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Abstract: Implementation of a 12
th

-order Gauss-Lobatto collocation scheme is detailed, including mesh refinement 

iterations to meet a user-specified error tolerance. The algorithm is robust and efficient, locating path constrained orbits 

when little information is available regarding the behavior of the solutions. Using a Fourier series control law, the method 

is applied to the computation of highly unstable, pole-sitter orbits in the Earth-moon restricted three-body problem. The 

results are comparable to those obtained with standard explicit propagators. 
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INTRODUCTION 

 Systematically designing a complicated spacecraft 

trajectory is not always a straightforward procedure. The 

design problem may involve a nonlinear chaotic dynamical 

environment, path constraints, multiple types of dynamic 

phases along the path, and control variables. Often, neither 

the shape nor the corresponding control history are known a 

priori. Additionally, multiple trajectory design options are 

desired for trade study purposes and ultimately optimal 

trajectories are sought. In such cases, developing robust 

numerical techniques is as essential as the resulting 

trajectories. 

 Collocation is a powerful approach for solving these 

types of difficult problems in engineering. In a collocation 

process, an approximate trajectory is decomposed into many 

discrete points, or nodes. The nodes are interpolated using 

piecewise continuous polynomials, and subsequently 

adjusted until the polynomials satisfy the system differential 

equations. Collocation best distributes sensitivities over the 

entire trajectory, allowing for large basins of attraction. 

Trajectories are computed efficiently by exploiting 

functional independencies. Doedel successfully used 

collocation to solve singular perturbation problems, 

problems with derivative discontinuities, and homoclinic 

bifurcation problems [1]. In Betts [2], collocation was used 

to solve over 70 different trajectory optimization problems. 

 To demonstrate the method, the collocation approach is 

applied to the problem of computing solar sail lunar pole-

sitter orbits. Using the thrust provided by the sail, it is 

theoretically possible to continually maintain lunar south 

pole communications with only one spacecraft. Although  

the  technology to  support  these thrust  magnitudes is still in  
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development, the option remains enticing since most studies 

indicate that at least two satellites are necessary for complete 

coverage [3, 4]. The solar sail design concept has been 

thoroughly examined by McInnes [5]. Since the recent lunar 

initiative announced by NASA in 2004, renewed interest in 

the lunar pole-sitter has resulted in detailed analyses by 

Ozimek et al. [6] and West [7], and continues to be explored 

by other researchers as well [8-10]. 

 In this study, the systematic collocation approach for 

computing orbits is outlined and analyzed within the context 

of designing periodic solutions for the sail lunar pole-sitter 

problem. A global Fourier series control law is a natural 

choice for this application due to the resulting periodic 

control histories. Elevation angle and altitude bounds are 

selected to ensure continuous coverage. A simple initial 

guess is available by exploiting basic knowledge of the 

dynamical system. After obtaining a preliminary solution 

with collocation, the distribution of discrete points that 

approximates the continuous trajectory, or the mesh, is 

refined until a desired integration accuracy is achieved. The 

monodromy matrix is computed and used to analyze the 

stability of the solutions. The solutions are compared to and 

validated against the accuracy of standard explicit 

propagators, such as those that appear in MATLAB. In 

summary, the method serves as a stand-alone procedure for 

designing complex orbits to high levels of numerical 

precision. 

METHODOLOGY 

 The general solution procedure for solving problems with 

collocation is first outlined in detail. The application for this 

study is the computation of periodic orbits subject to a given 

control law and constrained path. However, the method is 

sufficiently general to apply to many different problems in 

trajectory design. The authors have successfully 

implemented adaptions of the following procedure to 

compute flybys in the two-body problem (with or without 

low-thrust), uncontrolled periodic orbits in the restricted 
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three-body problem, low-thrust Earth-moon transfers, pole-

sitter trajectories supported by electric propulsion, and high 

fidelity modeling with ephemerides. 

 The collocation scheme described here was originally 

published by Herman [11]. Herman demonstrated that 

higher-order Gauss-Lobatto methods are generally more 

robust and more efficient than lower-order Simpson and 

trapezoidal schemes. Lower-order methods also require a 

much larger discretization and therefore risk a greater chance 

of accumulating round-off error when step-sizes become 

small. He notes that, as a general rule, the order of the 

integration scheme is best selected to equal the desired 

number of digits of accuracy. Thus, he constructed the 

collocation scheme with order of accuracy 12 as described 

below. Although automatic node placement is less important 

for higher-order methods, it is still essential. The error 

cannot be bounded without employing some method of mesh 

refinement. In brief, mesh refinement works to satisfy two 

objectives: (1) to equally space the error across every 

segment, and (2) to reduce the error below a user-specified 

tolerance. Objective (1) supports efficiency and eliminates 

large round-off errors resulting from small step-sizes. 

Objective (2) mitigates undesirable behavior in the trajectory 

that arise as artifacts of numerical error. The refinement 

procedure outlined in this section and used in the following 

study is an adaption from de Boor [12]. 

General Problem 

 Consider the general objective of computing an orbit 

x(t)  that satisfies a set of governing ordinary differential 

equations (ODEs) 

 
x = f(t,x,u,μ)             (1) 

where t  is the time, x  is the state vector, u  is the control 

vector, and  is the parameter vector (vectors and matrices 

are represented by bold-faced non-italicized characters, 

while non-bold italic characters refer to scalar quantities). 

The dot in Eq. (1) indicates a derivative with respect to time 

t . The trajectory may also be required to continuously 

satisfy the path constraints 

 
g(x, ) = g(x) + 2 = 0            (2) 

Here 
2
 refers to the element-wise square of the vector . 

Equation (2) encompasses inequality constraints of the form 

 
g(x) < 0  by introducing the slack variable vector . The 

periodicity condition is 

h(x) = x(t + T ) x(t) = 0            (3) 

where T  is the period of the orbit. A natural solution 

without any control may not satisfy Eqs. (1)-(3). Thus, 

solving for x(t)  normally requires a control history or 

control law u(t) . This study assumes a periodic control law 

is available. While maximizing or minimizing some 

objective function of the state variables is often desired, 

optimality will indirectly be addressed by modifying the 

prescribed inequality bounds to the limits of available 

solutions. 

Collocation 

 One approach to solve the problem is to employ seventh-

degree piecewise continuous polynomials and the method of 

collocation. Let n  nodes partition the solution into n 1  

segments consistent with the fixed mesh 

 
: t1 < t2 <… < tn 1 < tn            (4) 

The time interval along a given segment can be converted 

from ti , ti+1[ ]  to 0,1[ ]  using 

=
t ti
ti

            (5) 

where ti = ti+1 ti . Then the polynomials representing the 

segment are 

x( ) = A 1{ 2 3 4 5 6 7}
T

        (6) 

where A  is the matrix of coefficients. Let x j = x( j ) , 

u j = u( j ) , and x j
' = x' ( j ) , where the subscript ‘ j ’ is defined 

in Fig. (1). Prime indicates a derivative with respect to normalized 

time , i.e., x j
' = tif(t j ,x j ,u j ,μ) . Only the four points xi , 

xi,2 , xi,3 , xi+1  are necessary to uniquely determine the 

polynomials represented by Eq. (6). Additionally there are three 

defect points and, therefore, seven points total are required to 

construct the Gauss-Lobatto integration constraints. The points 

are distributed on the normalized time interval according to the set 

0, i,1, i,2 , i,c , i,3, i,4 , 1{ } . The values of i,1 , i,2 , i,c , i,3 , 

i,4  are the same for every segment and selected to minimize the 

local truncation error (Table 1). Recall that the known points on 

the segment are xi , xi,2 , xi,3 , xi+1 . From Eq. (6), the points 

must satisfy 

 

Fig. (1). The seventh-degree Gauss-Lobatto segment. 

xi{ xi
' xi,2 xi,2

' xi,3 xi,3
' xi+1 xi+1

' } = AB         (7) 

where 

B =

1 0 1 0 1 0 1 0
0 1 i,2 1 i,4 1 1 1

0 0 i,2
2 2 i,2 i,3

2 2 i,3 1 2

0 0 i,2
3 3 i,2

2
i,3
3 3 i,3

2 1 3

0 0 i,2
4 4 i,2

3
i,3
4 4 i,3

3 1 4

0 0 i,2
5 5 i,2

4
i,3
5 5 i,3

4 1 5

0 0 i,2
6 6 i,2

5
i,3
6 6 i,3

5 1 6

0 0 i,2
7 7 i,2

6
i,3
7 7 i,3

6 1 7

        (8) 
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Since the left-hand side of Eq. (7) is given and B  is a known 

(constant) matrix, the coefficients A  can be computed from 

Eq. (7). Then, to satisfy the system equations, the time 

derivatives of the polynomials must also satisfy the ODEs in 

Eq. (1) at the defect points xi,1 , xi,c , and xi,4 . (See Fig. (2) 

for a geometric representation of the defect constraints.) 

Using Eq. (6), the interpolated expressions for these 

quantities are 

xi,1 = ai
1xi + ai,2

1 xi,2 + ai,3
1 xi,3 + ai+1

1 xi+1

+ ti vi
1fi + vi,2

1 fi,2 + vi,3
1 fi,3 + vi+1

1 fi+1( )
         (9) 

xi,c = ai
cxi + ai,2

c xi,2 + ai,3
c xi,3 + ai+1

c xi+1

+ ti vi
cfi + vi,2

c fi,2 + vi,3
c fi,3 + vi+1

c fi+1( )
       (10) 

xi,4 = ai
4xi + ai,2

4 xi,2 + ai,3
4 xi,3 + ai+1

4 xi+1

+ ti vi
4fi + vi,2

4 fi,2 + vi,3
4 fi,3 + vi+1

4 fi+1( )
       (11) 

where f j = f(t j ,x j ,u j ,μ) . The resulting defect constraint 

equations are 

i,1(xi ,xi,2 ,xi,4 ,xi+1,μ) = bi
1xi + bi,2

1 xi,2 + bi,3
1 xi,3 + bi+1

1 xi+1

+ ti wi
1fi + wi,1

1 fi,1 + wi,2
1 fi,2 + wi,3

1 fi,3 + wi+1
1 fi+1( ) = 0

(12) 

i,c (xi ,xi,2 ,xi,4 ,xi+1,μ) = bi
cxi + bi,2

c xi,2 + bi,3
c xi,3 + bi+1

c xi+1

+ ti wi
cfi + wi,2

c fi,2 + wi,c
c fi,c + wi,3

c fi,3 + wi+1
c fi+1( ) = 0

(13) 

i,4 (xi ,xi,2 ,xi,4 ,xi+1,μ) = bi
4xi + bi,2

4 xi,2 + bi,3
4 xi,3 + bi+1

4 xi+1

+ ti wi
4fi + wi,2

4 fi,2 + wi,3
4 fi,3 + wi,4

4 fi,4 + wi+1
4 fi+1( ) = 0

(14) 

Recall that time is fixed consistent with the mesh  and it is 

assumed that a control law u(t)  is available for interpolating 

the control. Therefore t  and u  do not appear in the 

functional dependencies on the left side of Eqs. (12)-(14). 

The coefficients a , v , b , and w  that appear in Eqs. (9)-

(14) are the same for every segment, and are listed in Table 

1. 

 The path and periodicity constraints are discretized in a 

similar manner. The path constraints are enforced at the node 

points and internal points such that 

 
g j (x j , j ) = g j (x j ) + j

2 = 0         (15) 

Similarly, the periodicity constraint is 

h(x1,xn ) = xn x1 = 0          (16) 

The variables x j , j , and  are varied until Eqs. (12)-(16) 

are satisfied. Since each segment only depends on the 

adjacent segments, this process generally requires little 

computational effort. 

 It is important to note that sometimes a control law is not 

available. In such cases, either a linearly interpolated or 

splined control may be employed and, then, the defect 

constraints will depend on the node point controls as well. 

For very large dimensioned problems, it is sometimes useful 

to discretize the problem parameters in the vector  by 

assuming that they are independent for each segment. 

Additional constraint equations are then necessary to enforce 

the condition that the parameters are equal from one segment 

to the next. Although this approach may significantly 

decrease computation time, for the purposes of this study it 

is assumed that all segments depend on the same single 

vector . 

 

 

Satisfying the Constraints 

 Consider organizing the variables and constraints as 

follows. The variables are stored in the total variable vector 

X , i.e. 

XT = (x1
T ,x1,2

T ,x1,3
T ,x2

T ,x2,2
T ,x2,3

T , ...,

xn
T , 1

T , 1,2
T , 1,3

T , 2
T , 2,2

T , 2,3
T , ..., n

T ,μT )
      (17) 

The complete constraint vector F(X)  is 

F(X)T = 1,1
T , 1,c

T , 1,4
T , 2,1

T , 2,c
T , 2,4

T , ..., n 1,1
T , n 1,c

T , n 1,4
T( ,

g1
T ,g1,2

T ,g1,3
T ,g2

T ,g2,2
T ,g2,3

T , ...,gn
T ,hT ) = 0

 (18) 

There are many ways to satisfy the constraints,          

but perhaps the simplest  is a least-squares Newton’s method.  

Provided that an initial guess Xk  is available, a first-order 

 

Fig. (2). Defect constraint illustration. 
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Taylor series expansion about Xk  yields 

F(Xk + Xk ) F(Xk ) + DF(Xk ) Xk        (19) 

                 0 

where Xk = Xk+1 Xk . Generally, there are an infinite 

number of solutions Xk  that satisfy Eq. (19), however, a 

unique solution is determined by minimizing || Xk ||
2

. The 

solution is 

Xk = DF(Xk )
T DF(Xk ) DF(Xk )

T 1
F(X)       (20) 

Newton’s method converges quadratically to a nearby solution 

by iteration over k  using the update equation 

Xk+1 = Xk + Xk , where Xk  is computed from Eq. (20). A 

solution that minimizes || Xk ||
2

 is a natural choice for a first-

order series approximation and ultimately leads to solutions that 

best preserve the design characteristics that the initial guess may 

possess. The derivatives in the Jacobian matrix DF  can be 

computed analytically, from finite-differencing, or a 

combination of both. In the following, all the derivatives are 

computed analytically except for the derivatives of the defect 

constraint equations. Since the expressions for j  are involved, 

these derivatives are computed using the complex-step method. 

The complex-step method is selected for its efficiency and 

double-precision accuracy. Note that, for large problems, DF  

is very large but also very sparse. Efficient algorithms are 

Table 1. List of Constants for Numerical Integration 

 

i,1 = +8.48880518607166d 2  

i,2 = +2.65575603264643d 1  

i,c = +5d 1  

i,3 = +7.34424396735357d 1  

i,4 = +9.15111948139283d 1  

 ai
1   = +6.18612232711785d 1   bi

1   = +8.84260109348311d 1   

ai,2
1

  = +3.34253095933642d 1   bi,2
1

  = 8.23622559094327d 1   

ai,3
1

  = +1.52679626438851d 2   bi,3
1

  = 2.35465327970606d 2   

ai+1
1   = +3.18667087106879d 2   bi+1

1   = 3.70910174569208d 2   

 vi
1   = +2.57387738427162d 2   wi

1   = +1.62213410652341d 2   

     wi,1
1

  = +1.38413023680783d 1   

vi,2
1

  = 5.50098654524528d 2   wi,2
1

  = +9.71662045547156d 2   

vi,3
1

  = 1.53026046503702d 2   wi,3
1

  = +1.85682012187242d 2   

vi+1
1   = 2.38759243962924d 3   wi+1

1   = +2.74945307600086d 3   

 ai
c   = +1.41445282326366d 1   bi

c   = +7.86488731947674d 2   

ai,2
c

  = +3.58554717673634d 1   bi,2
c

  = +8.00076026297266d 1   

ai,3
c

  = +3.58554717673634d 1   bi,3
c

  = 8.00076026297266d 1   

ai+1
c   = +1.41445282326366d 1   bi+1

c   = 7.86488731947674d 2   

 vi
c   = +9.92317607754556d 3   wi

c   = +4.83872966828888d 3   

vi,2
c

  = +9.62835932121973d 2   wi,2
c

  = +1.00138284831491d 1   

     wi,c
c

  = +2.43809523809524d 1   

vi,3
c

  = 9.62835932121973d 2   wi,3
c

  = +1.00138284831491d 1   

vi+1
c   = 9.92317607754556d 3   wi+1

c .  = +4.83872966828888d 3   

 ai
4   = +3.18667087106879d 2   bi

4   = +3.70910174569208d 2   

ai,2
4

  = +1.52679626438851d 2   bi,2
4

  = +2.35465327970606d 2   

ai,3
4

  = +3.34253095933642d 1   bi,3
4

  = +8.23622559094327d 1   

ai+1
4   = +6.18612232711785d 1   bi+1

4   = 8.84260109348311d 1   

 vi
4   = +2.38759243962924d 3   wi

4   = +2.74945307600086d 3   

vi,2
4

  = +1.53026046503702d 2   wi,2
4

  = +1.85682012187242d 2   

vi,3
4

  = +5.50098654524528d 2   wi,3
4

  = +9.71662045547156d 2   

     wi,4
4

.  = +1.38413023680783d 1   

vi+1
4   = 2.57387738427162d 2   wi+1

4   = +1.62213410652341d 2  
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available for computing DF DFT
1
F . (See Ozimek et al. 

[6] for a discussion on computing the Jacobian matrix and 

exploiting sparsity). 

Mesh Refinement 

 An optimal mesh (1) equally distributes the error associated 

with each segment, and (2) reduces the equally distributed error 

below a user-specified tolerance. Therefore, mesh refinement is 

based on an error analysis between the actual and approximate 

polynomial solutions. The previously described Gauss-Lobatto 

scheme has an order of accuracy equal to 12. Since the order of 

the method is greater than eight (one more than the degree), the 

error for the ith  segment is 

ei = C ti
8 || x(8) ||i +O( ti

9 )         (21) 

where x(8)  is the eighth time derivative of x . Using the analysis 

presented in the Appendix of Russell and Christiansen [13], the 

constant C  (dimensionless) for the seventh-degree Gauss-

Lobatto scheme is 

C = 2.93579395141895d 9         (22) 

In general, x(8)  is unknown. In fact, using the seventh-degree 

polynomial representation in Eq. (6), x(8) = 0 . De Boor [12] 

circumnavigates this potential problem by approximating 

|| x(8) ||  with the piecewise constant function x(7) ( )  and a 

difference formula. From de Boor 

|| x(8) || (t)=

max 2
| y1 y2 |

t1 + t2
, on (t1, t2 )

max
| yi 1 yi |

ti 1 + ti
+

| yi+1 yi+2 |

ti+1 + ti+2

, on (ti , ti+1 ), i = 2,...,n 2

max 2
| yn 2 yn 1 |

tn 2 + tn 1

, on (tn 1, tn )

(23) 

where 

yi = x(7) ( ) / ti
7 on (ti , ti+1 )

= 7! xi{ xi
' xi,2 xi,2

' xi,3 xi,3
' xi+1 xi+1

' } b / ti
7

(24) 

The vector b  in Eq. (24) is the last column of B 1
. 

Equidistribution 

 A potential solution that satisfies the problem constraints 

may have a widely varying error ei  for the initial mesh . 

The function (t)  can be used to determine a new mesh that 

asymptotically equidistributes the error. The new mesh points 

are selected such that 

ti+1 = I
1 iI(tn )

n 1
, i =1,...,n 2         (25) 

where 

I(t) =
t1

t
(s)1/8ds          (26) 

Since (t)  is a piecewise constant function, the integral I(t)  is 

a monotonically increasing piecewise linear function and can 

easily be determined using a rectangle rule. In Eq. (25), I 1
 

represents the inverse integral, and the process reduces to 

solving for t  where I(t)  takes the value in the argument. 

Given the new mesh, the polynomial expressions are used to 

interpolate the state variables associated with the new times. 

Interpolating the new state variables minimizes the constraint 

violation introduced from the new mesh. The slack variables are 

selected such that the path constraints are initially satisfied. A 

new solution with a better equidistribution of error is then 

computed with Newton’s method. The process repeats until the 

error is equally distributed and within a specified 

equidistribution tolerance. 

Meeting an Integration Tolerance 

 Given a specified number of nodes n , generally one 

equidistribution iteration sufficiently distributes the error. If the 

error has been sufficiently equidistributed, the number of nodes 

is updated with 

n =
e

/ 10

1/8

          (27) 

The variable e  represents the mean error associated with the 

equidistributed mesh ( e ei ). The user-defined tolerance is 

. Equation (27) determines the number of nodes required such 

that the error will reach an order of magnitude less than the 

specified tolerance. Given the new number of nodes n , a new 

mesh  is then constructed with Eq. (25). Again, the state 

variables for the mesh are interpolated from the polynomial and 

slack variables are computed that initially satisfy the path 

constraints. The approximation is reconverged with the 

Newton’s method procedure. A series of equidistribution 

iterations brings the maximum error (and, therefore, also the 

maximum difference in error) below . 

 In summary, the algorithm runs as follows: 

1.  Obtain an initial guess X  and . 

2.  Update X  until F(X) = 0  with Newton’s method. 

3.  Update  according to Eq. (25), construct new X . 

4.  Repeat 2-3 until the error is approximately 

equidistributed (start with 2, end with 2). 

5.  Update n  using Eq. (27). 

6.  Repeat 2-3 until the error is below  (start with 3, end 

with 2). 

The process usually requires only a few refinements to meet the 

desired tolerance. 

Linear Stability Analysis 

 For a small perturbation initially applied to the trajectory, 

the stability analysis measures the rate of departure from the 

reference path when the trajectory returns to a hyperplane. Since 

the Jacobian matrix for the constraint equations contains 

sensitivity information, the state-transition matrix can be 

extracted directly from the Jacobian matrix of the converged 
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solution. For a converged solution, F(X) = 0  in Eq. (19). Then 

by isolating the state variations associated with the i
th
  segment 

 

d i,1

dxi

d i,1

dxi,2

d i,1

dxi,3

d i,1

dxi+1
d i,c

dxi

d i,c

dxi,2

d i,c

dxi,3

d i,c

dxi+1
d i,4

dxi

d i,4

dxi,2

d i,4

dxi,3

d i,4

dxi+1
M

xi

xi,2

xi,3

xi+1

= 0        (28) 

In general, the matrix M  possesses a nullspace with 

dimension equal to the dimension of x . Therefore, it is 

possible to eliminate xi,2  and xi,3  in Eq. (28) and solve 

for xi+1  as a linear combination of xi . More precisely, 

Eq. (28) allows computation of a matrix (ti+1, ti )  such that 

xi+1 = (ti+1, ti ) xi          (29) 

The matrix (ti+1, ti )  is known as the state-transition matrix. 

A general algorithm for computing (ti+1, ti )  in Eq. (29) 

applies to every segment. Then, the monodromy matrix is 

 
(tn , t1 ) = (tn , tn 1 ) (tn 1, tn 2 ) (t3, t2 ) (t2 , t1 )       (30) 

While eigenvalues of (tn , t1 )  inside the unit circle 

correspond to locally stable modes, eigenvalues outside the 

unit circle indicate instability. 

APPLICATION TO LUNAR POLE-SITTER ORBIT 

Orbits are designed in the Earth-moon restricted three-body 

problem with the addition of acceleration forces due to a 

solar sail. In this model, the Earth and moon are assumed to 

move in circular orbits, and the spacecraft possesses 

negligible mass in comparison to the Earth and moon. A 

rotating, barycentric coordinate frame is employed, with the 
x -axis directed from the Earth to the moon. The z -axis is 

parallel to the angular velocity vector of the Earth-moon 

system. Then the equations of motion for the system are 

 

 

x = f t,x,u( ) =

r

v

=
v

lTu( )
2
u 2 v + TU r( )

   (31) 

where the T  operator refers to the gradient-transpose. The 

components are derivable from the potential function 

U =
1

r r1
+
r r2

+
1

2
x2 + y2( )         (32) 

and x , y , and z  are the components of the spacecraft’s 

position relative to the rotating, barycentric frame. The mass 

parameter is , the Earth-moon angular velocity is , and 

r1  and r2  are the positions of the Earth and moon, 

respectively. Equation (31) is also nondimensional, where 

the characteristic quantities are the total mass m*
 of the 

system, the distance l*  between the Earth and moon, and the 

familiar characteristic time t* = (l*3 /Gm* )1/2 . (The quantity 

G  is the universal gravitational constant.) The magnitude of 

the solar radiation pressure force supplied by the sail at 1 AU 

is defined as the constant characteristic acceleration , and 

it is directed along a unit-vector u , the control parameter 

normal to the surface. An idealized, perfectly reflective sail 

acceleration model is assumed, where l  is the unit-vector 

directed from the sun to the spacecraft. This formulation for 

sail acceleration is valid as long as lTu 0 . The vector l  is 

simplified to rotate in a circular orbit within the Earth-moon 

plane once per synodic lunar month, or with angular rate s , 

i.e. 

l = cos st( ), sin st( ), 0{ }
T

        (33) 

Lunar south pole line-of-sight using only one spacecraft 

requires a path constraint on the minimum elevation angle 

lb . It is also desirable to bound the spacecraft below some 

maximum altitude dub . The continuous path constraints as 

defined by Ozimek et al. [6] are 

g r,( ) =
sin lb +

z + Rm
a

d dub

+
2 = 0        (34) 

where d = x 1+( )
2
+ y2 + z + Rm( )

2
 and Rm  is the 

nondimensional mean radius of the moon. The periodicity 

constraint is chosen to be synchronous with one lunar 

synodic month, or period T = 2 / s 29.64  days. 

Control Law 

 The components of the control vector u  in Eq. (31) are 

governed by the angles  and . The clock angle  is the 

angle between l  and u  projected into the Earth-moon plane. 

The pitch angle  measures the out-of-plane angle 

associated with the control direction. Thus, the control u  is 

u =

cos cos( st)

cos sin( st)

sin

            (35) 

In a previous study by the authors [6], the controls were 

varied at the node points. The angles  and  were then 

computed after the determination of a control history that 

satisfied the problem constraints. Therefore, it was necessary 

to add a periodicity constraint on the control. For the 

trajectories previously investigated, the history for the angle 

 resembled an even sinusoidal function, while the angle  

appeared to closely follow an odd-valued sinusoid as a 

function of time. Given the problem symmetries and the 

physical interpretation of these angles, perhaps the most 

natural control laws for  and  are even and odd Fourier 

series. Thus, it can be assumed that  and  can be 

represented as 
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(t) = 0 +

k=1

N

k cos(k st)

(t) =
k=1

N

k sin(k st)

        (36) 

By construction, the period of (t)  and (t)  is T = 2 / s . 

For implementation of the control in the collocation scheme, 

the Fourier coefficients are varied until the precise control 

law is uncovered for a given orbit. This result is achieved by 

storing the coefficients in the problem parameters vector  

for corrections, i.e. 

T = 0 , 1, ..., N , 1, ..., N( )         (37) 

Once a solution is computed and the corresponding vector  

is determined, the angle rates are accessible easily. The 

control rates 
 

 and 
 

, which represent changes in the 

angles relative to l , follow as 

 

(t) =
k=1

N

kk s sin(k st)

(t) =
k=1

N

kk s cos(k st)

        (38) 

The Fourier series control law provided in Eq. (36) is 

sufficiently general for implementation in single or multiple 

shooting schemes with explicit integration. 

Initial Guess Strategy 

 For this application, the initial guess process is based 

upon approximating the trajectory as a pole-sitter, i.e., 

v = 0 . Then, from Eq. (31), the natural acceleration is 

entirely dependent upon the position of the spacecraft 

according to the value of U . Fig. (3) can therefore be 

used to quickly locate the position where the pole-sitter 

trajectory would most likely occur, given a specified 

characteristic acceleration. The nodes comprising               

the trajectory are all initially assumed to be coincident at a 

point in space with  selected to equally distribute the  time 

interval. The slack variables are always initialized such that 

the path constraints are satisfied. This initial guess requires 

little a priori knowledge. Furthermore, the solution is not 

biased in favor of a particular orbit, except for those 

trajectories that may exist near the pole-sitting position. The 

process to determine solar sail lunar pole-sitter orbits can be 

summarized as follows: 

1. Examine Fig. (3) to approximate a feasible region given 

the value of  for the sail. 

2. Specify desirable values of lb  and dub  that encompass 

this region. 

3. Within the bounds imposed by lb  and dub , 

approximate an initial trajectory by setting x  and z  to 

constant values (
 
y = x = y = z = 0  initially for all 

nodes). 

 

4. Assume the sail acceleration is initially oriented to 

maximize the out-of-plane component, i.e., set 

 0 = 35.26  and set all other coefficients equal to 

zero. 

Once an initial guess for X  and  is available, the 

previously defined collocation algorithm locates a nearby 

solution. 

 

Fig. (3). Contours of U  in mm / s2 , moon-centered rotating 

frame. 

NUMERICAL RESULTS 

 The constants used for all numerical computations are 

listed in Table 2. 

Table 2. Problem Constants 

 

 Parameter   Value  Units  

   1e-12    

  0.012150585609624    

t*   4.36439991512776   day  

l*   385,692.5  km  

Rm   1,734.4  km  

s   12.1423770706749   /day  

N    5    

 



72    The Open Aerospace Engineering Journal, 2010, Volume 3 Ozimek et al. 

Table 3. Data Summary for Near-Optimal Orbits 

 

 = 0.58 mm / s2  = 1.70 mm / s2  

Type L1  L2  L1   L2    Hover  

Color Blue Green Red  Purple   Grey  

x0  +8.334577959416795 d-1  +1.156211421789636 d- 0  +8.358382331873345 d-1  +1.133709934961812 d- 0  +1.142606758444961 d- 0  

z0  1.674447029156162 d- 2  2.785681461021011 d- 2  5.080489933754771 d- 2  7.014221018336932 d- 2  1.079440386848905 d-1  

 
y0  2.970274544651623 d- 2  7.264216970640185 d- 2  1.035256763465011 d-1  1.321776217291153 d-1   2.309935244587937 d-1  

0  6.343037134654265 d-1  6.532727216254634 d-1  6.550832921434782 d-1  8.076988446188386 d-1   7.176650914056956 d-1  

1  1.639142648497209 d- 2  3.496431271743909 d- 3  +1.109111936118494 d- 2  3.760510052379947 d- 2  9.455764413908209 d- 2  

2  1.005162216606042 d- 3  +2.525294068828327 d- 2  7.204002256366904 d- 3  +9.198677776698262 d- 2  1.657526877433217 d-1  

3  +4.186000055059244 d- 2  6.282315518132125 d- 3  +7.724704156521697 d- 2  +4.178169912132836 d- 2  +4.081942483021073 d- 2  

4  +1.276497472641706 d- 2  2.827459153365777 d- 2  9.084935129312299 d- 3  5.380796885631299 d- 3  +9.546331387483088 d- 2  

5  7.108087578028680 d- 3  1.076977595277608 .d- 2  3.141687535102539 d- 2  +1.457063836041965 d- 2  +1.510595399780250 d- 2  

1  +9.923829906300495 d-2 1.978177053068336 d-1  +4.240662342949236 d-1  4.206338880883266 d-1   5.455275819483647 d-1  

2  +1.024195843920122 d- 3  4.157860433873927 d- 2  7.898408737806689 d- 4  +6.788375238824441 d- 2  6.872290868371695 d- 3  

3  +3.345688507820322 d- 3  7.153711065518781 d- 2  1.269064717140005 d-1  1.503551493545528 d-1   +1.478868620356161 d-1  

4  +8.333198429994938 d-4 3.504456801267981 d- 3  +1.277367799213988 d-1  +3.061175727108182 d- 2  +2.429599424843301 d- 2  

5  +6.021023233999644 d- 3  1.440196545516193 d- 2  +1.736235859640061 .d-2 2.337621947580810 d-2  5.042661386056409 d-2 

 
min ( ) * 4.2 6.8 15.8 18.8  15.0 

 
min ( )  4.2 6.8 15.6  18.6  15.0 

max  3.0 108  1.4 106 6.9 105  2.7 105 1.2 104  

 
max /day( )  2.28 2.27 4.60 3.48   9.61 

 
max /day( )  1.76 7.06 12.78  15.14   10.78 

Initial n 15 15 15 15  15 

Initial 

Size X 
355 355 355 355  355 

Mesh 

Refinements 
2 2 2  2   2 

Final n 51 50 79  68   83 

Final 

Size X 
1,219 1,195 1,891  1,627 1,987 

*Values from Ozimek et al. [6]. 
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Near-Optimal Orbits 

 Using the previously mentioned initial guess procedure, 

five example orbits are generated. (See Fig. (4) for the initial 

and final converged mesh discretizations and Table 3 for 

initial conditions and coefficient values.) The orbits are near-

optimal in the sense that the iteration process evolves with 

increasing values of minimum elevation angle until the limits 

of convergence are reached. For all of the final solutions, 

only two refinement iterations are required. Inspection of 

one of the resulting control histories reveals that a smooth, 

periodic control history emerges that closely reflects the 

angles supplied with the initial guess. (See Fig. 5). The 

resulting orbits and control histories bear close resemblance 

to  the  trajectories    presented  in  a  previous   study  by  the  

authors [6]. The data summary in Table 3 indicates that with 

only a small number of Fourier coefficients, the minimum 

elevation angle min  along any orbit deviates by at most 

0.2  compared to the minimum elevation angle in the 

previous study. No control rate boundaries are imposed on 

 
 and 

 
, but all rates remain close to the 12.1 /day 

baseline rate that is already necessary for the sail to turn to 

continuously face the sun. Since all of the orbits require 

control, it is not surprising that all are unstable. The stability 

analysis, measured in terms of max , indicates that the most 

unstable orbit is the L1 , = 0.58  mm/s
2

 orbit. The least 

unstable orbit is the hover orbit. 

Comparison to Explicit Schemes 

 The nondimensional quantities 
0
x , 

0
z , and 

0
y  (

 
y0 = x0 =  

 
z0 = 0)  are supplied in Table 3 for the purpose of recreating the 

orbits with a standard explicit propagator. The control law for 

implementation with an explicit subroutine is supplied by Eq. 

(36), where the coefficients for each orbit are provided in Table 

3. The initial states are integrated forward over the interval [0,T]  

using MATLAB’s ode45 and ode113. The propagator 

 

Fig. (4). Five near-optimal pole-sitter orbits. 
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ode45 is a fourth-order Runge-Kutta method with fifth-order 

error control. The integrator ode113 is a variable-order 

Adams-Bashforth-Moulton solver. Both propagators exploit 

adaptive step-sizing. 

 Let || h ||  represent the norm of the difference between 

the final and initial state along the trajectory. The quantity 

|| h ||  provides insight into the errors associated with each 

method. Recall that for the Gauss-Lobatto collocation 

scheme, || h ||  is constrained to be less than 1e-12. The 

values of || h ||  for the ode45 and ode113 runs are 

available in Table 4. For all simulations, the absolute and 

relative errors are set to 1e-12. 

 To compare ode45 to ode113, the final row of Table 4 

corresponds to the norm of the resulting vector from taking 

the difference of the final state vectors from ode45 and 

ode113. The table demonstrates that the periodicity 

violation is consistent with the order of the error associated 

with each propagator. These errors suggest that the 

periodicity violations || h ||  recorded in Table 4 result 

primarily from dynamical instability (not numerical error 

associated with the Gauss-Lobatto scheme). Note also that, 

as expected, greater values of || h ||  are associated with larger 

values of max  in Table 3. The orbit measure of instability 

stresses the importance of highly accurate integration 

subroutines. All the orbits are also propagated for multiple 

revolutions with ode45 and ode113. The orbit near L1 

with k = 0.58 departs rapidly from the nominal orbit just 

after one revolution without additional control adjustments. 

The hover orbit stays close to the baseline periodic orbit the 

longest, departing after three revolutions. The other orbits 

depart after approximately two revolutions. The eigenvalues 

max computed from collocation are also verified and match 

closely with the eigenvalues computed from explicitly 

propagating the state-transition matrix. If desired, the errors 

recorded in Table 4 are small enough for 
0
x , 

0
z , 

0
y , and 

the Fourier coefficients to serve as initial guesses in a 

differential corrections procedure with explicit integration. 

However, given the instability of these orbits, it is likely that 

reducing the periodicity violation to zero with one integrator 

will still result in comparable errors to those recorded in 

Table 4 when integrated explicitly with the other integrator. 

Due to the dynamical sensitivity of the orbits, slight 

modifications of the angle histories may be sufficient to 

retain the trajectory near the baseline. 

CONCLUSION 

 A seventh-degree Gauss-Lobatto scheme with mesh 

refinement for controlled periodic orbits is detailed. The 

scheme is successfully applied to compute lunar pole-sitter 

orbits using a solar sail. Comparison with previous efforts 

demonstrates that near-optimal elevation angle performance 

can be achieved by using a Fourier series control law with a 

small number of coefficients. The numerical behavior of the 

orbits is consistent with the predicted stability and the 

method produces results that are accurate to a level 

consistent with standard numerical integrators. 
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Fig. (5). Control law for the L2 , = 0.58  mm/s
2
 orbit. 

Table 4. Error with Standard Matlab Propagators 

 

    = 0.58 mm/s2   = 1.70 mm/s2  

 Type   L1  L2   L1  L2  Hover 

|| h ||  ode45  1.35e-06  8.27e-09  2.61e-09  1.34e-09  5.72e-11 

|| h ||  ode113  1.75e-06  3.59e-08   9.10e-10 5.62e-09 5.68e-11 

Comparison of ode45 and ode113  4.02e-07 4.42e-08 1.69e-09  4.28e-09 5.61e-13  
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NOMENCLATURE 

t  = Time  

x  = State vector  

u  = Control vector  

 = Problem dependent parameter vector  

T  = Orbit period  

g  = Path constraint vector  

h  = Periodicity constraint vector  

 = Normalized time  

n  = Number of mesh points (nodes)  

 = Set of mesh points  

 = Defect constraint vector  

e  = Relative integration error  

 = User-defined integration tolerance  

 = State-transition matrix  

 = Eigenvalue of the state-transition matrix  

U  = Potential function  

 = Characteristic acceleration due to a solar sail 

s  = Angular rate of Earth-moon synodic frame  

 = Spacecraft elevation angle  

d  = Spacecraft altitude  

 = Solar sail out-of-plane angle  

 = Solar sail clock angle  
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