2 ) ,    
  
!

1
= 4ss

2
cc

2
,   

  
!

2
= 2s

2 ,   

  
!

3
= 2s

2

2 ,   
  
!

4
= cs

2

2 ,   
  
!

5
= "2ss

2
c

2
, 

  
!

6
= 2ss

2
c ,   

  
!

7
= "c

2
s

2 ,   
  
!

8
= 2" s

2
" s

2

2
" 2cc

2
,   

  
!

9
= 2" s

2
" s

2

2
+ 2cc

2
, 

  
!

10
= ss

2
,     !11

= c+ cc
2

2
+ c

2
c

2
+ c

2    

  

!
12
= "(102 5)+ (347 5)cc

2
" 6cc

2

3
+ 6c

2
"

30c
2

2
c

2
" 6c

3
c

2
"18c

3
c

2

3
+ 6c

2

2 ,
 

  
!

13
=1" c

2
+ c

2
c

2

2
+ c

2

2 , 

  
!

14
= "(147 5)" (27 5)cc

2
+3cc

2

3
+3c

2
+33c

2
c

2

2
+3c

3
c

2
+9c

3
c

2

3
+3c

2

2 ,  

  
!

15
= 3(1+ cc

2
" cc

2

3
" c

2
+ c

2
c

2

2
" c

3
c

2
" c

3
c

2

3
" c

2

2 ) , 

  
!

16
=1+8cc

2
+3c

2
+ c

2
c

2

2
+3c

2

2 , 

  
!

17
= 3(3+ cc

2
+ cc

2

3
" c

2
" c

2
c

2

2
+ c

3
c

2
"3c

3
c

2

3
" c

2

2 ) ,   

  
!

18
=1+ 4cc

2
+ c

2
+ c

2
c

2

2
+ c

2

2 , 

  
!

19
= 3(c" cc

2

2
" c

2
c

2
+ c

2
c

2

3
" c

3
+ c

3
c

2

2
+ c

2
" c

2

3 ) ,    

  
!

20
= 3+8cc

2
+ c

2
+3c

2
c

2

2
+ c

2

2 ,
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!

21
= "(162 5)c"30cc

2

2
+30c

2
c

2
"6c

2
c

2

3
+18c

3
+6c

3
c

2

2
+ (222 5)c

2
"18c

2

3,

  
!

22
= "(177 5)c+33cc

2

2
+33c

2
c

2
+3c

2
c

2

3
+9c

3
+3c

3
c

2

2
" (177 5)c

2
+9c

2

3,

  
!

23
= 3(c+ cc

2

2
" c

2
c

2
" c

2
c

2

3
"3c

3
+ c

3
c

2

2
" c

2
+3c

2

3 ) ,    

  
!

24
= (4 3)" 2s

3

2 ,    
  
!

25
= 2s

3

2 , 
2

26 3
cs! = ,   

  
!

27
= 2" s

3

2
" 2cc

3
, 

  
!

28
= 2" s

3

2
+ 2cc

3
,  

  
!

29
= c+ cc

3

2
+ c

2
c

3
+ c

3
, 

  
!

30
= 2"3s

2 , 

  
!

"1,"1
=1" c" c

3
+ cc

3        !1,"1
=1+ c+ c

3
+ cc

3      
 
  
!

"1,1
=1" c+ c

3
" cc

3
  and   

   
!

1,1
=1+ c" c

3
" cc

3  
 . 

4. THE PROCEDURE FOR SOLUTION 

The Hamiltonian  F of the problem defined by Equations 

(15) and (16) can   be represented by 
  

F =  F
0
+

n=1

5

!
" n

n!
 F

n
  

where 
  
F

0
 is the unperturbed Hamiltonian. It represents the 

integrable part of the problem. Then the equations of motion 
can be written in the form 

  

&u =
!F

!U

 ,           

  

&U = !
"F

"u

                                   (17) 

where (u, U) is the ten-vector of adopted canonical variables 

  
(l,  g,  h,  k

o
,  k

!
 ;  L,  G,  H ,  K

o
, K

!
) .  

To develop the solution including the effects of the per-
turbing Hamiltonian

 
F

n
, it is required now to construct three 

canonical transformations (u, U; ε) → (u′, U′) and (u′, U′; 
ε) →  (u″, U″) and 

 
( !!u , !!U ;" )#( !!!u , !!!U )  analytic in ε at 

ε = 0, to remove in succession the fast and slow angles 
from

 
F

n
. This process reduces  !!!U  to constants and  !!!u  to 

linear functions of time. 
A theorem by Lie has been applied to construct explicit 

transformations. Deprit (1969) [22] constructed an algorithm 
to generate the new Hamiltonian recursively using the Lie 
transform, while Kamel (1969) [23] simplified Deprit’s algo-
rithm. We now outline the perturbation technique based on 
Kamel [23] to evaluate the secular and the periodic perturba-
tions. 

The transformed Hamiltonians and the corresponding 
generators will be assumed expandable as 

 

F !(", #u
2
, #u

3
, #u

4
, #u

5
; #U ;$ ) = F

o

!( #U
1

)+

$ n

n!
n=1

6

% F
n

!(", #u
2
, #u

3
, #u

4
, #u

5
; #U )                           

(18.1) 

 

w( !u , !U ;" )=
" n

n!
w

n+1
( !u ; !U )

n=0

4

#
   

 (18.2) 

 

F !!(",",u"
3
,u"

4
,u"

5
; ##U ;$ )= F

o

!!(U
1

" )+ F
1

!!(U
2

" )+

$ n

n!
n=2

6

% F
n

!!(",",u"
3
,u"

4
,u"

5
; ##U )

    (19.1) 

 

w!(", ##u
2
, ##u

3
, ##u

4
, ##u

5
; ##U ;$ )=

$ n

n!
n=0

3

% w
n+1

! (", ##u
2
, ##u

3
, ##u

4
, ##u

5
; ##U )

 
(19.2) 

 

F*** (!;U ''';" )= F
o

*** (U
1

''' )+ F
1

*** (U
2

'" )+
" n

n!
n=2

6

# F
n

*** (!,U ''')  (20.1) 

 

w!!(",", ###u
3

, ###u
4
, ###u

5
; ###U ;$ )=

$ n

n!
n=0

3

% w
n+1

!! (",", ###u
3

, ###u
4
, ###u

5
; ###U ).(20.2) 

5. THE NORMALIZED HAMILTONIAN 

As is clear from the process we have five angles of dif-
ferent rates of change. These angles are: the mean anomaly l 
is the fast variable, the Moon’s mean longitude ko is the in-
termediate variable, while the argument of perigee g, the 
longitude of the ascending node h  and the Sun’s mean longi-
tude k!  are the slow variables. We thus need three canoni-
cal transformations to eliminate in succession the short, the 
intermediate and the long period terms from the Hamiltonian 
using a perturbation technique based on Lie series and Lie 
transform Kamel [23]. 

5.1. Elimination of the Short Period Terms 

Since the integrable part of the Hamiltonian 
o
F  depends 

on L, then the mean anomaly l is considered as the fast vari-
ables of the problem. We thus use the Lie transform to 
eliminate the short periodic terms from the Hamiltonian with 
the averages being taken over l. This step effected by a ca-
nonical transformation from the old Hamiltonian Eqns. (15) 
to a new one 
  
F *(!,  g ',  h ', k

o
' ,  k

"
' ;  L ',  G ',  H ',  K

o
', K

"
' ) that is to be 

performed via a generating function 

  
W (l ',  g ',  h ', k

o
' ,  k

!
' ;  L ',  G ',  H ',  K

o
', K

!
' ) . 

5.1.1. Results of the Computations 

Applying the recursive process developed by Deprit [22] 
and Kamel [23] to the Hamiltonian defined by Eqs. (15) and 
(16) the following results for F* and W are obtained at differ-
ent orders after some lengthy manipulations. All variables 
are understood to be single - primed, but the primes are 
dropped for the sake of simplicity of writing. 

 

F
o

* =
µ2

2L
2

        (21) 

 
F
1

*
= !K

o
         (22) 

  
F

2

*
= !

2
 "

30
 #

33
+ AK

$
,  (#

ij
= L

%i
G

% j   ,  # = L / G)       (23) 

F
3

*
= 0            (24) 

  

F
4

*
= L4[a

0
(1+

3

2
e2 )+

5

2
e2 (a

2
cos2g + b

2
sin 2g)]+ (!

i

c cos2ig
i=0

1

"

+ !
i

s sin  ig)+
3# ae

8
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ij
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1

"
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1

" cos(g + i(h+&)+ jk
'
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(25) 

            

   

F
5

* = A
2
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5

2
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8
e3 )(a

1
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1
sin g)!

35

8
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3
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2

A
1
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!6,!1
!"
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3

s cos2g
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2
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o
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3

c cos2g ! %v
2

c sin 2g)cos2k
o
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 (26) 
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F
6

*
=

i=1

6

! F
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*                       (27) 

          
  

F
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*
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j
cos2 jg  

         
   

F
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*
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Where the quantities 

   
a
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are functions of the action and angular variables. 
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+
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W

3
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W
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4
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with 
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where   
 

      i jF if ig= +   

5.2. Intermediate - Period Transformation  

In this section the intermediate - period terms (those pe-
riodic in ko) are eliminated via a second canonical transfor-
mation, leaving the Hamiltonian containing only the slow 
angle variables. The procedure is essentially similar to the 
short periodic terms but with averages being taken over ko 

5.2.1. Results of Computation 

Application of the above procedure to the Hamiltonian F* 
given by (21) to (27) yields: (all variables on the right are 
now double primed) 
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5.3. Elimination of Long- Period Terms 

The long-period terms, those periodic in 
  
g,h and k

!
 will 

be eliminated and the elements of long period transformation 
will be obtained. The transformation is being made via a 
generator  W

!!  where the old and new Hamiltonians are re-
lated through   

  

F !!(", ##g , ##h ,", ##k
$

; ##L , ##G , ##H , ##K
o
, ##K

$
) =

F !!!( ###L , ###G , ###H , K
o
### , K

$
###)

 

The transformation equations are essentially the same as 
those of last section with relevant changes of primes and 
asterisks and the averages being taken over

  
g,h and k

!
. 
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5.3.1. Results of Computation 

All variables on the right are now triple primed 
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where the prime over the summation signs indicates that the 
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and 

The z over the summation signs indicates that terms with 
zero divisors are to be excluded. 
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6. THE COMPUTATION OF POSITION AND  
VELOCITY  

The equations of motion are now reduced to 
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where � 's are arbitrary constant. These equations can be 
integrated to  
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initial conditions. 
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3) Also we can compute the constants 0 0( , )u U!!! !!!  from 
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Now having determined 
 
U

0
!!!  we can evaluate 
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!!!( """U )  and in turn the constant �  s are now 
known. Then the position and velocity at any time t can now 
be computed as follows: 
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Having determined   
u = (l, g,h,k

o
,k

!
) and 

  
U = (L,G, H , K

o
, K

!
)  at time  t , one can easily compute the 

position and the velocity. 

CONCLUSION 

In this work we developed analytical solution for the 
combined effects of solar radiation pressure and the gravita-
tion of the Earth, Moon and the Sun on the orbits of high 
altitude satellites. The mathematical model included the 
zonal harmonics of the geopotential effects up to 

4
J . The 

equations of motion are derived in terms of a set of ten ca-
nonical elements representing the Delaunay variables aug-
mented by the arguments of latitude of the moon and sun and 
their conjugate momenta to account for the explicit appear-
ance of the time through the motions of the sun and of the 
moon. The resulting disturbing function is developed in a 
form suitable to facilitate the subsequent developments to 
solve the equations of motion. The usefulness of the theory 
appears in using perturbation techniques based on the Lie-
Deprit- Kamel transform for elimination of the short, inter-
mediate and long-period terms from the Hamiltonian through 
three canonical transformations. 

This technique has many advantages: the perturbation 
theory is based on explicit transformations; the main part of 
the development of perturbations is reduced to the evaluation 
of Poisson brackets, which facilitated the construction of 
recursive algorithms and made it more access able to be im-
plemented by computers. As a result of the invariance of 
Poisson brackets under canonical transformations, the gen-
erators as well as the Hamiltonian are also invariant, the 
transformation and its inverse are usually obtained along the 
same lines and it is possible to give a direct expression for 
any function of the old variables in terms of the new vari-
ables. 

Finally a procedure for the computation of the position 
and velocity at any time is presented.  

In conclusion the analytical works are so important for 
the evaluation of the problems of orbital motions of different 
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bodies under the effects of external forces such as drag, ra-
diation pressure…etc.  

We believe that the treatments in the analytical models 
describing the forces and motion can improve the accuracy 
of the computations and satellite life time.  
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