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Abstract: This work describes a study of vibration characteristics of thin circular plates with elastic edge support and 

resting on partial Winkler-type elastic foundation. The foundation is described by the Winkler model, which is called as 

single parameter foundation. The exact analytical method is used to derive the frequency equation of the circular plate 

with elastic edge support-conditions and resting on partial elastic foundation system. Parametric investigations on the 

behavior of circular plates with elastic edge support and resting on partial elastic foundation have been carried out with 

respect to various values of transverse stiffness parameter, foundation parameter for a variety of boundary conditions. 

Extensive data is tabulated so that pertinent conclusions can be arrived at on the influence of translational edge restraint, 

and the foundation modulus parameters of the Winkler foundation on the natural frequencies of uniform isotropic circular 

plates. A comparison of the results obtained here in this paper with those available in the literature shows an excellent 

agreement. 
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1. INTRODUCTION 

 The structural behavior of circular plates on elastic 

foundation is of great interest for the design on many 

engineering problems. Such plate systems can be found in 

many engineering applications, ranging from more 

conventional civil engineering, mechanical engineering and 

marine engineering to an aerospace engineering. Research 

work in this area has been discussed in a series of papers by 

Lessia [1, 2] and Bert [3, 4].
 
The vibration of a circular plate 

supported laterally by an elastic foundation was studied by 

Leissa in Ref. [5] from which he deduced that the effect of a 

Winkler foundation merely increases the square of the 

natural frequency of the plate by a constant. Laura et al. [6], 

while studying the case of a circular plate partially embedded 

in a Winkler foundation, found that a simple frequency 

relation like the above no longer holds good, and thus 

reached a similar conclusion. The most general soil model 

used in practical applications is the Winkler model [7] in 

which the soil layer is represented by unconnected closely 

spaced elastic springs. 

 The present study of circular plates on elastic foundations 

with elastic edge support finds useful applications in 

foundation designs of large storage tanks, deep-sea pressure 

vessels and heavy machines [8]. 

 However, studies of the vibration of plates considering 

the combined effects of elastic foundations and elastic  
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constraints are relatively scarce in the literature [9]. The 

vibration characteristics of plates resting on an elastic 

medium are different from those of the plates supported only 

on the boundary. There are many difficulties which very 

often arise due to complexity and uncertainty of boundary 

conditions. This uncertainty could be due to practical 

engineering applications where the edge of the plate does not 

fall into the classical boundary conditions. The accepted fact 

is that the condition on a periphery often tends to be part 

away between the classical boundary conditions (simply 

supported, free, pinned) and non-classical boundary 

conditions (elastic edge restraints) [10]. Therefore, when the 

boundary conditions of the plate deviate from classical cases, 

elastic edge restraints need to be considered. The present 

study considers the problem of vibrations of circular plates 

elastically restrained against translation and resting on partial 

elastic foundation i.e. on partial Winkler foundation. In this 

paper, exact solutions for first Eigen-frequencies of thin 

circular plates for various values of non-dimensional 

parameters are presented in graphical and tabular form, 

which may be useful for engineers in practice as well as to 

researchers as benchmark results for checking the relative 

accuracy of the approximate results obtained through 

alternate methods of solution. 

2. DEFINITION OF THE PROBLEM 

 Consider a thin isotropic, circular plate of radius R , 

uniform thickness h , Young’s modulus E , flexural rigidity 

D  and Poisson’s ratio  as shown in Fig. (1). The plate 

edge is considered to be elastically restrained in translation 

and partially supported on Winkler foundation. The plate is 

also assumed to be made of linearly elastic, homogeneous 

and isotropic material. However, the effects of shear 
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deformation and rotary inertia are neglected in the present 

paper as the plate considered is quite thin. The problem at 

hand is to determine the frequencies of a circular plate with 

elastically restrained edge and resting on partial elastic 

foundation. 

 

Fig. (1). A thin circular plate with rotational KR and translational 

KT elastic edge constraints and supported on partial elastic 
foundation. 

3. MATHEMATICAL FORMULATION 

 The geometrical and loading configuration of the plate is 

axi-symmetric and consequently, deflection shape of the 

plate will be axially symmetric as well. Consider a circular 

plate of radius R  being supported in the interior by a 

foundation of radius bR  as shown in Fig. (1). Let the 

subscript I denote the outer region b r 1  and the 

subscript II denote the inner region 0 r b . Here, all 

lengths are normalized with respect to R . The non-

dimensional radius at the outer edge is 1 and at the inner 

edge is b. As per the classical Kirchhoff’s plate theory [11, 

12], the fourth order differential equation describing the free 

flexural vibrations of a thin circular uniform plate for region 

I, in polar coordinates (r, )  is given by: 

4wI k 4wI = 0             (1) 

where k 4 = R4 2 / D  which is the non-dimensional 

frequency parameter. 

The plate Eq. (5)
 
for region II is: 

4wII k 4wII +
4wII = 0             (2) 

where 4
= R4Kw / D  which represents the no-dimensional 

foundation stiffness parameter. 

Let the solution to the Eq. (1) be represented as: 

w = u r( )cos n( )               (3) 

where r  is the radius normalized w.r.t R , n is the number 

of nodal diameters. The function u a linear combination of 

the Bessel functions Jn kr( ),Yn kr( ), In kr( )& Kn kr( )  is: 

          (4) 

where C1,C2 ,C3 &C4 are constants. 

Jn .( )andYn .( )  are the Bessel functions of the first and second 

kinds of order n  respectively. 

In .( )andKn .( )  are the modified Bessel functions of the first 

and second kinds of order n  respectively. 

Substituting Eq. (4) in Eq. (3) gives the following: 

wI r,( ) =
C1Jn kr( ) + C2Yn kr( ) +

C3In kr( ) + C4Kn kr( )
cos n( )           (5) 

 Unlike Eq. (1), the general solution to Eq. (2), is more 

complicated and the following three special cases are 

considered in this paper. 

 Case (i) If 
 k , the solution to Eq. (2) is: 

uII (r) = C5Jn (k1r) + C6 In (k1r)           (6) 

where k1 = (k
4 4 )

1

4 . 

 Substituting Eq. (6) in Eq. (3), we get: 

wII (r, ) = C5Jn (k1r) + C6 In (k1r)[ ]cos(n )           (7) 

 Case (ii) If k = , the solution to Eq. (2) is given by: 

uII (r) = C5r
n
+ C6r

n+2             (8) 

 Substitution of Eq. (8) in Eq. (3) gives the following: 

wII (r, ) = C5r
n
+ C6r

n+2 cos(n )           (9) 

 Case (iii) If k < , the solution to Eq. (2) is given by: 

uII (r) = C5 Re[Jn ( ik2r )]+ C6 Im[ ik2r ]        (10) 

where k2 = (
4 k 4 )

1

4 . 

 Substitution of Eq. (10) in Eq. (3) gives the following: 

wII (r, ) = C5 Re[Jn ( ik2r )]+ C6 Im[ ik2r ]

cos(n )

       (11) 

 For an elastically restrained circular plate, the boundary 

conditions at the edge of the plate in terms of rotational and 

translational stiffness are given by the following expressions: 

vr (r, ) = KTwI (r, )           (12) 

Mr (r, ) = KR

w

r
(r, )            (13) 

where the shearing force and bending moment as per Kelvin-

Kirchhofff theory are defined as follows: 

Vr = D
r
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 B.C. A : For a circulate plate with outer edge elastically 

restrained against rotation only, the Eqs. (12) and (13) 

become: 

vr (r, ) = KTwI (r, )         (12a) 

Mr (r, ) = 0           (13a) 

 From Eqs.(12a) & (14) 

r
2wI (r, ) +

(1 )
1

r

1

r

2wI (r, )

r 2

1

r2
wI (r, )

=
KT

D
wI (r, )

     (14a) 

KT

bR

R

KT



70    The Open Acoustics Journal, 2009, Volume 2 Rao and Rao 

 From Eqs.(13a) & (15): 

2wI (r, )

r2
+

1

r

wI (r, )

r
+
1

r2

2wI (r, )
2

= 0
      (15a) 

 The plate is continuous in terms of displacement, slope 

and moment at br = . Therefore, the boundary conditions 

are: 

wI (b) = wII (b)             (16) 

wI (b) = wII (b)            (17) 

wI (b) = wII (b)           (18) 

wI (b) = wII (b)             (19) 

 Then for region I, from Eqs. (5) and (17), we get the 

following expression: 

k2

4
Jm2 +

k

2
Jm1

k2

2
+ n2 Jn k( ) C1

+
k2

4
Yn2 +

k

2
Yn1

k2

2
+ n2 Yn k( ) C2

+
k2

4
I p2 +

k

2
I p1 +

k2

2
n2 In k( ) C3

+
k2

4
kq2

k

2
kq1 +

k2

2
n2 kn k( ) C4 = 0

       (20) 

 B.C. B: For a circulate plate with outer edge elastically 

restrained against translation only, Eqs. (12) and (13) 

become: 

vr (r, ) = 0          (12b) 

Mr (r, ) = KR

w

r
(r, )        (13b) 

 Then for region (I, n) from Eqs. (5) and (16), we get the 

following expression: 

k 3
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D
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       (21) 

where 

Jm1 = Jn 1(k) Jn+1(k); Jm2 = Jn 2 (k) + Jn+2 (k);

Jm3 = Jn 3(k) Jn+3(k);Yn1 = Yn 1(k) Yn+1(k);

Yn2 = Yn 2 (k) +Yn+2 (k);Yn3 = Yn 3(k) Yn+3(k);

I p1 = In 1(k) + In+1(k); I p2 = In 2 (k) + In+2 (k);

I p3 = In 3(k) + In+3(k);Kq1 = Kn 1(k) + Kn+1(k);

Kq2 = Kn 2 (k) + Kn+2 (k);Kq3 = Kn 3(k) + Kn+3(k);

 

 Case (i): Considering the case (i) i.e. k > , for the 

region (II, n), the solution to Eq. (2) is given by Eq.(7) and 

for this case the boundary conditions, Eqs. (16), (17), (18) 

and (19) give us the following: 

Jn kb( )C1 +Yn kb( )C2 + In kb( )C3 + Kn kb( )C4

Jn k1b( )C5 In k1b( )C6 = 0
       (22) 

k

2
Jm1C1 +

k

2
Yn1C2 +

k

2
I p1C3

k

2
Kq1C4

k1
2
Jm11C5

k

2
I p11C6 = 0

        (23) 

k2

4
Jm2 2Jn kb( )( )C1 +

k2

4
Yn2 2Yn kb( )( )C2 +

k2

4
I p2 + 2In kb( )( )C3 +

k2

4
Kq2 + 2Kn kb( )( )C4

k1
2

4
Jm22 2Jn k1b( )( )C5

k1
2

4
I p22 + 2In k1b( )( )C6 = 0

       (24) 

k 3

8
Jm3 3Jm1[ ]C1 +

k 3

8
Yn3 3Yn1[ ]C2 +

k 3

8
I p3 + 3I p1 C3

k 3

8
Kq3 + 3Kq1 C4

k1
3

8
Jm33 3Jm11[ ]C5

k1
3

8
I p33 + 3I p11 C6 = 0

       (25) 

 Case (ii): Considering the case (ii) i.e. k = , for the 

region (II, n), the solution to Eq. (2) is given by Eq. (9) and 

for this case the boundary conditions, Eqs. (16), (17), (18) 

and (19) give us the following: 

Jn kb( )C1 +Yn kb( )C2 + In kb( )C3

+Kn kb( )C4 bnC5 bn+2C6 = 0
         (26) 

k

2
Jm1C1 +

k

2
Yn1C2 +

k

2
I p1C3

k

2
Kq1C4 nbn 1C5 n + 2( )bn+1C6 = 0

        (27) 

k2

4
Jm2 2Jn kb( )( )C1 +

k2

4
Yn2 2Yn kb( )( )C2

+
k2

4
I p2 + 2In kb( )( )C3 +

k2

4
Kq2 + 2Kn kb( )( )C4

n n 1( )bn 2( )C5 n +1( ) n + 2( )bnC6 = 0

       (28) 

k 3

8
Jm3 3Jm1[ ]C1 +

k 3

8
Yn3 3Yn1[ ]C2

+
k 3

8
I p3 + 3I p1 C3

k 3

8
Kq3 + 3Kq1 C4

n n 1( ) n 2( )bn 3 C5 n n +1( ) n + 2( )bn 1 C6 = 0

       (29) 

where 
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Jm1 = Jn 1(kb) Jn+1(kb); Jm2 = Jn 2 (kb) + Jn+2 (kb);

Jm3 = Jn 3(kb) Jn+3(kb)Yn1 = Yn 1(kb) Yn+1(kb);

Yn2 = Yn 2 (kb) +Yn+2 (kb);Yn3 = Yn 3(kb) Yn+3(kb)

I p1 = In 1(kb) + In+1(kb); I p2 = In 2 (kb) + In+2 (kb);

I p3 = In 3(kb) + In+3(kb)Kq1 = Kn 1(kb) + Kn+1(kb);

Kq2 = Kn 2 (kb) + Kn+2 (kb);Kq3 = Kn 3(kb) + Kn+3(kb)

 

 Case (iii) : Considering the case (iii), for k < , for 

region (II, n ), the solution to Eq. (2) is given by Eq. (11) 

and for this case the boundary conditions Eqs. (16), (17), 

(18) and (19) give us the following: 

Jn kb( )C1 +Yn kb( )C2 + In kb( )C3 + Kn kb( )C4

Re[Jn ( ik2b )]C5 Im[Jn ( ik2b )]C6 = 0
       (30) 

Jn (kb)C1 +Yn (kb)C2 + In (kb)C3 Kn (kb)C4

Re[Jm1( ik2b )]C5 Im[Jm1( ik2b )]C6 = 0
       (31) 

J ''n (kb)C1 +Yn '(kb)C2 + I 'n (kb)C3 K 'n (kb)C4

Re[J 'm1( ik2b )]C5 Im[J 'm1( ik2b )]C6 = 0
       (32) 

J '''n (kb)C1 +Y 'n'(kb)C2 + I ''n (kb)C3 K ''n (kb)C4

Re[J ''m1( ik2b )]C5 Im[J ''m1( ik2b )]C6 = 0
       (33) 

 Therefore, the set of Eqs. (20), (21), (30)-(33), represent 

for the case <k . 

4. SOLUTION 

 For the given values of n, ,b,T11,R11 &  the above set of 

equations gives an exact characteristic equation for non-

trivial solutions of the coefficients C1,C2 ,C3,C4 ,C5 &C6 .  For 

non-trivial solution, the determinant of C[ ]6x6 must vanish. 

This eigenvalue problem was solved using Mathematica 

computer software with symbolic capabilities. 

5. RESULTS & DISCUSSIONS 

 There is a lot of flexibility in the code developed in 

Mathematica. It is used to determine the frequency parameter 

for any range of translational constraints. This code is also 

implanted for various plate materials by adjusting Poisson’s 

ratio. Since Poisson’s ratio occurs as a parameter in most of 

the equations, the effect of this ratio on the roots of the 

equations is also considered. The findings are presented in 

both tabular and graphical form. The frequencies are 

calculated for various radius radii b , translational spring 

stiffness parameter. 

 The frequency values for the plate with elastically 

restrained edge against translation and resting on partial 

foundation, at various values of the translational stiffness 

parameter, T11  and for constant , have been calculated and 

the results are shown in the Table 1 and graphically in Fig. 

(2). The frequency has increased considerably as increase in 

translational constraint. The results also listed in Table 2 and 

graphically in Fig. (3), for different values of foundation 

constraint ( ) by keeping translational constraint ( T11 ) 

constant. For large foundation stiffness the curves will be 

asymptotic in nature. The results are shown in Fig. (4) for 

different values of Translational and foundation constraints. 

It is observed that the frequency is increases as two 

constraints increase simultaneously. It was found that the 

n = 0  axisymmetric mode gives the fundamental frequency. 

When b = 0, the foundation is absent and the frequency is 

governed by the elastically restrained edge plate, i.e. k  = 

2.1834. When 1=b , the plate has full foundation support, 

and the frequency is k0 = 2.1834. The effect of Translational 

constraint and Foundation constraint on frequency is shown 

in Figs. (2, 3) respectively. Also the combined effect of 

translational and Foundation constraints are shown in Fig. 

(4). 

 

Fig. (2). Effect of translational stiffness parameter, 
11
T  on first 

natural frequency parameter, k  for = 10 . 

Table 1. First Frequency Parameters for Different Translational Stiffness Ratio for  = 10 &  = 0.33 

 

T11 b = 0.1 b = 0.2 b = 0.3 b = 0.4 b = 0.5 b = 0.6 b = 0.7 b = 0.8 b = 0.9 b = 1 

0 2.02235 2.00269 1.65954 3.17252 2.97074 2.59295 9.91088 9.82665 9.71751 6.9251 

2.5 2.30653 2.28733 2.06005 3.32198 3.1293 2.81866 9.91072 9.82583 9.71713 6.91746 

5 2.50643 2.48571 2.29898 3.45341 3.26574 2.99905 9.91056 9.82492 9.71666 6.90972 

7.5 2.66201 2.63915 2.47235 3.5711 3.38604 3.15054 9.91039 9.824 9.71627 6.90198 

10 2.78959 2.7643 2.60887 3.67793 3.49379 3.28191 9.91023 9.82319 9.71579 6.89404 

12.5 2.89784 2.86973 2.72118 3.77599 3.59168 3.39823 9.91007 9.82227 9.71541 6.8862 

15 2.99165 2.96052 2.81616 3.86678 3.68139 3.5029 9.9099 9.82135 9.71492 6.87817 

17.5 3.07421 3.03995 2.89819 3.95139 3.76433 3.5981 9.90974 9.82044 9.71444 6.87013 

20 3.1477 3.11033 2.96997 4.03073 3.84139 3.68573 9.90957 9.81952 9.71404 6.86199 
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Fig. (3). Effect of foundation stiffness parameter,  on first natural 

frequency parameter, k  for T11 = 10 . 

 

Fig. (4). Effect of translational stiffness parameter, T11  and 

foundation stiffness parameter  on natural frequency parameter, k . 

 The frequencies for different plate materials, for various 

values of transverse, rotational and foundation parameters 

are computed and the results are given in Table 3. It is 

observed that for any value of foundation parameter ( ), 

frequencies are independent on Poisson ratio, as shown in 

Fig. (5). And also it was observed that for any value of T11 , 

frequencies are independent on Poisson ratio. 

Table 3.  Frequencies for Different Poisson Ratios 

 

 T11 = 10,  = 10 T11 = 1000,  = 10 T11 = 10,  = 1000 

0 2.77951 4.37181 2.78038 

0.1 2.7831 4.39014 2.78338 

0.2 2.7865 4.40768 2.78608 

0.3 2.78959 4.42472 2.78857 

0.4 2.79248 4.44116 2.79087 

0.5 2.79517 4.4571 2.79306 

 

 

Fig. (5). Effect of poisson ratio,  on frequency parameters, k . 

 The results of this kind are scarce in the literature. 

However, the results are compared with the following. If 

0
11
R & 

11
T , then the problem at hand becomes a 

simply supported boundary condition as shown in Fig. (6). 

The results are listed in Table 4. It was found that the 0=n  

axisymmetric mode gives the fundamental frequency. When 

0=b , the foundation is absent and the circular simply 

supported plate governs the frequency, i.e., k = 2.22152. 

When 1=b , the plate has full foundation support and the 

frequency is k0 = 2.22152. Table 5, presents the comparison 

of frequency parameters k , for the plate with simply 

Table 2. First Frequency for Different Foundation Stiffness Parameter for T11 &  = 0.33 

 

 b = 0.1 b = 0.2 b = 0.3 b = 0.4 b = 0.5 b = 0.6 b = 0.7 b = 0.8 b = 0.9 b = 1 

0 1.85759 1.85759 1.85759 1.85759 1.85759 1.85759 1.85759 1.85759 1.85759 1.85759 

7.5 2.95671 2.82178 2.81512 2.66589 6.00336 4.8109 4.54729 4.3199 6.40789 6.36732 

10 2.78959 2.7643 2.60887 3.67793 3.49379 3.28191 9.91023 9.82319 9.71579 6.89404 

12.5 2.74279 2.72015 3.46242 3.2138 7.75637 4.58806 4.45195 11.6979 11.5023 11.3633 

15 2.72551 2.58 3.0792 2.94435 3.83438 3.65997 6.43791 5.90339 12.7186 12.6973 

17.5 2.71662 3.36935 2.9918 3.62631 3.4595 4.69047 4.25264 8.95145 12.9626 13.52 

20 2.70984 2.96343 2.83938 3.31891 4.39574 3.9389 5.6791 18.1682 17.9198 13.6294 
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supported edges as shown in Fig. (6) (by setting the 

translational restraints with 0
11
R & 

11
T ), against 

those obtained by Wang [13] and Laura et al [6] by Ritz and 

finite element methods respectively. Results presented in this 

paper can be seen to be in excellent agreement with the those 

results available in the literature. 

 
Fig. (6). A thin circular plate with simply supported edge and 
supported on partial elastic foundation. 

Table 4. Frequency for Different Foundation Stiffness Ratio 

for  = 0.33 

 

 b = 0.1 b = 0.3 b = 0.4 b = 0.9 

0 2.2215 2.2215 2.2215 2.22152 

20 3.9522 4.5808 6.0081 14.6284 

50 4.1065 5.1786 6.336 29.1056 

100 4.2517 5.3877 6.228 36.7841 

500 4.1747 5.4437 6.3845 39.3756 

1000 4.2049 5.4673 6.4141 38.8204 

2000 4.214 5.3866 6.41 37.7465 

5000 4.2186 5.4738 6.4151 39.1173 

7500 4.2165 5.4756 6.4103 39.1006 

10000 4.2176 5.4708 6.4183 39.0791 

 
Table 5. Comparison of Exact Values with Approximate 

Values from Ref. [6, 13, 14] for Simply Supported 

Edge Plate 

 

b 0.3 0.3 0.6 0.6 

 2.1147 3.1623 2.1147 3.1623 

k [Present] 2.33844 2.67264 2.51384 3.17202 

k [12] 2.33844 2.67274 2.51304 3.17204 

Ritz [6]
* 2.339 2.677 2.514 3.1724 

F.E [6]
*
 2.349 2.702 2.536 3.2249 

k [13] 2.33844 2.67264 2.51384 3.17202 

* The results are approximate. 

 

 If R11  & T11 , then the problem at hand becomes 

a clamped boundary condition as shown in Fig. (7). The 

results are listed in Table 6. It was found that the n = 0  axi-

symmetric mode gives the fundamental frequency. When 

0=b , the foundation is absent and the circular clamped 

plate governs frequency, i.e., k = 3.19622 . 

 When b = 1 , the plate has full foundation support and the 

frequency is k0 = 3.19622 . Table 7 shows a comparison of our 

exact values with the values obtained by Wang [13] and 

Laura et al. [6] by Ritz and finite element methods 

respectively. Excellent agreement has been found between 

these results. 

 

Fig. (7). A thin circular plate with clamped edge and supported on 
partial elastic foundation. 

Table 6. Frequency for Different Foundation Stiffness Ratio 

for  = 0.33 

 

 b = 0.3 b = 0.4 b = 0.8 b = 1.0 

0 3.19622 3.19622 3.1962 3.19622 

20 5.73303 7.42844 18.151 13.536 

50 6.38558 7.77718 21.658 33.8797 

100 6.63007 7.64012 22.987 56.2845 

500 6.69625 7.82554 23.572 124.841 

1000 6.72454 7.86099 23.474 249.707 

2000 6.62889 7.85603 23.633 499.426 

5000 6.73224 7.86222 23.649 1002.67 

10000 6.72868 7.86598 23.636 1200.98 

20000 6.73245 7.86527 23.597 1600.78 

 

Table 7. Comparison of Exact Values with Approximate 

Values from Ref. [6, 12] for Clamped Edge Plate 

 

b 0.3 0.3 0.6 0.6 

 2.1147 3.1623 2.1147 3.1623 

k [Present] 3.25572 3.46125 3.32705 3.73673 

k [12] 3.25573 3.46124 3.32706 3.73672 

Ritz [6]
* 3.2558 3.4615 3.3275 3.7367 

F.E [6]
*
 3.2558 3.4771 3.1237 3.6576 

* The results are approximate. 

 

6. CONCLUSIONS 

 The flexural vibration behaviour of a circular plate 

supported along its edge by elastically restrained springs 

against rotation and translational and supported partially on a 

Winkler-type foundation has been studied in this paper. 

Mathematica computer software was used in obtaining the 

results for first frequency values of this circular plate. 

 The values of first frequencies are presented in both 

tabular and graphical form for various values of translational 

spring stiffness parameters [ R11 &T11 ] at the edges that 

bR

R
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simulate a clamped edge when R11 &T11 , or a 

simply supported edge when R11 0 & T11 . 

 Graphical plots of first frequencies are presented for a 

wide range of rotational, translational and foundation 

constraints. The wide range of results provided in this paper 

could be potentially utilized for vibration control and in 

structural design. It is observed that the influence of 

foundation parameter on frequency is more predominant 

than that of translational parameter or rotational parameter. 

 Comparison of results obtained here with those available 

in literature for some special cases, demonstrates excellent 

accuracy and numerical stability of the present method. In 

this paper the characteristic equations solved are exact ones 

and therefore the frequency results can be calculated to any 

desired accuracy. These exact solutions can be used as 

benchmark solutions to check numerical or approximate 

results obtained through other methods of solution. 

NOTATIONS 

h  = Thickness of a plate 

R  = Radius of a plate 

b  = Non-dimensional radius of support 

 = Poisson’s ratio 

E  = Young’s modulus of a material 

 = Density of a material 

 = Angular frequency 

D  = Flexural rigidity of a material 

KR1  = Rotational spring stiffness at outer edge 

KT 2  = Translational spring stiffness at outer edge 

R11  = Non-dimensional rotational flexibility  

   Parameter at outer edge 

T22  = Non-dimensional translational flexibility  

   Parameter at outer edge 

 = Non-dimensional foundation parameter 
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