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Abstract:  Motivated by the variety of rings around planets in our solar system, and arguably in other planetary systems 

as well, we will analytically treat the venerable problem of investigating the potential of a massive annular distribution. In 

a first approximation, we can consider the mass distribution as homogenous. Actually, a more realistic model should take 

into account the non-isotropy of density.In this work, we establish an analytical elliptic form of the potential generated by 

an anisotropic matter distribution. The study of the dynamical behavior is performed within the Hamiltonian formulation, 

which allows us to derive some orbits of the test particle. 
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I. INTRODUCTION 

 The solar system is a large area with various kinds of 
celestial bodies; elongated, circular, elliptical or strongly 
irregular ones.  

 Their gravitational behaviour gives us much information. 
The relativistic studies allowed us to valid some aspect of 
this theory [1] or to detect relativistic effect about the ele-
ment of orbits [2], or the increase of accuracy of the two 
body problem in the frame of general relativity [3]. The extra 
solar planets are studied too in [4-6] and [7]. The effect of 
atmosphere, potential type or gravitational radiation about 
orbits are studied in [8, 9], and [10]. Some other publications 
[11-14] are devoted to studies of rings around planets or 
even sun.  

 The discoveries of binary asteroids, the mission to Saturn 
rings gave a new interest in potential calculation. This sub-
ject is a new/old field of research, [15, 16]. In the literature 
we find studies like in Riaguas et al. [17] in which they es-
timated the potential generated by a homogeneous straight 
segment. Elipe and Lara [18] described the motion around 
Eros 433 with the same homogeneous model. 

 A harmonic polyhedron was used by Werner and Scheer-
es for 4769 Castalia [19, 20]. Ellipsoids, material points and 
a segment of double material were used by Bartczak and 
Breiter [21] and Bartczak et al. [22]. In our laboratory we 
used a new idea in a previous work [23] by studying the po-
tential generated by a massive straight segment with a para-
bolic profile of mass distribution. About rings, Harry et al. 
[24] calculated the potential due to uniform disk and  
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deduced that of a homogeneous ring. Broucke et al. [25] 

established the potential of a homogeneous circular ring and 

studied the properties and perturbations of orbits around a 

central planet surrounded by that ring. Fred et al. [26] estab-

lished the expressions for both the potential and the field of a 

disk. They suggested the formulas of a ring. In our present 

work we propose a new idea by using an anisotropic mass 

density for a circular ring. In section 2 we will establish the 

integral expression of the potential generated by an aniso-

tropic ring in space. In section 3 we give the analytical ex-

pression of the potential in the plane perpendicular to the 

ring in terms of the complete elliptical integral of the first 

kind K(k) and second kind E(k). We plot the level curves of 

this potential. In section 4 we give the set of differential 

equations by using the Hamiltonian formulation. Finally, in 

section 5 we solve the differential equations of motion and 

discuss different dynamical states of the test particle around 

the ring, we draw some orbits and discuss their gravitational 

features. 

2. INTEGRAL EXPRESSION OF THE POTENTIAL 

 We consider a circular ring of radius a and total mass M, 
located in the (xoy) plane (Fig. 1).  

The density of the ring is given by: 

 

2

0( )= 1 cos
2

b+

 (1) 

In which 0  and b are positive constants. 

 The total mass of the ring is given by: 0
( 2)M a b= +  and 

2b >  

If b>0 the line density is (Fig. 2): 

 - Maximum for 0=  : 0
= (1 )b+  
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 - Minimum for =  : 0
=  

 If -2<b<0 the line density is (Fig. 2): 

 - Maximum for =  : 0
=  

 - Minimum for 0=  : 0
= (1 )b+  

Since the distribution is inhomogeneous its center of mass is 
not in O. By symmetry, the center of mass is at the position: 

; 0
2( 2)

G G

ab
x y

b
= =

+  
(2) 

 The gravitational potential generated by the ring at a point P 
(x, y, z) is expressed by (Fig. 1): 

( )

ring

dm
U P G

r
=

 

(3) 

 - Expression of r : 

 r is the distance between the element dm centered at Q, (Fig. 
1) and P. 

( - cos ) ( - sin )r QP x a y a z= = + +  (4) 

We introduce two new auxiliary functions p and q defined by: 

 p is the largest distance between P and the ring 
given by: 

 

 q is the smallest distance between P and the ring 
given by: 

 

 The substitution of p and q in (4) gives: 

-
- cos - 2 sin

2 2

p q p q
r QP ay

+
= =

 
(5) 

p= (x + a)2 + y2 + z2

q= (x a)2 + y2 + z2

 

Fig. (1). Ring in the plane (xoy). 

 

Fig. (2). Variation of the density. 
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And: 

2 1- cos - 2 sin
2

r p k ay=

 
(6)  

 With: 1- 1
q

k
p

= <

 
Expression of dm: 

2

0

0

1 cos
2-

-
- cos - 2 sin

2 2

b

U Ga d
p q p q

ay

+

=

+
 

(7) 

 Substituting the expressions (6) and (7) in (3), the poten-
tial generated by the ring is: 

  

U = -Ga
0

1+ bcos2

2

p
2
+ q

2

2
-

p
2 - q

2

2
cos - 2aysin

d

0

2

 

(8) 

 If we put 2 =  

  The expression (6) becomes: 

2(1 sin ) 2 sin(2 )r p k ay=  

 Finally, the gravitational potential generated by the in-
homogeneous ring at any point P in space is given by: 

  

U = 2Ga
0

(1+ bsin2 ).d

p
2 1 k

2 sin2( ) 2aysin2
2

2

 

(9) 

3. ANALYTICAL EXPRESSION OF THE POTENTIAL 
IN (XOZ) PLANE 

 In this section we will derive the analytical expression of 
the potential given by (9), in the (xoz) plane: 

U =
2Ga

0

p

(1+ bsin2 ).d

1 k
2 sin2( )

2

2

  (10) 
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p
K(k)+
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0
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p.k 2

1

1 k
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Where K (k) is the complete elliptic integral of first kind [27]. 

  

U =
4Ga

0

p
K(k)

4Ga
0
b

p.k 2
K(k) 1 k

2 sin2 ( ) d

0
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U =
4Ga

0

p
K(k)

4Ga
0
b

p.k 2
K(k) E(k)  

Where, E(k) is the complete elliptic integral of second kind. 

 Finally we reach the analytical expression of the gravita-

tional potential generated by the anisotropic circular ring in 

the (xoz) plane. 

  

U =
4G

0
a

pk
2

(k
2
+ b)K(k) bE(k)

 
(11) 

 The expression (11) represents the analytical form of the 

potential. 

 The effect of non-uniform distribution is owing to b. 

 For b = 0 we find the particular case of a homogeneous 

circular ring studied by Broucke et al. in [11]. 

 -Fig. (3) shows the plot of equipotential contours, the 

analysis of this figure shows the existence of a hyperbolical-

ly unstable point corresponding to maximum potential. This 

maximum corresponds to a maximum of the density. 

 

Fig. (3). Level cures of the potential function U=U(x,z). 
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4. DYNAMICAL STUDY 

 We study the dynamical behavior of a test particle, with 
unit mass, in the field of the inhomogeneous ring. The Ham-
iltonian of the test particle is given by: 

H =
1

2
( p

1

2
+ p

2

2 )
4G

0
aK(k)

p
+

4G
0
ab(E(k) K(k))

pk
2

 

(12) 

 The equations of motion are given by: 

..

0

( ) ( )
4 ( )

1 1 ( ) (1 ) ( )
( )

(1 )

U b b E k K k k
x G a E k

x x pk pk k x

b b E k k K k k
K k

x p pk p pk k k x

= = +

+ +

 (13) 

..

0

( ) ( )
4 ( )

1 1 ( ) (1 ) ( )
( )

(1 )

U b b E k K k k
z G a E k

z z pk pk k z

b b E k k K k k
K k

z p pk p pk k k z

= = +

+ +

 (14) 

 After calculation and arrangement of expressions (13) 
and (14) we find: 

 
..

..

( ) ( ( ) ( )) ( ) ( ( ) (1 ) ( ))

( ) ( ( ) ( )) ( ) ( ( ) (1 ) ( ))
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So: 
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 With: 
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 Finally:  

..

..

( ) ( )

( ) ( )

x AK k BE k

z CK k DE k

= +

= +  

(15) 

 With:  

 

  

A = ( (1 k
2 ))

B = ( + + )

C = ( μ (1 k
2 ))

D = ( + μ + )

 

The system (15) represents the dynamical equations of mo-
tion of the test particle in the gravitational field generated by 
the inhomogeneous ring. 

 These equations are coupled and highly nonlinear, they 
require then a numerical resolution. 

5. NUMERICAL INTEGRATION 

 The system (15) could be worked out by a perturbative or 
numerical method. We adopted, in a first time, the last one to 
investigate this way.  

 To gain deep insight about the dynamical behavior of the 
test particle in the field of the inhomogeneous ring, we have 
to solve the system (15). In this system of differential equa-

tions, the unknown variables are x and z. We derive some 
curves in (xoz) plane. 

 For different values of b, we test many initial conditions 
about 0 z

v and 0 x
v separately. 

 This allows us to deduce the gravitational influence on 
the dynamical behavior of the test particle. 

5.1. Effect of b on The Critical Value of v0z 

Fig. (4.a): 0 0 0 0
1,1 ;  0  ;  0  ;  2 ;  0

x z
x z v v b= = = = =

 

 

Fig. (4). Curve in (xoz) plane for b=0 :v0z=2 and v0z=3. 
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Fig. (4.b): 0 0 0 0
1,1 ;  0  ;  0  ;  3 ;  0

x z
x z v v b= = = = =  

Fig. (5.a): 0 0 0 0
1,1 ;  0  ;  0  ;  3 ;  1

x z
x z v v b= = = = =  

Fig. (5.b): 0 0 0 0
1,1 ;  0  ;  0  ;  4, 62 ;  1

x z
x z v v b= = = = =  

Fig. (6.a): 0 0 0 0
1,1 ;  0  ;  0  ;  4 ;  2

x z
x z v v b= = = = =  

Fig. (7.b): 0 0 0 0
1,1 ;  0  ;  0  ;  5, 82 ;  2

x z
x z v v b= = = = =  

5.1.1. Analysis of Curves 

 For different values of b, there exist a critical value 
0 zc

v

of 0 z
v  beyond which the test particle is shifted from a 

bounded state to a free state. The Table 1 gives an overview 
of this situation. We notice that the value of 

0 zc
v  grow with 

that of b, this is due to the fact that when the density is im-
portant, the escape becomes more difficult. 

5.2. Effect of b on the Critical Value of v0x 

Fig. (8.a): 0 0 0 0
1,1 ;  0  ;  7  ;  0 ;  0

x z
x z v v b= = = = =  

Fig. (8.b): 0 0 0 0
1,1 ;  0  ;  7, 8 ;  0 ;  0

x z
x z v v b= = = = =  

Fig. (9.a): 0 0 0 0
1,1 ;  0  ;  9, 5 ;  0 ;  1

x z
x z v v b= = = = =  

Fig. (9.b): 0 0 0 0
1,1 ;  0  ;  9, 6 ;  0  ;  1

x z
x z v v b= = = = =

 

 

Fig. (5). Curve in (xoz) plane for b=1 :v0z=3 and v0z=4,62. 

 

Fig. (6). Curve in (xoz) plane for b=2 :v0z=4 and v0z=5,82. 

 

Fig. (7). Curve in (xoz) plane for b=0 :v0x=7 and v0x=7,8. 
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5.2.1. Analysis of Curves 

 For different values of b, there exist a critical value
0x c

v

of 0 x
v  beyond which the test particle is  shifted from a colli-

sion state to a free state. The Table 2 give an overview of 

this situation. 

 We notice that the value of 
0xc

v grow with that of b, this 

is due to the fact that when the density is  important the es-

cape becomes more difficult. 

6. CONCLUSION 

 In this work we gave a new idea about the anisotropic 

mass distribution of a body bent into a circular shape, as in 

the ring of Saturn. The non-homogenous distribution of den-

sity is consistent with the photographical exploration made 

by many missions to Saturn like Cassini-Huygens. We estab-

lished then the analytical expression in term of elliptical in-

tegrals of first and second kind, of the potential generated by 

that distribution.  For this profile of density, we found many 

kind of orbits depending on the initial conditions. After 

reaching these results, we explored the gravitational behav-

iour of a test particle in the field of a ring fixed in space. 

This was studied by Hamiltonian formulation. In a next fu-

ture, we plan to study the case of a rotating ring. 
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