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Abstract: The currently observed accelerated expansion of the Universe suggests that cosmic flow dynamics is dominated 
by some unknown form of dark energy characterized by a large negative pressure. This picture comes out when such a 
new ingredient, beside baryonic and dark matter, is considered as a source in the r.h.s. of the field equations. Essentially, it 
should be some form of un-clustered, non-zero vacuum energy which, together with (clustered) dark matter, should drive 
the global cosmic dynamics. Among the proposals to explain the experimental situation, the “concordance model”, 
addressed as !CDM, gives a reliable snapshot of the today observed Universe according to the CMBR, LSS and SNeIa 
data, but presents dramatic shortcomings as the “coincidence and cosmological constant problems” which point out its 
inadequacy to fully trace back the cosmological dynamics. On the other hand, alternative theories of gravity, extending in 
some way General Relativity, allow to pursue a different approach giving rise to suitable cosmological models where a 
late-time accelerated expansion can be achieved in several ways. This viewpoint does not require to find out candidates 
for dark energy and dark matter at fundamental level (they have not been detected up to now), it takes into account only 
the “observed” ingredients (i.e. gravity, radiation and baryonic matter), but the l.h.s. of the Einstein equations has to be 
modified. Despite of this modification, it could be in agreement with the spirit of General Relativity since the only request 
is that the Hilbert-Einstein action should be generalized asking for a gravitational interaction acting, in principle, in 
different ways at different scales. We survey the landscape of )(Rf  theories of gravity in their various formulations, 
which have been used to model the cosmic acceleration as alternatives to dark energy and dark matter. Besides, we take 
into account the problem of gravitational waves in such theories. We discuss some successes of )(Rf -gravity (where 

)(Rf  is a generic function of Ricci scalar R ), theoretical and experimental challenges that they face in order to satisfy 
minimal criteria for viability.  
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1. INTRODUCTION 

Theories of gravity, alternative to Einstein's General 
Relativity (GR), have been proposed to cure the problems of 
the standard cosmological model and, above all, because 
they arise in quantizations of gravity. These alternative 
gravitational theories constitute at least an attempt to 
formulate a semi-classical scheme in which GR and its most 
successful features can be recovered. One of the most fruitful 
approaches thus far has been that of  Extended Theories of 
Gravity (ETGs), which have become a paradigm in the study 
of the gravitational interaction. ETGs are based on 
corrections and extensions of Einstein's theory. The 
paradigm consists, essentially, of adding higher order 
curvature invariants and/or minimally or non-minimally 
coupled scalar fields to the dynamics; these corrections 
emerge from the effective action of quantum gravity [1]. 

Further motivation to modify GR arises from the problem 
of fully implementing Mach's principle in a theory of 
gravity, which leads one to contemplate a varying  
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gravitational coupling. Mach's principle states that the local 
inertial frame is determined by the average motion of distant 
astronomical objects [2]. This fact would imply that the 
gravitational coupling here and now is determined by the 
distant distribution of matter, and it can be scale-dependent 
and related to some scalar field. As a consequence, the 
concept of ``inertia'' and the Equivalence Principle have to 
be revised. Brans-Dicke theory [3] constituted the first 
consistent and complete theory alternative to Einstein's GR. 
Brans-Dicke theory incorporates a variable gravitational 
coupling strength whose dynamics are governed by a scalar 
field non-minimally coupled to the geometry, which 
implements Mach's principle in the gravitational theory [3-
5]. 

Independent motivation for extending gravity comes 
from the fact that every unification scheme of the 
fundamental interactions, such as Superstring, Supergravity, 
or Grand Unified Theories exhibit effective actions 
containing non-minimal couplings to the geometry or higher 
order terms in the curvature invariants. These contributions 
are one-loop or higher loop corrections in the high-curvature 
regime approaching the full, and still unknown, quantum 
gravity regime [1]. Specifically, this scheme was adopted in 
the study of quantum field theory on curved spacetime and it 
was found that interactions between quantum scalar fields 
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and background geometry, or gravitational self-interactions, 
yield such corrections to the Einstein-Hilbert Lagrangian [6]. 
Moreover, it has been realized that these corrective terms are 
inescapable in the effective action of quantum gravity close 
to the Planck energy [7]. Of course, all these approaches do 
not constitute a full quantum gravity theory, but are needed 
as working schemes toward it. 

In summary, higher order terms in the invariants of the 
Riemann tensor, such as 2

R , 
µ!

µ!
RR , 

µ!"#

µ!"#
RR , RµR , or 

R!k
R , and non-minimal coupling terms between scalar 

fields and geometry such as R
2! , have to be added to the 

effective gravitational Lagrangian when quantum corrections 
are introduced. These terms occur also in the effective 
Lagrangian of string or Kaluza-Klein theories when a 
mechanism of compactification of extra spatial dimensions is 
used [8]. 

From a conceptual point of view, there is no a priori 
reason to restrict the gravitational Lagrangian to a linear 
function of the Ricci scalar R  minimally coupled with 
matter [9]. Furthermore, the idea has been proposed that 
there are no exact laws of physics, in the sense that the 
effective Lagrangians describing physical interactions could 
be stochastic functions at the microscopic level. This 
property would imply that local gauge invariances and the 
associated conservation hold only in the low energy limit 
and the fundamental constants of physics can vary [10]. 

Besides fundamental physics motivations, all these 
theories have been the subject of enormous attention in 
cosmology due to the fact that they naturally exhibit an 
inflationary behaviour which can overcome the shortcomings 
of the GR-based standard cosmological model. The 
cosmological scenarios arising from ETGs seem realistic and 
capable of reproducing observations of the the cosmic 
microwave background (CMB) [11-13]. It has been shown 
that, by means of conformal transformations, the higher 
order and non-minimally coupled terms can be related to 
Einstein gravity with one or more scalar fields minimally 
coupled to9 gravity [14-18]. 

Higher order terms always appear as contributions of 
even order in the field equations. For example, the term 2

R  
produces fourth order equations [19], 

 
R � R  gives sixth order 

equations [18, 20], Rµ2R  eighth order equations [21], and 
so on. By means of a conformal transformation, any second 
order derivative term corresponds to a scalar field 1. Fourth-
order gravity corresponds to Einstein gravity with one scalar 
field, sixth-order gravity to Einstein gravity with two scalar 
fields,  etc. [18, 22]. It is also possible to show that )(Rf  
gravity is equivalent not only to a scalar-tensor theory, but 
also to GR plus an ideal fluid [23]. This feature becomes 
interesting if multiple inflationary events are desired, 
because an early inflationary stage could select very large 
scale structures (observed as clusters of galaxies today), 
while a later inflationary epoch could select smaller scale 
structures (observed as galaxies today) [20], with each 
                                                
1The dynamics of these scalar fields are governed given by a second order 
Klein-Gordon-like equation. 

inflationary era corresponding to the dynamics of a scalar 
field. Finally, these extended schemes could naturally solve 
the graceful exit problem bypassing the shortcomings of 
known inflationary models [13, 24]. 

In addition to the revision of standard cosmology at early 
epochs with the concept of inflation, a new approach is 
necessary also at late epochs. ETGs could play a 
fundamental role also in this context. In fact, the increasing 
bulk of data accumulated in the past few years have nurtured 
a new cosmological model referred to as the  Concordance 
Model. The Hubble diagram of type Ia Supernovae (hereafter 
SNeIa) measured by both the Supernova Cosmology Project 
[25] and the High- z  Team [26] up to redshifts 1:z , has 
been the first piece of evidence that the universe is currently 
undergoing a phase of accelerated expansion. Balloon-born 
experiments, such as BOOMERanG [27] and MAXIMA 
[28], have detected the first and second peak in the 
anisotropy spectrum of the CMB radiation indicating that the 
geometry of the universe is spatially flat. In conjunction with 
constraints on the matter density parameter 

M
!  coming 

from galaxy clusters, these data indicate that the universe is 
dominated by an unclustered fluid with negative pressure, 
generically dubbed dark energy, which is able to drive the 
accelerated expansion. This picture has been further 
strengthened by the recent precise measurements of the 
CMB spectrum obtained by the WMAP experiment [29-31], 
and by the extension of the SNeIa Hubble diagram to 
redshifts higher than one [32]. An overwhelming flood of 
papers has appeared following this observational evidence, 
presenting a great variety of models trying to explain this 
phenomenon. The simplest explanation is the well known 
cosmological constant !  [33]. Although it is the best fit to 
most of the available astrophysical data [29], the ! CDM 
model fails in explaining why the inferred value of !  is so 
tiny (120 orders of magnitude smaller) in comparison with 
the typical vacuum energy values predicted by particle 
physics and why its energy density is comparable to the 
matter density today (the  coincidence problem). 

As a tentative solution, many authors have replaced the 
cosmological constant with a scalar field rolling down its 
potential and giving rise to the model referred to as  
quintessence [34, 35]. Even when successful in fitting the 
data, the quintessence approach to dark energy is still 
plagued by the coincidence problem since the dark energy 
and matter densities evolve differently and reach comparable 
values for a very limited portion of the cosmic evolution 
coinciding at the present era. To be more precise, the 
quintessence dark energy is tracking matter and evolves in 
the same way for a long time. But then, at late times, 
somehow it has to change its behavior from tracking the dark 
matter to dominating as a cosmological constant. This is the 
coincidence problem of quintessence. 

Moreover, the origin of this quintessence scalar field is 
unknown, leaving a great uncertainty on the choice of the 
scalar field potential. The subtle and elusive nature of dark 
energy has led many authors to look for completely different 
scenarios able to give a quintessential behavior without the 
need for exotic components. To this end, it is worth stressing 
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that the acceleration of the universe only calls for a dominant 
component with negative pressure, but does not tell us 
anything about the nature and the number of cosmic fluids 
filling the universe. This consideration suggests that it could 
be possible to explain the accelerated expansion by 
introducing a single cosmic fluid with an equation of state 
causing it to act like dark matter at high densities and dark 
energy at low densities. An attractive feature of these 
models, usually referred to as Unified Dark Energy (UDE) or  
Unified Dark Matter (UDM) models, is that such an 
approach naturally solves, al least phenomenologically, the 
coincidence problem. Interesting examples are the 
generalized Chaplygin gas [36], the tachyon field [37] and 
the condensate cosmology [38]. A different class of UDE 
models has been proposed [39] in which a single fluid is 
considered: its energy density scales with the redshift in such 
a way that the radiation-dominated era, the matter era, and 
the accelerating phase can be naturally achieved. These 
models are very versatile since they can be interpreted both 
in the framework of UDE models and as a two-fluid scenario 
with dark matter and scalar field dark energy. The main 
advantage of this approach is that a suitable generalized 
equation of state can be always obtained and observational 
data can be fitted. 

There is a yet different way to address the problem of the 
cosmic acceleration. As stressed in [40], it is possible that 
the observed acceleration is not the manifestation of another 
ingredient of the cosmic pie, but rather the first signal of a 
breakdown of our understanding of the laws of gravitation in 
the infrared limit. From this point of view, it is tempting to 
modify the Friedmann equations to see whether it is possible 
to fit the astrophysical data with models comprising only 
standard matter. Interesting examples of this kind are the 
Cardassian expansion [41] and DGP gravity [42]. In the 
same framework it is possible to find alternative schemes in 
which a quintessential behavior is obtained by taking into 
account effective models coming from fundamental physics 
and giving rise to generalized or higher order gravity actions 
[43] (see [44] for a comprehensive review). For instance, a 
cosmological constant term may be recovered as a 
consequence of a non-vanishing torsion field, leading to a 
model consistent with both the SNeIa Hubble diagram and 
Sunyaev-Zel'dovich data of galaxy clusters [45]. SNeIa data 
could also be efficiently fitted including higher order 
curvature invariants in the gravitational Lagrangian [46, 47]. 
These alternative models provide naturally a cosmological 
component with negative pressure whose origin is related to 
the cosmic geometry, thus overcoming the problems linked 
to the physical significance of the scalar field. 

The large number of cosmological models which 
constitute viable candidates to explain the observed 
accelerated expansion is evident from this short overview. 
On the one hand, this overabundance of models signals the 
fact that only a limited number of cosmological tests are 
available to discriminate between competing theories and, on 
the other hand, it shows that we are facing an urgent 
degeneracy problem. It is useful to remark that both the 
SNeIa Hubble diagram and the angular size-redshift relation 
of compact radio sources [48] are distance-based probes of 
cosmological models, so systematic errors and biases could 
be iterated. From this point of view, it is interesting to search 

for tests based on time-dependent observables. For example, 
one can take into account the lookback time to distant objects 
since this quantity can discriminate between different 
cosmological models. The lookback time is observationally 
estimated as the difference between the present age of the 
universe and the age of a given object at redshift z . Such an 
estimate is possible if the object is a galaxy observed in more 
than one photometric band since its color is determined by 
its age as a consequence of stellar evolution. It is thus 
possible to get an estimate of the galaxy age by measuring its 
magnitude in different bands and then using stellar 
evolutionary codes to choose the model that best reproduces 
the observed colors. 

Coming to the weak-field-limit approximation, which 
essentially means considering Solar System scales, ETGs are 
expected to reproduce GR which, in any case, is firmly 
tested only in this limit [49]. This fact is a matter of debate 
since several relativistic theories do not reproduce exactly 
the Einsteinian results in the Newtonian approximation but, 
in some sense, generalize them. As first noticed by Stelle 
[50], an R2-theory gives rise to Yukawa-like corrections in 
the Newtonian potential. This feature could have interesting 
physical consequences; for example, certain authors claim to 
explain the flat rotation curves of galaxies by using such 
terms [51]. Others [52] have shown that a conformal theory 
of gravity is nothing but a fourth-order theory containing 
such terms in the Newtonian limit. Besides, an apparent, 
anomalous, long-range acceleration in the data analysis of 
the Pioneer 10/11, Galileo, and Ulysses spacecrafts could be 
framed in a general theoretical scheme by taking into 
account corrections to the Newtonian potential [53]. 

In general, any relativistic theory of gravitation yields 
corrections to the Newtonian and post-Newtonian (PPN) 
potentials (e.g., [54]) which test the theory [49]. 
Furthermore, the newborn  gravitational lensing astronomy 
[55] is generating additional tests of gravity over small, 
large, and very large scales which soon will provide direct 
measurements for the variation of the Newtonian coupling 
[56], the potential of galaxies, clusters of galaxies and 
several other features of self-gravitating systems. Such data, 
very likely, will be capable of confirming or ruling out the 
physical consistency of GR or of any ETG. In summary, the 
general features of ETGs are that the Einstein field equations 
are modified in two ways: )i  the geometry can be non-
minimally coupled to some scalar field, and/or )ii  higher 
than second order derivatives of the metric appear. In the 
first case we deal with scalar-tensor theories of gravity; in 
the second case we have higher order theories. Combinations 
of non-minimally coupled and higher order terms can 
emerge as contributions to effective Lagrangians; then we 
have higher order-scalar-tensor theories of gravity. 

From the mathematical point of view, the problem of 
reducing generalized theories to an Einstein-like form has 
been extensively discussed. Under suitable regularity 
conditions on the Lagrangian and using a Legendre transfor-
mation on the metric, higher order theories take the form of 
GR in which one or more scalar field(s) source of the 
gravitational field (see, e .g., [9, 57-59]). On the other hand, 
as discussed above, the mathematical equivalence between 
models with variable gravitational coupling and Einstein 
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gravity has been studied using suitable conformal 
transformations [60, 61]. A debate on the physical meaning 
of these conformal transformations seems to be ongoing 
([62] and references therein). Several authors claim a 
physical difference between Jordan frame (higher order 
theories and/or variable gravitational couplings) since there 
is experimental and observational evidence suggesting that 
the Jordan frame is better suited for matching solutions and 
data. Others state that the true physical frame is the Einstein 
one according to the energy theorems [59]. However, the 
discussion is open and no definitive conclusion seems to 
have been reached. The problem becomes more involved at 
the semiclassical and quantum level, and should be faced 
from a more general point of view---the Palatini approach to 
gravity could be useful to this goal. 

The Palatini approach to gravitational theories was first 
introduced and analyzed by Einstein himself [63], but was 
named as a consequence of an historical misunderstanding 
[64, 65]. 

The fundamental idea of the Palatini formalism is to 
consider the torsion-free connection µ

!"#  entering the 
definition of the Ricci tensor, to be independent of the 
spacetime metric µ!g . The Palatini formulation of the 
standard Einstein-Hilbert theory turns out to be equivalent to 
the purely metric theory. This property follows from the fact 
that the field equations for the connection µ

!"# , considered to 
be independent of the metric, produce the Levi-Civita 
connection of the metric µ!g . As a consequence, there is no 
reason to impose the Palatini variational principle instead of 
the metric variational principle in the Einstein Hilbert theory. 
However, the situation changes if we consider the ETGs, 
which depend on functions of the curvature invariants (such 
as )(Rf  theories) or couple non-minimally to some scalar 
field. In these cases the Palatini and the metric variational 
principles provide different field equations and the theories 
thus derived differ [59, 66]. The relevance of the Palatini 
approach for cosmological applications in this framework 
has been recently demonstrated [43-44, 67]. 

From the physical point of view, considering the metric 
µ!g  and the connection µ

!"#  as independent fields means to 

decouple the metric structure of spacetime and its geodesic 
structure (the connection µ

!"# , in general, is not the Levi-

Civita connection of 
µ!g ). The causal structure of spacetime 

is governed by µ!g  while the spacetime trajectories of 

particles are governed by µ

!"# . This decoupling enriches the 

geometric structure of spacetime and generalizes the purely 
metric formalism. This metric-affine structure of spacetime 
is naturally translated, by means of the Palatini field 
equations, into a bi-metric structure of spacetime. Besides 
the physical metric 

µ!g , another metric 
µ!g
~  appears. This 

new metric is related, in the case of )(Rf  gravity, to the 
connection. The connection µ

!"#  turns out to be the Levi-

Civita connection of 
µ!g
~  and provides the geodesic structure 

of spacetime. 

For non-minimally coupled interactions in the gravi-
tational Lagrangian in scalar-tensor theories, the new metric 

µ!g
~  is related to the non-minimal coupling; 

µ!g
~  can be 

related to a different geometric and physical aspect of the 
gravitational theory. Thanks to the Palatini formalism, the 
non-minimal coupling and the scalar field, entering the 
evolution of the gravitational fields, are separated from the 
metric structure of spacetime. The situation mixes when we 
consider the case of higher order-scalar-tensor theories. Due 
to these features, the Palatini approach could contribute to 
clarify the physical meaning of conformal transformations 
[69]. 

In this review paper, without claiming for completeness, 
we want to give a survey on the formal and 
phenomenological aspects of ETGs in metric and Palatini 
approaches, considering the cosmological and astrophysical 
applications of some ETG models. The layout is the 
following. The field equations for generic ETGs are derived 
in Sec.2. Specifically, we discuss metric, Palatini and metric-
affine approaches. In Sec. 3 the e quivalence of metric and 
Palatini )(Rf  gravities with Brans-Dicke theories are 
discussed. In Sec. 4 we introduce theoretical and 
experimental viability of )(Rf -gravity. Briefly, we discuss 
on the correct cosmological dynamics and on the instabilities 
for a particular case of )(Rf . After we discuss the precence 
of ghost fields and the wealk field limit for metric approach. 
Finally we consider the growth of cosmological 
perturbations and the Chauchy problem. Cosmological 
applications are considered in Sec.5-6. We show that dark 
energy and the dark matter can be addressed as "curvature 
effects", if ETGs (in particular )(Rf  theories) are 
considered. We work out some cosmological models 
comparing the solutions with data coming from 
observational surveys. As further result in Sec. 7. , we show 
that also the stochastic cosmological background of 
gravitational waves can be "tuned" by ETGs. This fact could 
open new perspective also in the problems of detection of 
gravitational waves which should be investigated not only in 
the standard GR-framework. Discussion and conclusions are 
drawn in Sec.8. 

2. THE THREE VERSIONS OF f (R)- GRAVITY 

In this survey we focus on f (R)- gravity (see [70] for a 
more comprehensive discussion and a list of references, and 
[71] for short introductions to the subject). In these theories 
the Einstein-Hilbert action2  

)(4

2

1
= m

EH SRgxdS +!"#
 (1) 

is modified to   
                                                
2Here R  is the Ricci curvature of the metric tensor 

µ!g , which has deter-

minant g , G  is Newton's constant, and G!" 8# . We mostly follow the 
notations of Ref. [72]. 
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,)(
2

1
= )(4 mSRfgxdS +!"#

 (2) 

where )(Rf  is a non-linear function of its argument and 
)(m

S  is the matter part of the action. Actually, there are two 
variational principles that one can apply to the Einstein-
Hilbert action in order to derive Einstein's equations: the 
standard metric variation and a less standard variation 
dubbed Palatini variation. In the latter the metric and the 
connection are assumed to be independent variables and one 
varies the action with respect to both of them, under the 
important assumption that the matter action does not depend 
on the connection. The choice of the variational principle is 
usually referred to as a formalism, so one can use the terms 
metric (or second order) formalism and Palatini (or first 
order) formalism. However, even though both variational 
principles lead to the same field equation for an action whose 
Lagrangian is linear in R , this is no longer true for a more 
general action. Therefore, it is intuitive that there will be two 
version of )(Rf -gravity, according to which variational 
principle or formalism is used. Indeed this is the case: )(Rf -
gravity in the metric formalism is called  metric )(Rf -
gravity and )(Rf -gravity in the Palatini formalism is called  
Palatini )(Rf -gravity. 

Finally, there is actually even a third version of )(Rf -
gravity:  metric-affine )(Rf -gravity. This comes about if 
one uses the Palatini variation but abandons the assumption 
that the matter action is independent of the connection. 
Clearly, metric affine )(Rf -gravity is the most general of 
these theories and reduces to metric or Palatini )(Rf -gravity 
if further assumptions are made. In this section we will 
present the actions and field equations of all three versions of 

)(Rf - gravity and point out their difference. We will also 
clarify the physical meaning behind the assumptions that 
discriminate them. 

Then brefly has we show above three versions of )(Rf -
gravity have been studied: 

• metric (or second order) formalism; 
    • Palatini (or first order) formalism;  
 and   
    • metric-affine gravity. 
These families of theories are discussed in the following. 

2.1. Metric f (R)- Gravity 

In the metric formalism the action is   

,)(
2

1
= )(4 m

metric SRfgxdS +!"#
 (3) 

and its variation with respect to µ!
g  yields, after some 

manipulations and modulo surface terms, the field equation   

 

!f (R)Rµ" #
f (R)

2
gµ" = $µ$" !f (R)# gµ" � !f (R)+%Tµ" ,

 (4) 

with a prime denoting differentiation with respect to R , 
µ!  

is the covariant derivative associated with the Levi-Civita 
connection of the metric, and 

 
� ! "

µ
"µ . Fourth order 

derivatives of the metric appear in the first two terms on the 
right hand side, justifying the alternative name “fourth order 
gravity” used for this class of theories. 

By taking the trace of eq. (4) one obtains   

 
3� !f (R)+ R !f (R)" 2 f (R) = #T ,  (5) 

where !
!
TT "  is the trace of the energy-momentum tensor 

of matter. This second order differential equation for )(Rf !  
is qualitatively different from the trace of the Einstein 
equation TR !"=  which, instead, constitutes an algebraic 
relation between T  and the Ricci scalar, displaying the fact 
that )(Rf !  is a dynamical (scalar) degree of freedom of the 
theory. This is already an indication that the field equations 
of )(Rf  theories will admit a larger variety of solutions than 
Einstein's theory. As an example, we mention here that the 
Jebsen-Birkhoff's theorem, stating that the Schwarzschild 
solution is the unique spherically symmetric vacuum 
solution, no longer holds in metric )(Rf  gravity. Without 
going into details, let us stress that 0=T  no longer implies 
that 0=R , or is even constant. Eq. (5) will turn out to be 
very useful in studying various aspects of )(Rf  gravity, 
notably its stability and weak-field limit. For the moment, let 
us use it to make some remarks about maximally symmetric 
solutions. Recall that maximally symmetric solutions lead to 
a constant Ricci scalar. For onstantR c=  and 0=µ!T

, eq. (5) 
reduces to   

0,=)(2)( RfRRf !"  (6) 

which, for a given f , is an algebraic equation in R . If 0=R  
is a root of this equation and one takes this root, then eq. (4) 
reduces to 0=µ!R

 and the maximally symmetric solution is 
Minkowski spacetime. On the other hand, if the root of eq. 
(6) is CR = , where C  is a constant, then eq. (4) reduces to 

/4= CgR µ!µ!
 and the maximally symmetric solution is de 

Sitter or anti-de Sitter space depending on the sign of C , just 
as in GR with a cosmological constant. Another issue that 
should be stressed is that of energy conservation. In metric 

)(Rf  gravity the matter is minimally coupled to the metric. 
One can, therefore, use the usual arguments based on the 
invariance of the action under diffeomorphisms of the 
spacetime manifold [coordinate transformations 

µµµµ !+"# xxx =  followed by a pullback, with the field µ!  
vanishing on the boundary of the spacetime region 
considered, leave the physics unchanged, see [72] to show 
that 

µ!T
 is divergence-free. The same can be done at the 

level of the field equations: a “brute force” calculation 
reveals that the left hand side of eq. (4) is divergence-free 
(generalized Bianchi identity) implying that 0=

µ!

µT" . 
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The field equation (4) can be rewritten as form of 
Einstein equations with an effective stress-energy tensor to 
the right hand side. Specifically, as 

Gµ! = " Tµ! +Tµ!
(eff )( )  (7) 

where   

 

Tµ!
(eff )

=
1

"

f (R)# R $f (R)

2
gµ! +%µ%! $f (R)# gµ! � $f (R)

&

'(
)

*+
 (8) 

is an effective energy-momentum tensor constructed with 
geometric terms. Since )(effTµ!  is only a formal energy-
momentum tensor, it is not expected to satisfy any of the 
energy conditions deemed reasonable for physical matter, in 
particular the effective energy density cannot be expected to 
be positive-definite. An effective gravitational coupling 

)(/ RfGGeff !"  can be defined in a way analogous to scalar-
tensor gravity. It is apparent that )(Rf !  must be positive for 
the graviton to carry positive kinetic energy. 

Motivated by the recent cosmological observations, we 
adopt the spatially flat Friedmann-Lemaitre-Robertson-
Walker (FLRW) metric to describe the universe,   

ds
2
= !dt

2 + a2 (t) dx2 + dy2 + dz2( ) ,  (9) 

where a  is the scale factor. Then, the field equations of 
metric )(Rf  cosmology become  

,)(3
2
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!"

#
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& ''(
('

+
'

RfRH
RfRfR
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H m &)
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2

)()(
!"

#$%
+

RfRRf                 (11) 

where  H ! &a / a  is the Hubble parameter and an overdot 
denotes differentiation with respect to the comoving time t . 
The corresponding phase space is a 2-dimensional curved 
manifold embedded in a 3-dimensional space and with a 
rather complicated structure [73]. 

2.2. Palatini f (R)- Gravity 

In the Palatini version of )(Rf  gravity, both the metric 

µ!g  and the connection µ

!"#  are regarded as independent 
variables. In other words, the connection is not the metric 
connection of 

µ!g . While in GR the metric and Palatini 
variations produce the same field equations (i.e., the Einstein 
equations), for non-linear Lagrangians one obtains two 
different sets of field equations.3 

Palatini )(Rf  gravity was proposed as an alternative to 
dark energy, on the same footing as metric )(Rf  models. 

                                                
3By imposing that the metric and Palatini variations generate the same field 
equations, Lovelock gravity is selected [74]. GR is a special case of Love-
lock theory. 

The original model advanced for this purpose was based on 
the specific form RRRf /=)( 4µ!  [67]. 

The Palatini action is   

 

SPalatini =
1

2!
"d 4x #g f ( %R)+ S(m ) gµ$ ,%

(m )&' () ,  (12) 

where a distinction needs to be made between two different 
Ricci tensors contained in the theory. 

µ!R
 is constructed 

from the metric connection of the (unique) physical metric 
µ!g , while 

µ!R
~  is the Ricci tensor of the non-metric 

connection µ

!"#  and defines the scalar 
µ!

µ!
RgR
~~

" . The 

matter part of the action does not depend explicitly from the 
connection µ

!"# , but only from the metric and the matter 

fields, which we collectively label as )(m! . 

By varying the Palatini action (12) one obtains the field 
equation   

,=
2

)
~
(~

)
~
( µ!µ!µ! "Tg

Rf
RRf #$         (13) 

 in which no second covariant derivative of f !  appears, 
in contrast with eq. (4). An independent variation with 
respect to the connection yields   

 

%!" #g $f ( %R)g
µ%( ) # %!" #g $f ( %R)g

" (µ( )&'% ) = 0 ,  (14) 

where 
!"
~  denotes the covariant derivative associated to the 

(non-metric) connection µ

!"# . 
By tracing eqs. (13) and (14) we obtain   

TRfRRf !=)
~
(2

~
)
~
( "#          (15) 

 and   

 

%!" #g $f ( %R)g
µ%( ) = 0 ,                (16) 

 respectively. Eq. (16) is interpreted as stating that 
!"
~  is 

the covariant derivative of the “new” metric tensor   

µ!µ! gRfg )
~
(~ "#             (17) 

conformally related to 
µ!g . Eq. (15) is an algebraic (or 

trascendental, according to the functional form of )(Rf ) 
equation for )

~
(Rf ! , not a differential equation describing its 

evolution. Therefore, )(Rf !  is a non-dynamical quantity, in 
contrast to what happens in metric )(Rf  gravity. The lack of 
dynamics has consequences which are discussed below. It is 
possible to eliminate the non-metric connection from the 
field equations by rewriting them as  
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2.3. Metric-affine f(R)- Gravity 

The third family of )(Rf  theories, metric-affine )(Rf  
gravity [75], is characterized by the fact that also the matter 
part of the action depends explicitly on the connection ! , as 
described by the action   

 

Saffine =
1

2!
"d 4x #g f %R( ) + S(m ) gµ$ ,%$&

µ
,'(m )() *+ .    (19) 

µ

!"#  is possibly a non-symmetric connection, which 
would lead to torsion associated with matter and to a 
reincarnation of torsion theories. The latter were introduced 
in view of elementary particles, rather than cosmology, by 
coupling the spin of elementary particles to the torsion. The 
study of metric-affine )(Rf  gravity has not been completed 
yet, in particular its cosmological consequences have not 
been fully elucidated. It is for this reason that our discussion 
will be limited to metric and Palatini )(Rf  gravity in what 
follows. 

3. EQUIVALENCE OF METRIC AND PALATINI  
f (R)- GRAVITIES WITH BRANS-DICKE THEORIES 

In the same way that one can make variable redefinitions 
in classical mechanics in order to bring an equation 
describing a system to a more attractive, or easy to handle, 
form (and in a very similar way to changing coordinate 
systems), one can also perform field redefinitions in a field 
theory, in order to rewrite the action or the field equations. 

There is no unique prescription for redefining the fields 
of a theory. One can introduce auxiliary fields, perform 
renormalizations or conformal transformations, or even 
simply redefine fields to one's convenience. It is important to 
mention that, at least within a classical perspective such as 
the one followed here, two theories are considered to be 
dynamically equivalent if, under a suitable redefinition of the 
gravitational and matter fields, one can make their field 
equations coincide. The same statement can be made at the 
level of the action. Dynamically equivalent theories give 
exactly the same results when describing a dynamical system 
which falls within the purview of these theories. There are 
clear advantages in exploring the dynamical equivalence 
between theories: we can use results already derived for one 
theory in the study of another, equivalent, theory. 

The term ''dynamical equivalence'' can be considered 
misleading in classical gravity. Within a classical 
perspective, a theory is fully described by a set of field 
equations. When we are referring to gravitation theories, 
these equations describe the dynamics of gravitating 
systems. Therefore, two dynamically equivalent theories are 
actually just different representations of the same theory 
(which also makes it clear that all allowed representations 
can be used on an equal footing). 

The issue of distinguishing between truly different 
theories and different representations of the same theory (or 
dynamically equivalent theories) is an intricate one. It has 
serious implications and has been the cause of many 
misconceptions in the past, especially when conformal 
transformations are used in order to redefine the fields ( e.g., 

the Jordan and Einstein frames in scalar-tensor theory). In 
what follows, we review the equivalence between metric and 
Palatini )(Rf  gravity with specific theories within the 
Brans-Dicke class with a potential. 

Metric )(Rf  gravity is equivalent to an 0=!  Brans-
Dicke theory4 when 0)( !"" Rf  [3], while Palatini modified 
gravity is equivalent to one with 3/2= !" . The equivalence 
has been rediscovered several times over the years, often in 
the context of particular theories [76]. 

3.1. Metric Formalism 

It has been noticed quite early that metric quadratic 
gravity can be cast into the form of a Brans-Dicke theory and 
it did not take long for these results to be extended to more 
general actions which are functions of the Ricci scalar of the 
metric . Let us present this equivalence in some detail. 

We will work at the level of the action but the same 
approach can be used to work directly at the level of the field 
equations. We begin with metric )(Rf  gravity. Let )(Rf !!  
be non-vanishing and consider the action (2); by using the 
auxiliary scalar field R=! , it is easy to see that the action   

S =
1

2!
"d 4x #g $(%)R #V (%)[ ] + S(m )       (20) 

with   

)()(=)(,)(=)( !!!!!!" ffVf #$$       (21) 

is equivalent to the previous one. It is trivial that (20) 
reduces to (2) if R=! . Vice-versa, the variation of (20) 
with respect to µ!

g  yields   
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The variation with respect to ! , instead, gives us   

( ) ,0=)(= !!
!!

"
fR

d

dV

d

d
R ##$$         (23) 

from which it follows that R=!  because 0!""f . The scalar 
field R=!  is clearly a dynamical quantity which obeys the 
trace equation   
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and is massive. Its mass squared  
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is computed in the analysis of small perturbations of de Sitter 
space (here a zero subscript denotes quantities evaluated at 
the constant curvature 

0
R  of the de Sitter background). It is 

                                                
4The Brans-Dicke action for general values of the Brans-Dicke parameter 

!  is )(4 )(
2

1
= m

BD SVRgxdS +!
"

#
$
%

&
'(('') ***

*

+
*

,
-

- . 



56    The Open Astronomy Journal, 2010, Volume 3 Capozziello et al. 

 

convenient to consider, instead of ! , the scalar )(!" f #$  
obeying the evolution equation   

 

3� !+ 2U(!)"!
dU

d!
=#T ,          (26) 

where ))(())((=)( !"!"! fVU # . 

To summarize, metric )(Rf  gravity contains a scalar 
degree of freedom and the action   

S =
1

2!
"d 4x #g $R #U($)[ ] + S(m ) ,       (27) 

is identified as an 0=!  Brans-Dicke theory. This theory 
(“massive dilaton gravity'') was introduced in the 1970's in 
order to generate a Yukawa term in the Newtonian limit [77], 
and then abandoned. The assumption 0!""f  is interpreted as 
the requirement of invertibility of the change of variable 

)(RR !" . 

3.2.  Palatini Formalism 

In Palatini modified gravity the equivalence with a 
Brans-Dicke theory is discovered in a way similar to that of 
the metric formalism. Beginning with the action (12) and 
defining R

~
!"  and )(!" f #$ , it is seen that, apart from an 

irrelevant boundary term, the action can be rewritten as   

)(4 )(
2

3

2

1
= m

Palatini SVRgxdS +!
"

#
$
%

&
'((+') ***

*
*

+
,

,  (28) 

 in terms of the metric 
µ!g  and its Ricci tensor 

µ!R
. Here we 

have used the property that, since 
µ!µ! " gg =

~ , the Ricci 
curvatures of 

µ!g  and 
µ!g
~  satisfy the relation   

 

%R = R+
3

2!
"#!"#! $

3

2
� ! .         (29) 

The action (28) is easily identified as a Brans-Dicke 
theory with Brans-Dicke parameter 3/2= !" . 

4. THEORETICAL AND EXPERIMENTAL VIABI-
LITY OF f (R)- GRAVITY 

In order to be acceptable, )(Rf  theories should not only 
reproduce the current acceleration of the universe, but they 
must also satisfy the constraints imposed by Solar System 
and terrestrial experiments on relativistic gravity, and they 
must obey certain minimal requirements for theoretical 
viability. More precisely, these families of theories must: 

    • possess the correct cosmological dynamics;  
    • be free from instabilities and ghosts;  
    • attain the correct Newtonian and post-Newtonian 

limits;  
    • originate cosmological perturbations compatible with 

the observations of the CMB and with large scale structure 
surveys; and  

    • possess a well-formulated and well-posed initial 
value problem.  

If a single one of these criteria is not met the theory 
should be regarded as unviable. In the following we examine 
how )(Rf  gravity performs with regard to these criteria. 

4.1.  Correct Cosmological Dynamics 

According to the tenets of standard cosmology, an 
acceptable cosmological model must contain an early 
inflationary era (or possibly another mechanism) solving the 
horizon, flatness, and monopole problems and generating 
density perturbations, followed by a radiation- and then a 
matter-dominated era. The present accelerated epoch then 
begins, possibly explained by )(Rf  gravity. The future 
universe usually consists of an eternal de Sitter attractor, or 
ends in a Big Rip singularity [87]. Smooth transitions 
between different eras are necessary. The exit from the 
radiation era, in particular, was believed to be impossible in 
many models [78], but this proved to be not true. In fact, exit 
from the radiation or any era can be obtained as follows. In 
the approach dubbed “designer )(Rf  gravity” in [74], the 
desired expansion history of the universe can be obtained by 
specifying the desired scale factor )(ta  and integrating an 
ordinary differential equation for the function )(Rf  that 
produces the chosen )(ta  [79]. In general, the solution to this 
ODE is not unique and can assume a form that appears rather 
contrived in comparison with simple forms adopted in most 
popular models. 

4.2. Instabilities 

The choice RRRf /=)( 4µ!  with 33

0
10

!
::Hµ  eV is 

again the prototypical example model to discuss instabilities. 
Shortly after it was advanced as an explanation of the cosmic 
acceleration, this model was found to suffer from the 
pernicious “Dolgov-Kawasaki” instability [80]. This type of 
instability was later shown to be common to any metric 

)(Rf  theory with 0<)(Rf !!  ([81]) and the extension to even 
more general gravitational theories has been discussed [82]. 
Let us parametrize the deviations from GR as   

)(=)( RRRf !"+            (30) 

with 0>!  a small constant with the dimensions of a mass 
squared and !  dimensi onless. The trace equation for the 
Ricci scalar R  becomes   
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+
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By expanding around a de Sitter background and writing 
the metric  locally as   

,= µ!µ!µ! " hg +             (32) 

and the scalar R  as   

,=
1
RTR +!"             (33) 



A Bird's Eye View of f (R)-Gravity The Open Astronomy Journal, 2010, Volume 3    57 

 

with 
1
R  a perturbation, the first order trace equation 

translates into the dynamical equation for 
1
R    
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The expression containing 1!"  dominates the last term on 
the left hand side, giving the effective mass squared of 

1
R    

  

m
2!

1

3" ##$
.              (35) 

Therefore, the theory is stable if 0>)(Rf !!  and unstable 
if 0<)(Rf !! . Strictly speaking, GR is excluded by the 
assumption 0!""f , but the well-known stability of this case 
can easily be included by writing the stability criterion for 
metric )(Rf  gravity as 0!""f . 

To go back to the example model of [80] 
RRRf /=)( 4µ! , this is unstable because 0<f !! . The small 

scale µ  determines the time scale for the onset of this 
instability as 26

10
!

:  s [80], making this an explosive 
instability. 

A physical interpretation of this stability criterion is the 
following [83]: the effective gravitational coupling is 

)(/= RfGGeff !  and, if 0>)/(=/ 2fGfdRdGeff !!!"  

(corresponding to 0<f !! ), then 
effG  increases with R  and a 

large curvature causes gravity to become stronger and 
stronger, which in turn causes a larger R , in a positive 
feedback loop. If instead 0</dRdGeff , then a negative 
feedback stops the growth of the gravitational coupling. 

What about Palatini )(Rf  gravity? Since this formalism 
contains only second order field equations and the trace 
equation TRfRRf !=)

~
(2

~
)
~
( "#  is not a differential equation 

but rather a non-dynamical equation, as noted above, there is 
no Dolgov-Kawasaki instability [84]. 

The discussion of metric )(Rf  instabilities presented 
above is based on the local expansion (32) and, therefore, is 
limited to short wavelength modes (compared to the 
curvature radius). However, it can be extended to the longest 
wavelengths in the case of a de Sitter background [85]. This 
extension requires a more complicated formalism because 
long modes introduce inhomogeneities and are affected by 
the notorious gauge-dependence problems of cosmological 
perturbations. A covariant and gauge-invariant formalism is 
needed here. One proceeds by assuming that the background 
space is de Sitter and by considering the general action   
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*+*
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, V
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containing )(Rf  and scalar-tensor gravity as special cases, 
and mixtures of them. The field equations originating from 
this action become, in a FLRW background space,  
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de Sitter space is a solution of the field equations provided 
that the conditions   

6H
0

2
f
0
'! f

0
+ 2V

0
= 0 , f

0
' = 2V

0
' ,       (40) 

are satisfied. An analysis of inhomogeneous perturbations of 
small amplitude and arbitrary wavelengths [85] using the 
covariant and gauge-invariant Bardeen-Ellis-Bruni-Hwang 
formalism [86] in Hwang's version [87] for alternative 
gravitational theories yields the stability condition in the zero 
momentum limit   

( f
0
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2
! 2 f

0
f
0
''

f
0
' f

0
''

" 0 ,            (41) 

This is the stability condition of de Sitter space in metric 
)(Rf  gravity with respect to  inhomogeneous perturbations 

and coincides with the corresponding stability condition with 
respect to  homogeneous perturbations [83]. 

The equivalence between metric )(Rf  gravity and an 
0=!  Brans-Dicke theory holds also at the level of 

perturbations; doubts advanced to this regard have now been 
resolved. The stability condition of de Sitter space with 
respect to inhomogeneous perturbations in 0=!  Brans-
Dicke theory is given again by eq. (41), while that for 
stability with respect to homogeneous perturbations is   

( f
0
')
2
! 2 f

0
f
0
''

f
0
'

" 0 .            (42) 

 This inequality is again equivalent to (41) if stability 
against  local perturbations ( i.e., f

0
'' > 0 ) is also required. 

Hence, metric )(Rf  gravity and 0=!  Brans-Dicke theory 
are equivalent also with regard to perturbations. 

Beyond the linear approximation, metric )(Rf  theories 
have been shown to be susceptible to non-linear instability, 
potentially threatening the possibility of constructing models 
of relativistic stars in strong )(Rf  gravity. Inside compact 
objects with spherical symmetry, a singularity could develop 
if R  becomes large [89]. Avoiding this singularity requires 
some degree of fine-tuning. Various authors have contended 
that this problem can be cured by adding, for example, a 
quadratic term 2

R!  to the action as first [88, 90]. This 
problem needs further study, since it could be the biggest 
challenge left for metric )(Rf  theories. 

4.3. Ghost Fields 

Ghosts are massive states of negative norm which ruin 
unitarity and appear frequently in attempts to quantize 
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Einstein's theory. Fortunately, )(Rf  gravity theories are free 
of ghosts. More general ETGs of the form 
f R,Rµ!R

µ!
,Rµ!"#R

µ!"#
,...( ) , in general, are plagued by the 

presence of ghosts. A possible exception under certain 
conditions studied in [91] is provided by theories in which 
the extra terms are restricted to appear in the Gauss-Bonnet 
combination µ!"#

µ!"#

µ!

µ! RRRRRG +$ 4=
2 , as in 

( )GRff ,= . Then, the field equations reduce to second 
order equations without ghosts [92, 93]. 

4.4. The Weak-Field Limit for Metric )(Rf  Gravity 

After errors and omissions in the early treatments of the 
weak-field limit of metric and Palatini modified gravity, a 
satisfactory discussion of the particular model 

RRRf /=)( 4µ!  in the metric formalism appeared [94], 
followed by the generalization to arbitrary forms of the 
function )(Rf [95, 96]. 

One studies the PPN parameter !  which is constrained 
by light deflection experiments in the Solar System. The goal 
consists of finding the weak-field solution of the field 
equations and, using this solution, computing the parameter 
! . A static, spherically symmetric, non-compact body 
which constitutes a perturbation of a background de Sitter 
universe is considered, as described by the line element   

ds
2
= ! 1+ 2"(r)! H

0

2
r
2#$ %&dt

2
+ 1+ 2'(r)+ H

0

2
r
2#$ %&dr

2
+ r

2
d(2 (43) 

in Schwarzschild coordinates, with 2
!d  being the line 

element on the unit 2-sphere. !  and !  are post-Newtonian 
potentials with small amplitudes, i.e., 1<<)(,)( rr !" , and 
small (non-cosmological) scales such that 1<<

0
rH  are 

considered. The Ricci scalar is expanded around the constant 
curvature of the background de Sitter space as 

10=)( RRrR + . The PPN parameter !  is then given by 

)()/(= rr !"#$  [49]. The analysis relies upon three 
assumptions [96]: 

    1.  )(Rf  is analytical at 
0
R ;  

    2.  1<<mr , where m  is the effective mass of the 
scalar degree of freedom of the theory. In other words, this 
scalar field is assumed to be light and with a range larger 
than the size of the Solar System (there are no experimental 
constraints on scalars with range 0.2<

1!
m  mm).  

    3.  The matter composing the spherical body has 
negligible pressure, P~0  and T =T

0
+T

1
~ !" .  

While it is easy to satisfy the first and the last 
assumptions, the second one is more tricky, as discussed 
below. The trace equation (5) turns into   
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regulating the Ricci scalar perturbation, where   
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is the effective mass squared of the scalar, which reproduces 
the expression derived in the gauge-invariant stability 
analysis of de Sitter space and in propagator calculations. 

If 1<<mr , the solution of the linearized field equations 
is  
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and the PPN parameter !  is given by   
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1
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$             (48) 

This value manifestly violates the experimental bound 
[97]   

.102.3<1
5!"!#             (49) 

This violation would mark the demise of metric )(Rf  
gravity were it not for the fact that the second assumption 
necessary to perform this calculation is usually not satisfied. 
In fact, mr  fails to be smaller than unity due to the  
chameleon effect. This effect consists of a dependence of the 
effective mass m  on the spacetime curvature or, 
alternatively, on the matter density of the surroundings. The 
scalar degree of freedom can have a short range (for 
example, 3

10>
!

m  eV, corresponding to a range 0.2<!  mm) 
at Solar System densities, escaping the experimental 
constraints, and have a long range at cosmological densities, 
which allows it to have an effect on the cosmological 
dynamics [93, 98]. While the chameleon effect may seem a 
form of fine-tuning, one should bear in mind that )(Rf  
gravity is complicated and the effective range does indeed 
depend on the environment. The chameleon mechanism is 
not arranged, but is built into the theory and is well-known 
and accepted in quintessence models, in which it was 
originally discovered [99]. It has been studied for many 
forms of the function )(Rf  which pass the observational 
tests. For example, the model   

f (R) = R ! 1! n( )µ2
R

µ2
"

#
$

%

&
'

n

         (50) 

is compatible with the PPN limits if 50
10

!
:µ  eV

0

17
10 H

!
:  

[98]. To understand how this model can work it is sufficient 
to note that a correction n

R:  to the Einstein-Hilbert 
Lagrangian R  with 1<n  will eventually dominate as 

+
! 0R . The model (50) agrees with the experimental data 

but could be essentially indistinguishable from a dark energy 
model. Discriminating between dark energy and )(Rf  
models, or between modified gravity scenarios should be 
possible on the basis of the growth history of cosmological 
perturbations. 
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4.5. Growth of Cosmological Perturbations 

Since the spatially homogeneous and isotropic FLRW 
metric solves the field equations of many gravitational 
theories, the expansion history of the universe by itself 
cannot discriminate between various ETGs. However, the 
growth of structures depends on the theory of gravity 
considered and has the potential to achieve this goal. A 
typical study is that of Ref. [100]; these authors postulate an 
expansion history )(ta  characteristic of the !CDM model 
and find that vector and tensor modes are not affected by 

)(Rf  corrections to Einstein gravity, to lowest order, and 
can be neglected, whereas scalar modes do depend on the 
theory chosen. In [100] the stability condition 0>)(Rf !!  
discussed above for scalar perturbations is also recovered. It 
is found there that )(Rf  corrections lower the large angle 
anisotropies of the cosmic microwave background and 
produce correlations between cosmic microwave background 
and galaxy surveys which are different from those obtained 
in dark energy models. A rigorous and mathematically self-
consistent approach to the problem of cosmological 
perturbations in )(Rf -gravity as been developed using 
covariant and gauge-invariant quantities in [101-103]. 

The study of structure formation in modified gravity is 
still uncomplete and, most of the times, is carried out within 
specific )(Rf  models. Insufficient attention has been paid to 
the fact that some of these models are already ruled out 
because they contradict the weak-field limit or the stability 
conditions. A similar situation is found in Palatini models 
which, for this reason, will not be discussed here with regard 
to their weak-field limit and cosmological perturbations. 

4.6. The Initial Value Problem 

A physical theory is required to make predictions and, 
therefore, it must have a well-posed Cauchy problem. GR 
satisfies this requirement for “reasonable” forms of matter 
[72]. The well-posedness of the initial value problem for 
vacuum )(Rf  gravity was briefly discussed for special 
metric models a long time ago [104]. Owing to the 
equivalence between )(Rf  gravity and scalar-tensor gravity 
when 0)( !"" Rf , the initial value problem of )(Rf  gravity is 
reduced to the one for Brans-Dicke gravity with 0=!  or 
3/2! . The Cauchy problem was shown to be well-posed for 

particular scalar-tensor theories in [104, 105] but a general 
analysis has been completed only relatively recently [106, 
107]. A separate treatment, however, was necessary for 

3/20,= !"  Brans-Dicke theory. 

We begin by defining the basic concepts employed: a 
system of 13+  equations is said to be  well-formulated if it 
can be written as a system of equations of only first order in 
both temporal and spatial derivatives. Assume that this 
system can be cast in the full first order form  

( ),= uSuMu
i

i

t

rrrr
!+"            (51) 

where ur  collectively denotes the fundamental variables 

ijij Kh , , etc. introduced below, i
M  is called the  

characteristic matrix of the system, and ( )uS
rr

 describes 
source terms and contains only the fundamental variables but 
not their derivatives. Then, the initial value formulation is  
well-posed if the system of PDEs is  symmetric hyperbolic 
(i.e., the matrices i

M  are symmetric) and  strongly 
hyperbolic if i

i
Ms  has a real set of eigenvalues and a 

complete set of eigenvectors for any 1-form 
i
s , and obeys 

some boundedness conditions [108]. 

To summarize the results of [109], the Cauchy problem 
for metric )(Rf  gravity is well-formulated and is well-posed 
in vacuo and with “reasonable” forms of matter ( i.e., perfect 
fluids, scalar fields, or the Maxwell field). For Palatini )(Rf  
gravity, instead, the Cauchy problem is well-formulated 
[110] but not well-posed in general, due to the presence of 
higher derivatives of the matter fields in the field equations 
and to the fact that it is impossible to eliminate them [109]. 
However, as it was remarked in [111], the Cauchy problem 
for Palatini is still well-posed in vacuo and when the trace of 
the matter energy-momentum tensor vanishes or it is a 
constant. On the other hand, it is possible to show the well-
formulation and the well-position as soon as the source of 
the field equations is perfect-fluid matter [111]. 

As an alternative, the Brans-Dicke theory equivalent to 
Palatini )(Rf  gravity can be mapped into its Einstein frame 
representation. In this conformal frame the redefined Brans-
Dicke field couples minimally to gravity and non-minimally 
to matter [112] and the non-dynamical role of this scalar is 
even more obvious [112]. 

The problems with Palatini )(Rf  gravity manifest 
themselves from a completely different angle when one tries 
to match static interior and exterior solutions with spherical 
symmetry [113].5 The field equations are second order PDEs 
for the metric components and, since f  is a function of R~ , 
which in turn is an algebraic function of T  due to eq. (15), 
the right hand side of eq. (18) contains second derivatives of 
T . Now, T  contains derivatives of the matter fields up to 
first order, hence eq. (18) contains derivatives of the matter 
fields up to third order. This property is very different from 
the familiar situation of GR and most of its extensions, in 
which the field equations contain only first order derivatives 
of the matter fields. A consequence of this dependence on 
lower order derivatives of the matter fields is that, in these 
theories the metric is generated by an integral over the matter 
sources and discontinuities in the matter fields and their 
derivatives are not accompanied by unphysical 
discontinuities of the metric. In Palatini )(Rf  gravity, 
instead, the algebraic dependence of the metric on the matter 
fields creates unacceptable discontinuities in the metric and 
singularities in the curvature, which were discovered in 

                                                
5Other problems of Palatini )(Rf  gravity were reported and discussed in 
[114, 115]. 



60    The Open Astronomy Journal, 2010, Volume 3 Capozziello et al. 

 

[113]. Both the failure of the initial value problem and the 
presence of curvature singularities with matter fields can be 
ascribed to the non-dynamical nature of the scalar degree of 
freedom and to the fact that the latter is related algebraically 
to T . A possible cure consists of modifying the gravitational 
sector of the Lagrangian in such a way that the order of the 
field equations is raised. 

5. DARK ENERGY AS CURVATURE 

Let us now show, by some straightforward arguments, 
how )(Rf -gravity can be related to the problem of dark 
energy. The field equations (4) may be recast in the Einstein-
like form  

)(/=
2

1
= )( RfTTRgRG 'eff

µ!µ!µ!µ!µ! +"       (52) 

with )(effT  given by eq. (8) and in which matter couples non-
minimally to the geometry through the term )(1/ Rf ' . As 
noted above, the appearance of 

µ!;)(Rf
'  in )(effTµ!  makes eq. 

(52) a fourth order equation (unless RRf =)( , in which case 
the curvature stress - energy tensor )(effT!"  vanishes identically 
and (52) reduces to the second order Einstein equation). As 
is clear from eq. (52), the curvature stress-energy tensor 

)(effTµ!  formally plays the role of a source in the field 
equations and its effect is the same as that of an effective 
fluid of purely geometrical origin. However, one can also 
consider the Palatini approach [66, 75], in which the Einstein 
equations can still be rewritten as effective Einstein 
equations containing a fluid of geometric origin. 

In principle, the scheme outlined above provides all the 
ingredients needed to tackle the dark side of the universe. 
Depending on the scale considered, the effective curvature 
fluid can play the role of both dark matter and dark energy. 
From the cosmological point of view, in the standard 
framework of a spatially flat homogenous and isotropic 
universe, the cosmological dynamics are determined by the 
energy budget through the Friedmann equations. In 
particular, the cosmic acceleration is achieved when the right 
hand side of the acceleration equation remains positive. In 
units in which 1==8 cG!  this means  

 

&&a

a
= !

1

6
"
tot
+ 3P

tot( ) ,            (53) 

where the subscript tot  denotes the sum of the curvature 
fluid and the matter contributions to the energy density and 
pressure. The acceleration condition 0>a&&  for a dust-
dominated model is  

0<3 effMeff P++ !!            (54) 

or   

.
3

<

eff

tot
effw

!

!
"              (55) 

Then, the effective quantities  
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and  

 

weff = !1+
&&R ""f (R)+ &R &R """f (R)! H ""f (R)#$ %&

f (R)! R "f (R)[ ] / 2 ! 3H &R ""f (R)
     (57) 

play a key role in determining the dynamics of the universe. 
To gain insight into the dynamics, one can begin by 
neglecting ordinary matter and studying the power-law form 

nRfRf 0=)(  (with n  a real number), which represents a 
straightforward generalization of Einstein's GR 
corresponding the 1=n  limit. This choice yields power-law 
solutions for the scale factor )(ta  which provide a good fit to 
the SNeIa data and are in good agreement with the estimated 
age of the universe in the range 1.376<<1.366 n  [46]. The 
same kind of analysis can be carried out in the presence of 
ordinary matter, but in this case, numerical solution of the 
field equations is required. Then, it is still possible to 
confront the Hubble flow described by such a model with the 
Hubble diagram of SNeIa.  

 
 
Fig. (1). The Hubble diagram of twenty radio galaxies together with 
the “gold” SNeIa sample is plotted versus the redshift z , as 
suggested in [116]. The best-fit curve corresponds to the )(Rf  
gravity model without dark matter.  

The fit to the data is remarkably good (see Fig. 1) 
improving the 2!  value and it fixes the best-fit value at 

3.46=n  if the baryons contribute to the energy density by 
0.04!"

b
, in agreement with the prescriptions if Big Bang 

nucleosynthesis. The inclusion of dark matter does not 
modify the fit appreciably, supporting the assumption that 
dark matter is not essential in this model. From the evolution 
of the Hubble parameter in terms of redshift, one can even 
calculate the age of the universe 

univ
t . The best-fit value 

3.46=n  provides 12.41!
univ
t  Gyr. Of course, nRfRf 0=)(  

gravity represents only a toy model generalization of 
Einstein's theory. Here we only suggest that several 
cosmological and astrophysical results can be well 
reproduced in the realm of a power-law extended gravity 
model. This approach allows flexibility in the value of the 
exponent n , although it would be preferable to determine a 
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model capable of working at various scales. Furthermore, we 
do not expect to be able to reproduce the entire cosmological 
phenomenology by means of a simple power-law model, 
which is not sufficiently versatile [78]. For example, it can 
be easily demonstrated that this model fails when it is 
analyzed with respect to its ability of providing the correct 
evolutionary conditions for the perturbation spectra of matter 
overdensities [117]. This point is typically regarded as one of 
the most important arguments suggesting the need for darm 
matter. If one wants to discard this component, it is crucial to 
match the observational results related to the large-scale 
structure of the universe with the CMB. These carry the 
imprints of the initial matter spectrum at late times and at 
early times, respectively. It is important that the quantum 
spectrum of primordial perturbations, which provide the 
seeds of matter perturbations, can be recovered in the 
framework of n

R  gravity. In fact, the model 2)( RRRf +!  
can represent a viable model with respect to CMB data and 
is a good candidate for cosmological inflation. To obtain the 
matter power spectrum suggested by this model, we resort to 
the equation for the matter contrast obtained in Ref. [117] for 
fourth order gravity. This equation can be deduced in the 
Newtonian conformal gauge for the perturbed metric [117].  

ds
2
= ! 1+ 2"( )dt 2+a2 1+ 2#( )$i=1

3
(dx

i
)
2
.      (58) 

In GR, it is !" #=  because there is no anisotropic 
stress; in general, this relation breaks down in ETGs and the 
non-diagonal components of the field equations yield new 
relations between the potentials !  and ! . In )(Rf  gravity, 

due to the non-vanishing jiRf ;;
 with ji! , the !" #  

relation becomes scale-dependent. Instead of the perturbation 
equation for the matter contrast ! , we provide here its 
evolution in terms of the growth index adds ln/ln!" , a 
quantity measured at 0.15:z :  
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where 
0)/(=)( HaHaE , R~  is the dimensionless Ricci scalar, 

and  

.
2

=
2

22

af

kcf
Q

R

RR!             (60) 

For 1=n , eq. (60) gives the ordinary growth index 
relation of the Standard Cosmological Model. It is clear from 
eq. (59) that the latter suggests a dependence of the growth 
index on the scale which is contained in the corrective term 
Q  and that this dependence can be safely neglected when 

0!Q  (see Fig. (2)). In the most general case one can resort 
to the limit 13

10<<
!! MpchkaH  in which eq. (59) is a good 

approximation, and non-linear effects on the matter power 
spectrum can be neglected. 

By studying numerically eq. (59) one obtains the 
evolution of the growth index in term of the scale factor. 
Assuming, for simplicity, the initial condition 1=)(

ls
as  at the 

last scattering surface as in the case of matter domination, 
the results are summarized in Fig. (1), which displays the 
evolution of the growth index in n

R  gravity and in the 
!CDM model.  

In the case of 0.04= :
barm

!! , one can observe a strong 
disagreement between the expected rate of the growth index 
and the behavior induced by power-law fourth order gravity 
models. This negative result is evident in the predicted value 
of )( 0.15=zas

, which has been observationally estimated by 
the analysis of the correlation function for 220,000 galaxies 
in the 2dFGRS dataset at the survey effective depth 0.15=z . 
The observational result suggests 0.110.58= ±s  [118], while 
our model gives 

 
s(a

z=0.15 ):0.117 (k=0.01), 0.117(k=0.001), 0.122 (k=0.0002) 

 
s(a

z=0.15 ):0.117 (k=0.01), 0.117(k=0.001), 0.122 (k=0.0002) . Although this result seems frustrating with 
respect to the underlying idea of discarding the dark 
components in the cosmological dynamics, it does not give 
substantial improvement in the case of n

R  gravity model 
plus dark matter. In fact, it is possible to show that, even  
in this case, the growth index prediction is far from being in 
agreement with the !CDM model and again,  
at the observational scale 0.15=z , there is not  
enough growth of perturbations to match the observed  

 

Fig. (2). The evolution of the growth index f  in terms of the scale factor. The left panel corresponds to modified gravity, in the case 

0.04= :
barm

!! , for the SNeIa best fit model with 3.46=n . The right panel shows the same evolution in the !CDM model. In the case of 
n
R  gravity it is shown also the dependence on the scale k . The three cases 0.0010.01,=k ,and 0.0002  have been eamined, and only the 
last of these three cases revelas a very small deviation from the leading behavior.  
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large cale structure. In this case one obtains 
0.0002)=(0.310.001),=0.29(0.01),=0.29()( 0.15= kkkas

z
: , i.e., 

values which are substantially increased with respect to the 
previous case but still very far from the experimental 
estimate. No significantly different results are obtained if 
one varies the power n  (of course, for 1!n , one recovers 
the standard behavior if a cosmological constant is added to 
the model). These results seem to suggest that an extended 
gravity model incorporating a simple power-law of the Ricci 
scalar, although cosmologically relevant at late times, is not 
a viable description of the cosmic evolution at all scales. 
Such a scheme seems too simple to account for the entire 
cosmological phenomenology. In [117] a gravity Lagrangian 
considering an exponential correction to the Ricci scalar 

)(exp=)( RBARRf !+  (with BA,  constants) produces more 
interesting results and exhibits a grow factor rate in 
agreement with the observational results at least in the dark 
matter case. To corroborate this point of view, one has to 
consider that when )(Rf  is chosen starting from 
observational data in an inverse approach as in [78], the 
reconstructed Lagrangian is a non-trivial polynomial in the 
Ricci scalar. This result suggests that the whole 
cosmological phenomenology can be accounted only by a 
suitable non-trivial function of the Ricci scalar rather than a 
simple power-law. The results obtained in the study of the 
matter power spectra for simple n

R  gravity do not invalidate 
the general approach. 

6. DARK MATTER AS CURVATURE 

The results obtained at cosmological scales motivate 
further analysis of )(Rf  theories from the phenomenological 
point of view. One wonders whether the curvature fluid 
which works as dark energy could also play the role of 
effective dark matter, providing an opportunity to reproduce 
the observed astrophysical phenomenology using only 
visible matter (see for a discussion [71]). It is well known 
that, in the low energy limit, higher order gravity implies a 
modified gravitational potential, which will play a 
fundamental role in our discussion. By considering a 
spherical mass distribution with mass m  and solving the 
vacuum field equations for a Schwarzschild-like metric, one 
obtains the modified gravitational potential of the theory 

nRfRf 0=)(  [119]  
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where  
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This potential corrects the ordinary Newtonian potential 
with a power-law term. The correction becomes important on 
scales larger than 

c
r  and the value of this threshold constant 

depends essentially on the mass of the system. The corrected 

potential (61) reduces to the standard Newtonian potential 
r1/!"  for 1=n , as follows from the inspection of eq. (62). 

The result (61) deserves some comments. As discussed in 
detail in [119], we have assumed spherical symmetry in the 
the weak-field approximation of the field equations, which 
leads to a corrected Newtonian potential due to the strong 
non-linearity of higher order gravity. Note that Birkhoff's 
theorem does not hold, in general, in )(Rf  gravity, and that 
spherically symmetric solutions different from the 
Schwarzschild one exist in these ETGs [120]. 

The generalization of eq. (61) to extended sources is 
achieved by dividing the latter into infinitesimal mass 
elements and integrating the potentials generated by these 
individual elements. An integral over the mass density of the 
system is calculated, taking care of possible symmetries of 
the mass distribution [119]. Once the gravitational potential 
has been computed, one can evaluate the rotation curve 

)(2 rv
c

 and compare it with the astronomical data. For 
extended systems, one typically must resort to numerical 
techniques, but the main effect may be illustrated by the 
rotation curve for the point-like situation, that is,  
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In comparison with the Newtonian result rGmv
c

/=
2 , the 

corrected rotation curve is modified by the addition of the 
second term on the right hand side of eq. (63). For 1<<0 ! , 
the corrected rotation curve is higher than the Newtonian 
one. Since measurements of the rotation curves of spiral 
galaxies signal circular velocities larger than predicted by the 
observed luminous mass and Newtonian potential, the above 
result suggests the possibility that the modified gravitational 
potential of fourth order gravity may fill the gap between 
theory and observations without the need for additional dark 
matter. 

The corrected rotation curve vanishes asymptotically as 
in the Newtonian case, while it is usually claimed that 
observed rotation curves are flat (i.e., asymptotically 
constant). Actually, observations do not probe 

c
v  up to 

infinite radii but only show a flat rotation curve (within the 
uncertainties) up to the last measured point. The possibility 
that 

c
v  goes to zero at infinity is by no means excluded. In 

order to check observationally this result, we have 
considered a sample of low surface brightness (LSB) 
galaxies with well measured HI and H!  rotation curves 
extending far beyond the visible edge of the system. LSB 
galaxies are known to be ideal candidates to test dark matter 
models because of their high gas content, which allows the 
rotation curves to be well measured and corrected for 
possible systematic errors by comparing 21 cm HI line 
emission with optical H!  and ][NII  data. Moreover, these 
galaxies are supposed to be dominated by dark matter, so 
fitting their rotation curves without this elusive component 
would support ETGs as alternatives to dark matter. 
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Our sample contains fifteen LSB galaxies with data on 
the rotation curve, the surface mass density of the gas 
component and R -band disk photometry extracted from a 
larger sample selected by de Blok & Bosma [121]. We 
assume that stars are distributed in an infinitely thin and 
circularly symmetric disk with surface density 

0=)( Ir
å

!" exp )/(
d
rr! , where the central surface luminosity 

0
I  and the disk scale length 

d
r  are obtained from fitting to 

the stellar photometry. The gas surface density has been 
obtained by interpolating the data over the range probed by 
HI measurements and extrapolated outside this range. When 
fitting the theoretical rotation curve, there are three quantities 
to be determined, namely the stellar mass-to-light ( LM/ ) 
ratio 

å
! , and the theory parameters ( )

c
r,! . It is worth 

stressing that, while fit results for different galaxies should 
provide the same value of ! , 

c
r  is related to one of the 

integration constants in the field equations. As such, this 
quantity is not universal and its value must be determined on 
a galaxy by galaxy basis. However, it is expected that 
galaxies with similar mass distributions have similar values 
of 

c
r  so that the scatter in 

c
r  must reflect the scatter in the 

circular velocities. In order to match the model with the data, 
we perform a likelihood analysis for each galaxy, using as 
fitting parameters ! , 

c
rlog  (with 

c
r  in kpc) and the gas 

mass fraction6 
gf . As it is evident from the results of the 

different fits, the experimental data are successfully fitted by 
the model [119]. In particular, from a purely 
phenomenological point of view and leaving aside for the 
moment other viability criteria, from the best fit range 

0.080.80= ±! , one can conclude that n
R  gravity with 

5.3<<2.3 n  (best fit value 3.2=n  which overlaps well the 
above-mentioned range of n  fitting SNeIa Hubble diagram) 
can be a good candidate for solving the missing matter 
problem in LSB galaxies without dark matter.  
                                                
6This is related to the LM/  ratio by )]/()[(1= dggg LfMf!"

å
, where 

w 
HIg MM 1.4=  is the gas (HI + He) mass, and 

dd
LM
å

!=  and 

2

0
2=

dd
rIL !  are the disk total mass and luminosity, respectively. 

At this point, one wonders whether a link may be found 
between n

R  gravity and the standard approach based on 
dark matter haloes since both theories fit equally well the 
same data. As a matter of fact, it is possible to define an  
effective dark matter halo by imposing that its rotation curve 
equals the correction term to the Newtonian curve induced 
by n

R  gravity (Fig. 3). Mathematically, one can split the 
total rotation curve derived from n

R  gravity as 
)()(=)( 2

,

2

,

2
rvrvrv

corrcNcc
+ , where the second term is the 

correction. Considering, for simplicity a spherical halo 
embedding a thin exponential disk, we may also write the 
total rotation curve as )()(=)( 2

,

2

,

2
rvrvrv

DMcdiskcc
+  with 

)(2
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diskc

 the Newtonian disk rotation curve and 

rrGMrv
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,
 the dark matter one, )(rM

DM
 being its 

mass distribution. Equating the two expressions yields  
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with 
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rr/=!  and 
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where 
0
F  depends only on the geometry of the system and 

the subscript “ vir ” indicates virial quantities. Eq. (64) 
defines the mass profile of an effective spherically 
symmetric dark matter halo whose ordinary rotation curve 
provides the part of the corrected disk rotation curve 
resulting from the addition of the curvature correction to the 
gravitational potential. Clearly, from a phenomenological 
point of view there is no way to distinguish this dark halo 
model from n

R  gravity. 

                                                
7Here 

l
I  and 

l
K , with 1,2=l  are the Bessel functions of first and second 

type, respectively. 

 

Fig. (3). Best-fit theoretical rotation curve superimposed to the data for the LSB galaxy NGC 4455 (left) and NGC 5023 (right). To better 
show the effect of the correction to the Newtonian gravitational potential, we report the total rotation curve )(rv

c
 (solid line), the Newtonian 

one (short dashed) and the correction term (long dashed). 
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Having assumed spherical symmetry for the mass 
distribution, it is straightforward to compute the  
mass density for the effective dark halo as 

drdMrr
DMDM
/)(1/4=)( 2!" . The most interesting feature of 

the density profile is its asymptotic behavior quantified by 
the logarithmic slope rdd

DMDM
ln/ln= !" , which can be 

computed only numerically as a function of !  for fixed 
values of !  (or n ). As expected, 

DM
!  depends explicitly on 

! , while ),,( 0 dc
rr !  enter indirectly through 

vir
! . The 

asymptotic values at the centre and at infinity (
0

!  and 
!" , 

respectively) are of particular interest. 
0

!  almost vanishes 
and, in the innermost regions, the density is approximately 
constant. Indeed, 0=

0
!  is the value corresponding to 

models with an isothermal sphere as the inner core. It is well 
known that galactic rotation curves are typically best-fitted 
by cored dark halo models. Moreover, the outer asymptotic 
slope lies between 3!  and 2! , values typical of most dark 
halo models in the literature. In particular, for 0.80=!  one 
finds 2.41)0.002,(=),( 0 !!"## , values which are quite 
similar to those in the Burkert model, 3)(0,! . This empirical 
model has been proposed to fit the LSB and dwarf galaxies 
rotation curves. The values of ),( 0 !""  found for the best-fit 
effective dark halo therefore suggest a possible theoretical 
motivation for Burkert-like models. By construction, the 
properties of the effective dark matter halo are closely 
related to the disk properties, hence some correlation 
between the dark halo and the disk parameters is expected. In 
this regard, exploiting the relation between the virial mass 
and the disk parameters, one obtains the relation for the 
Newtonian virial velocity 

virvirvir
rGMV /=   

M
d
!
(3 / 4"#

th
$

m
%
crit
)

1&'

4 r
d

1+'

2 (
c

'

2
'&6
(1& ')G

5&'

4

V
vir

5&'

2

I0 (Vvir ,')
.
          (66) 

 We have checked numerically that eq. (66) may be well 
approximated by a

vird
VM ! . This relation has the same 

formal structure of the baryonic Tully-Fisher (BTF) relation 
a

flatb VM !  where 
b

M  is the total (gas plus stars) baryonic 

mass and 
flatV  is the circular velocity on the flat part of the 

observed rotation curve. In order to test whether the BTF can 
be explained by the effective dark matter halo proposed, we 
should look for a relation between 

vir
V  and 

flatV . Such a 
relation cannot be derived analytically because the estimate 
of 

flatV  depends on the peculiarities of the observed rotation 
curve, such as how far it extends, and the uncertainties on 
the outermost points. For given values of the disk 
parameters, we simulated theoretical rotation curves for 
some values of 

c
r  and measured 

flatV  finally choosing the 

fiducial value for 
c
r  that gives a value of 

flatV  as close as 
possible to the measured one. Inserting the relation thus 

found between 
flatV  and 

vir
V  into eq. (66) and averaging over 

different simulations, we finally obtain  

,0.09)(4.14log0.04)(2.88=log ±+± flatb VM     (67) 

while a direct fit to the observed data gives [122]  

.0.13)(3.37log0.29)(2.98=log ±+± flatb VM     (68) 

The slope of the predicted and observed BTF are in good 
agreement, lending further support to our approach. The zero 
point is markedly different from the predicted one, being 
significantly larger than the observed one. However, both 
relations fit the data with a similar scatter. A discrepancy in 
the zero point can be due to our approximate treatment of the 
effective halo which does not take into account the gas 
component. Neglecting this term, we should increase the 
effective halo mass and hence 

vir
V  which affects the relation 

with 
flatV  leading to a higher than observed zero point. 

Indeed, the larger 
dg MM / , the more the points deviate from 

our predicted BTF thus confirming our hypothesis. Given 
this caveat, we can conclude with some confidence that n

R  
gravity offers a theoretical foundation even for the 
empirically found BTF relation. 

Although the results outlined here pertain to the 
simplistic choice nRfRf 0=)(  of fourth order gravity, they 
are nevertheless interesting. The incompatibility of this 
model with the correct matter power spectrum suggests that 
a more complicated Lagrangian is needed to reproduce the 
entire dark sector phenomenology at all scales, but it has 
been shown that ETGs allow one to approach important 
issues in cosmological and astrophysical phenomenology. 
We have seen that ETGs can reproduce the SNeIa Hubble 
diagram without dark matter and predict the age of the 
universe. The modification of the gravitational potential 
arising in higher order gravity could constitute a fundamental 
ingredient in interpreting the flatness of the rotation curves 
of LSB galaxies. Furthermore, if one considers the model 
parameters selected by the fit of the observational data of 
LSB rotation curves, it is possible to construct a 
phenomenological analog of the dark matter halo with shape 
similar to that of the Burkert model. Since the latter has been 
empirically introduced to account for the dark matter 
distribution in LSB and dwarf galaxies, this result provides a 
theoretical motivation of the Burkert model. 

By investigating the relation between dark halo and disk 
parameters, a relation has been deduced between 

d
M  and 

flatV , which reproduces the baryonic Tully-Fisher law. 
Exploiting the relation between the virial mass and the disk 
parameters, one can obtain a relation for the virial velocity 
which can be satisfactorily approximated as a

vird
VM ! . This 

result is also intriguing because it provides a theoretical 
interpretation of another phenomenological relation. 
Although not definitive, these phenomenological aspects of 

)(Rf  point to a potentially interesting avenue of research 
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and support the quest for a unified view of the dark side of 
the universe. 

7. MASSIVE SCALAR MODES OF f(R) 
GRAVITATIONAL WAVES 

As we have seen, a pragmatic point of view could be to 
“reconstruct” the suitable theory of gravity starting from 
data. The main issues of this “inverse” approach is matching 
consistently observations at different scales and taking into 
account wide classes of gravitational theories where “ad 
hoc” hypotheses are avoided. In principle, as discussed in the 
previous section, the most popular dark energy cosmological 
models can be achieved by considering )(Rf  gravity 
without considering unknown ingredients. The main issue to 
achieve such a goal is to have at disposal suitable datasets at 
every redshift. In particular, this philosophy can be taken 
into account also for the cosmological stochastic background 
of gravitational waves (GW) which, together with CMBR, 
would carry, if detected, a huge amount of information on 
the early stages of the Universe evolution. In this section we 
discuss the cosmological background of gravitational waves 
(GWs) in generic )(Rf  theories. The achievement of 
detecting massive modes or selecting )(Rf -signatures in the 
stochastic background could be the final way to retain or rule 
out such theories with respect to GR. GWs are perturbations 

µ!h  of the metric which transform as 3-tensors. In GR, the 

equations ruling the propagation of GWs in the transverse-
traceless gauge are  

 
� hi

j
= 0,               (69) 

where Latin indexes run from 1 to 3. We want to derive the 
analog of eq. (69) for a generic )(Rf  theory described by 
the action (2). The linearized theory in vacuo ( 0=)(m

S ) is 
considered below, so that  

.)(
2

1
= 4 Rfgxd
k

!"S           (70) 

Using a conformal transformation, the scalar degree of 
freedom )(Rf !  of metric )(Rf  gravity appears as the 
conformal factor in  

g
~

µ! = e
2"
gµ! e

2"
= #f (R).       (71) 

The conformally equivalent Einstein-Hilbert action is  

  

S

~

=
1

2k
!d 4x " %g R

~
+L #,#

;µ( )
$

%
&
&

'

(
)
)
,             (72) 

where 
 
L !,!

;µ( )  is the scalar field Lagrangian obtained 

using the relation  

 
R

~
= e

!2"
R ! 6 � "! 6"

;#"
;#( )         (73) 

between the Ricci curvatures of the conformally related 
metrics 

µ!g  and 
µ!g
~ . The equation for the gravitational 

waves is now  

 
�

~
%hi
j
= 0 ,               (74) 

where  

 
�

~
= e

!2"
� +2";#

$
;#( ).            (75) 

 Since scalar and tensor modes are decoupled, we have  

 
%hi
j
= %g

lj! %gil = e
"2#
g
lj
e
2#!gil = hi

j
,         (76) 

which means that j

ih  is conformally invariant. As a 
consequence, the plane wave amplitudes 

),(exp)(=)( m

m

j

i

j

i xikethth  where j

i
e  is the polarization tensor, 

are the same in both metrics, a fact that is important in the 
following. 

In a FLRW background, eq. (74) becomes  

 

&&h + 3H + 2 &!( ) &h + k2a"2h = 0         (77) 

where k  is the wave number and h  is the amplitude. The 
solutions of this equation are linear combinations of Bessel 
functions. Several primordial mechanisms generating GWs 
are possible. In principle, one could seek for contributions 
due to all known high-energy processes in the early phases 
of the cosmic history. 

Here we consider the background of GWs generated 
during inflation, which is strictly related to the dynamics of 
the cosmological model. In particular, one can assume that 
the main contribution to this background comes from the 
amplification of vacuum fluctuations at the transition 
between the inflationary phase and the radiation era. 
However, we can assume that the GWs generated as zero-
point fluctuations during inflation undergo adiabatically 
damped )1/( a:  oscillations until they reach the Hubble radius 

1!
H . This is the particle horizon for the growth of 
perturbations. Any previous fluctuation is smoothed away by 
the inflationary expansion. The GWs freeze out for a / k»H !1  
and re-enter the horizon after reheating. The re-entry in the 
Friedmann era depends on the spatial scale of the GWs. 
After re-entry, GWs are in principle detectable due the 
Sachs-Wolfe effect that they induce on the CMB temperature 
anisotropy TT/!  at decoupling. If !  is the inflaton field, 
then H=!&  during inflation. By using the conformal time !  
defined by adtd /=! , eq. (77) becomes  

,0=2
2
hkhh +!

!
+!!

"

"           (78) 

where !
ae="  and a prime now denotes differentiation with 

respect to ! . Inside the radius 1!
H , it is k!»1 . Since there 

are no gravitons in the initial vacuum state, only negative-
frequency modes appear and the solution of eq. (78) is  
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,)(exp
1

2/= 1/2 !" ikC
aH

kh #         (79) 

where C  is the amplitude parameter. At the first horizon 
crossing kaH = , the averaged amplitude hkA

h

3/2)/2(= !  of 
the perturbation is  

.
2

=
2!

C
A
h

              (80) 

When the scale ka/  becomes larger than the Hubble radius 
1!

H , the growing mode freezes (see Fig. 4). It can be shown 
that the upper limit 

h
ATT ˆ/!  is valid since other effects can 

contribute to the background anisotropy. From this 
consideration, it is clear that the only relevant quantity is the 
initial amplitude C  in eq. (79), which is conserved until re-
entry. This amplitude depends on the fundamental 
mechanism that generates the perturbations. Inflation 
produces perturbations as zero-point energy fluctuations, a 
mechanism which depends on the gravitational interaction 
and )/( TT!  further constrains the theory of gravity. 
Considering a single graviton in the form of a 
monochromatic wave, its zero-point amplitude is obtained 
from the canonical commutation relation  

[ ] )(=),(),,( 3 yxiytxth h !"#          (81) 

at fixed time t , where the amplitude h  is the field and 
h

!  is 
the conjugate momentum operator. The Lagrangian for the 
h -quantity is  

  

%L =
1

2
! %g %g

µ"
h
;µh;#            (82) 

in the conformally rescaled FLRW metric g
~

µ!
, where the 

amplitude h  is conformally invariant. This Lagrangian leads 
to  

  

!
h
=
" %L

" &h
= e

2#
a
3 &h           (83) 

and eq. (81) becomes  

 

h(t, x), &h(y, y)!
"

#
$ = i

%3(x & y)

a
3
e
2'

.          (84) 

 The fields h  and h&  can be expanded in terms of creation 
and annihilation operators. The commutation relations in 
conformal time are  

h !h * " h* !h#$ %& =
i(2' )3

a
3
e
2(
.           (85) 

Eqs. (79) and (80) yield !"
HeC
2

2= # , where H  and !  
are calculated at the first horizon crossing and, using 

)(=2 Rfe !" , the relation  

)(2
=

Rf

H
Ah

!

            (86) 

is found to hold for a generic )(Rf  theory. This result 
deserves some discussion. Clearly, the GW amplitude 
produced during inflation depends on the theory of gravity 
which, if different from GR, contains extra degrees of 
freedom which could be probed by the Sachs-Wolfe effect. 
This effect could be combined with other constraints on the 
GW background if ETGs are probed independently at other 
scales [123, 124]. 

We are by now familiar with the trace of the field 
equations  

 
3� !f (R)+ R !f (R)" 2 f (R) = 0,         (87) 

and, using the identifications [125]  

3

)()(2
)(

RfRRf

d

dV
andRf

!"
#

$
!#$    (88) 

the Klein-Gordon equation for the effective scalar field !   

 

� ! =
dV

d!
              (89) 

follows. Linearizing around a constant curvature background 
corresponding to 

0
= !! , assuming that V  has a minimum 

at 
0

!  [124], and expanding as in  

 

V~
1

2
!"#2

,
dV

d#
~m

2"#];,         (90) 

where the constant m  has the dimensions of a mass, yields  

,=

,=

0
!+!!

+

"

# µ$µ$µ$ hg
 

to first order in 
µ!h

 and !" . If R
~

µ!"# , R
~

µ! , and R
~

 are the 

linearized quantities corresponding to 
µ!"#R , 

µ!R
, and R , 

then the linearized field equations are  

 

R
~

µ! "
1

2
#µ! R

~
= $µ$!hf "#µ! � hf ,

� hf = m
2
hf ,

        (91) 

where  

.

0
!

!
"
#

fh
              (92) 

 The curvature tensor R

~

µ!"#  and eqs. (91) are left 
invariant under the gauge transformations  

.=

,= )(

!!"#!

$%"#

&&&

'(µµ(µ(µ( hhh

         (93) 

By introducing  

fh
h

hh µ!µ!µ!µ! "" +#$
2

          (94) 
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and considering the gauge vector µ!  given by  

 
� !" = #

µ
hµ" ,              (95) 

the Lorenz gauge  

0=µ!

µ
h"               (96) 

can be chosen. In this gauge the field equations assume the 
form  

 
� hµ! = 0 ,               (97) 

 
� hf = m

2
hf .             (98) 

The solutions of eqs. (97) and (98) are the plane waves  

 
hµ! = Aµ! (p

ur
)exp(ip

"
x" )+c.c. ,         (99) 

   
h

f
= a(

r
p)exp(iq! x

!
)+c.c. ,             (100) 

with  

 

k
!
" (#, p

ur
) # = p "| p

ur
|

q
!
" (#m , p

ur
) #m = m

2
+ p

2
.

         (101) 

Eqs. (97) and (98) are the wave equation for standard GR 
and its gravitational wave solutions, respectively, whereas 
eqs. (98) and (100) are the wave equation and its solution for 
the massive scalar mode of )(Rf  gravity (cf. [125, 126]). 
The dispersion relation for the modes of the massive field 

fh  

is non-linear. “Ordinary” (i.e., GR) tensor modes 
µ!h

 
propagate at the speed of light c , but the dispersion law (the 
second of eqs. (101) for the scalar modes 

fh  is that of a 
massive field wave packet [125, 126]. The group velocity of 
a wave packet of 

fh  centered on 
 
p
ur

 is  

 

r
!G =

r
p

"
,                  (102) 

 

Fig. (4). The evolution of the GW amplitude for a few power-law choices of the scale factor s
tta :)( , the scalar field m

t:! , and the function 
nRRf :)( . The horizontal (time) and vertical (amplitude) scales depend on the cosmological background providing a signature of the model. 
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which is the velocity of a massive particle with mass m  and 
momentum 

 

r
p . The second of eqs. (101) in conjunction with 

eq. (102) yields  

!

! 22

=
m

v
G

"                (103) 

and a wave packet propagates at constant speed if  

.)(1= 2 !
G
vm "                (104) 

The Lorenz gauge is preserved by gauge trasformations 
with 

 
� !" = 0 ; this gauge imposes the transversality condition 

0=µ!

µ
Ak  for the tensor modes, but not for the field  

µ!h
 which contains a scalar mode, as seen from eq. (94), or  

.
2

= fh
h

hh µ!µ!µ!µ! "" +#            (105) 

Were the scalar mode massless, one could impose that  

 

� !µ = 0 ,

"µ!
µ
= #

h

2
+ hf ,

               (106) 

thus obtaining a transversal “total” field. However, as is 
clear from the previous sections, we are dealing with a 
massive scalar mode and transversality is impossible. By 
applying d'Alembert's operator to the second of eqs. (106) 
and using eqs. (97) and (98), it follows that  

 
� !µ = m2

hf ,                 (107) 

in contrast with the first of eqs. (106). Similarly, it is shown 
that a linear relation between the tensorial modes 

µ!h
 and the 

massive scalar 
fh  cannot exist. Thus, a gauge in wich 

µ!h
 is 

purely spatial cannot be chosen, i.e., it is impossible to 
impose 0,=

0µh
 see eq. (105). However, the traceless gauge 

condition can be imposed on 
µ!h

,  

 

� !µ = 0 ,

"µ!
µ
= #

h

2
,

                (108) 

implying that  

.0=µ!

µ
h"                 (109) 

The gauge transformations  

 

� !µ = 0 ,

"µ!
µ
= 0 ,

                 (110) 

preserve the gauge 0=
µ!

µh" , 0=h . By choosing 
 
p
ur

 along 
the z -direction, a gauge can be chosen in which only 

11
A , 

22
A , and 

2112
= AA  are different from zero, with the condition 

0=h  providing 
2211

= AA ! . The substitution of these 
equations into eq. (105) then yields  

.)()()(=),( )()(

µ!µ!µ!µ! "zvtheztAeztAzth Gf #+#+# $$++     (111) 

The term )()( )()( !!++
"+" µ#µ# eztAeztA  describes the two 

standard polarizations of tensor gravitational waves familiar 
from GR, while the term 

µ!")( zvth Gf #  is the massive scalar 
field characteristic of )(Rf  gravity. As expected, the scalar 
Rf (! ) generates a third massive polarization for gravitational 

waves which is absent in GR. 

8. CONCLUSIONS 

Let us emphasize once more that we regard )(Rf  gravity 
theories not as definitive theories, but rather as toy models 
and proofs of principle that modifying gravity at large scales 
can explain the observed acceleration of the universe without 
the need to advocate exotic dark energy. This hope has 
stimulated a very intense activity among theoreticians ([70] 
and references therein). 

To summarize the status of modified gravity, let us note 
that metric )(Rf  gravity models exist that pass all the 
observational and theoretical constraints (see,  e.g., the 

Starobinsky model [109] 
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The viable models require the chameleon mechanism in 
order to pass the weak-field limit tests. 

All metric )(Rf  theories must satisfy the condition 
0)( !"" Rf  to avoid the Dolgov-Kawasaki local instability. 

This is a condition on short-wavelength modes. The stability 
condition (41) is valid for arbitrary wavelengths, but is 
restricted to de Sitter space (which is, anyway, an adiabatic 
approximation for slowly expanding FLRW spaces). An 
important open problem is whether curvature singularities 
appear, in general, in relativistic strong field stars. 

As far as the Palatini formalism is concerned, the central 
idea of this version of modified gravity is to regard the 
torsion-free connection µ

!"#  as a quantity independent of the 

spacetime metric 
µ!g . The Palatini formulation of the 

standard Hilbert-Einstein theory is equivalent to the purely 
metric theory, as a consequence of the fact that the field 
equations for the connection give the Levi-Civita connection 
of the metric 

µ!g . Therefore, there is no reason to impose the 
Palatini variational principle, instead of the metric 
variational principle, in the Einstein-Hilbert theory. 
However, the situation is difefrent in ETGs containing non-
linear functions of the curvature invariants, such as )(Rf , or 
non-minimally coupled scalars. In these cases, the Palatini 
and the metric variational principle yield different field 
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equations and different physics [59, 66]. The relevance of 
the Palatini approach for cosmological applications has been 
amply demonstrated [43, 44, 67, 68]. However, Palatini 

)(Rf  theories could have some problems due to the fact that 
they could contain non-dynamical scalar field and the initial 
value problem could be ill-posed. In any case, when the trace 
of the matter energy-momentum tensor vanishes identically 
or it is a constant, and when it can be recast in a perfect-fluid 
form, the Cauchy problem results well-formulated and well-
posed. 

Metric-affine gravity has not been developed in sufficient 
detail to assess its viability according to all the criteria 
presented here, and its cosmological consequences are 
essentially unexplored. 

It seems fair to say that )(Rf  theories of gravity can help 
to progress in our understanding of the peculiarities of GR in 
the wider landscape of relativistic theories of gravity. 
Furthermore, these theories point out important aspects of 
generalizations of GR, and, from a phenomenological point 
of view, constitute viable alternatives to dark energy models 
in explaining the cosmic acceleration, and to dark matter in 
reproducing dynamical features as the galactic rotation 
curves or the halo of clusters of galaxies [127]. Finally, it is 
possible to "tune" the stochastic background of GWs and this 
occurrence could constitute a further cosmological test 
capable of confirming or ruling out ETGs once data from 
interferometers, like VIRGO, LIGO and LISA, will be 
available (see [128] for a discussion on this topic). At 
present, no definite prediction sets )(Rf  theories apart from 
dark energy and other models once and for all, but it is 
hoped that progress will me made in this direction. 
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