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Abstract: Visual and spatial representations seem to play a significant role in analogy. In this paper, we describe a spe-

cific role of visual representations: two situations that appear dissimilar non-visuospatially may appear similar when re-

represented visuospatially. We present a computational theory of analogy in which visuospatial re-representation enables 

analogical transfer in cases where there are ontological mismatches in the non-visuospatial representation. Realizing this 

theory in a computational model with specific data structures and algorithms first requires a computational model of visu-

ospatial analogy, i.e., a model of analogy that only uses visuospatial knowledge. We have developed a computer program, 

called Galatea, which implements a core part of this model: it transfers problem-solving procedures between analogs that 

contain only visual and spatial knowledge. In this paper, we describe both how Galatea accomplishes analogical transfer 

using only visuospatial knowledge, and how it might be extended to support visuospatial re-representation of situations 

represented non-visually. 

INTRODUCTION 

 A central issue in artificial intelligence research is that 

any solution to a problem has to start from what the program 

already knows: so, how is it possible to create novel solu-

tions? There is ample evidence from cognitive science that, 

in humans, analogy plays an important role in finding solu-

tions to novel problems, and that many of the most creative 

analogies involve cross-domain transfer [1-8], requiring 

finding similarity between semantically different ideas. But 

how can a program recognize similarity across domains and 

use it to arrive at a solution? 

 Clearly some kinds of abstraction processes are involved 

in transferring problem solutions across domains. Most of 

the literature on analogy considers abstraction processes us-

ing different kinds of non-perceptual, amodal (e.g., causal or 

functional) representations. We hypothesize that for some 

problems the reasoner may use abstraction processes that 

involve model re-representation, changing the representation 

from an amodal representation to a modal (e.g., visuospatial) 

representation. In these cases it is the similarity in the modal 

versions of these representations that enables analogical 

transfer. 

 To take an example, imagine that a reasoner is trying to 

figure out how to put batteries into a tape recorder by trans-

ferring a procedure from a source case in which film is put 

into a camera. Since film is a different entity from battery,

and tape-recorder is a different entity from camera, analogi-

cal retrieval, mapping, and transfer will be hindered unless 

the reasoner can find some similarity between these pairs of 

entities. An ontological mismatch is where, given some rep-

resentation language, entities are represented with different 

classes in the ontology. 
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 One way the two situations in the above example are 

similar is that they visually resemble each other: the batteries 

and the film canister are both shaped like cylinders, and the 

tape recorder and the camera are shaped like rectangular 

prisms. In this example, the problem constraints pertain to 

the shapes of the objects involved. Thus the visuospatial 

similarity of the tape recorder and the camera (both may 

have cylindrical holes) is more relevant to the problem than, 

say, their functional similarity as recording devices, because 

their shapes have more to do with the placement of batteries 

and films than their functions do. 

 Our hypothesis is that turning a non-visuospatial repre-

sentation into a visuospatial one (a process we call “visu-

ospatial instantiation”) is one mechanism for resolving onto-

logical mismatches. When a reasoner encounters an onto-

logical mismatch in non-visuospatial representations of the 

target and source analogs, it may dynamically create visu-

ospatial representations of them. The problem-solving pro-

cedure can then be transferred between the generated visu-

ospatial analogs. Then to translate the procedure and solution 

back to the non-visuospatial representation, the reasoner 

specifies the visuospatial representation back into a non-

visuospatial form. 

 Note that a critical part of this process is transfer of a 

problem-solving procedure between two visuospatial ana-

logs. Thus, if our hypothesis is correct, it should be possible 

to transfer problem-solving procedures from a source to a 

target problem using representations that are purely visu-

ospatial. Therefore, the first core task in developing and 

evaluating our theory of multi-modal analogy is to develop 

and evaluate a computer program that can accomplish the 

transfer task using only visuospatial knowledge. 

 Indeed, although we outlined the case for visuospatial re-

representation in analogy, in many situations analogical 

problem solving may use visuospatial representations from 

the outset. Problems in many design domains contain draw-

ings, diagrams, animations, photographs, videos, etc. Instruc-
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tions for assembling complex artifacts are often presented to 

people in a completely diagrammatic form. Thus, establish-

ing transfer of procedures using visuospatial knowledge 

alone not only supports our theory of multi-modal analogies 

but also is an important task by itself. 

 This paper, then, has two goals: (i) to describe our theory 

of visuospatial re-representation in multi-modal analogies 

and (ii) to describe our operational computer program called 

Galatea that instantiates the transfer task where the analogs 

are represented visuospatially. Galatea provides specific data 

structures for realizing a computational model of visuospa-

tial analogy and specific algorithms for analogical transfer of 

visuospatial knowledge. We begin with a description of Ga-

latea, and then show how it might be extended to realize 

visuospatial instantiation. 

 We will use Gick and Holyoak’s classic fortress/tumor 

problem [9, 10] as a running example throughout this paper.
1

Visuospatial Analogy: Transfer 

 The general’s procedure for solving the fortress problem 

can be represented as a series of knowledge states and trans-

formations between them. A knowledge state characterizes 

the steps in the procedure by specifying information about 

the elements in the state and relationships between them. A 

transformation takes in a knowledge state, changes its con-

figuration in some way, and produces the next knowledge 

                                               
1Experimental participants read a story about a general who must overthrow 

a dictator in a fortress. His army is poised to attack along one of many roads 

leading to the fortress when the general finds that the roads are mined such 

that large groups passing will set them off. To solve the problem, the gen-

eral breaks the army into smaller groups, and they take different roads si-

multaneously, arriving together at the fortress. Participants are then given a 

tumor problem, in which a tumor must be destroyed with a ray of radiation, 

but the ray will destroy healthy tissue on the way in, killing the patient. The 

analogous solution is to have several weaker rays simultaneously converg-

ing on the tumor [9, 10]. 

state in the sequence. The first knowledge state represents 

the initial description of the problem. Starting from the first 

knowledge state in the fortress story, the first transformation 

is to break up the army into smaller armies. This leads to the 

second knowledge state containing smaller armies. The sec-

ond transformation is to move the armies to different roads, 

and so on. 

 This analysis, and our goal to model visuospatial anal-

ogy, leads to two constraints on the representations. First, 

knowledge states will be represented only visuospatially, i.e. 

as shapes, their sizes, locations, motions, and spatial rela-

tionships between each other. The transformations will be 

operations that change the visuospatial characteristics of the 

state. Further, two successive states will be connected by 

only one primitive transformation. Second, visuospatial in-

formation will be represented using symbolic, structured, 

descriptive representations. This is differentiated from depic-

tive representations (e.g., bitmaps), where a depictive repre-

sentation only “specifies the locations and values of points in 

space” [11]. The symbolic representation is appropriate for 

problem solving because it provides the standard benefits of 

discreteness, abstraction, ordering, and composition. 

Galatea: A Computer Implementation 

 Galatea is an operational computer program written in 

LISP. It implements the analogical transfer of visuospatially-

represented problem solving procedures. Fig. (1) illustrates 

Galatea’s input and output in the abstract. Galatea’s knowl-

edge states are symbolic images or s-images. Galatea takes 

as input a source case, an initial target problem s-image, and 

an analogical mapping between the initial s-images of the 

source and target. The source case is a complete sequence of 

s-images and transformations representing the procedure that 

solves the source problem. 

Fig. (1). Galatea’s input and output in the abstract. The knowledge states in the source case are depicted as ovals along the top of the 

figure. The knowledge states are visually represented as s-images. Transformations between the states are depicted as arrows. The target 
problem is depicted as the first oval along the bottom. All things in the gray box are output by Galatea. 
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 Galatea transfers the visual transformations one at a time 

from the source to the target, creating new target s-images 

along the way, with new analogical mappings between the 

corresponding target and source s-images. Fig. (2) illustrates 

Galatea’s input and output for the fortress/tumor problem. 

 Galatea is intended to be used for source and target prob-

lems with the following characteristic: the operators used to 

solve the problems must change the visuospatial characteris-

tics of the situations. For example, changing the size of a 

door affects how the door looks, but changing who owns the 

door does not.
2
 It presently works on three problems: The 

fortress/tumor problem, a case of scientific analogical rea-

soning by James Clerk Maxwell [12], and a cake/pizza prob-

lem in which a single pizza must be distributed among sev-

eral people (as briefly described below). 

Knowledge and Representation 

 Covlan (Cognitive Visual Language) provides an ontol-

ogy of visual primitives. Table 1 shows Covlan’s ontology of 

transformations. 

 Transformations implement normal graphics manipula-

tions such as translation (move-to-location, move-to-touch,

move-above, move-to-right-of, move-to-left-of, move-below), 

rotation (rotate), and scaling (set-size). In addition there are 

transformations for adding and removing elements from the  

                                               
2Covlan, the visual language Galatea currently uses, does not address the 

visualization of abstract concepts like ownership, although such things could 

potentially be represented visually. 

Table 1. Transformations in Covlan 

Transformation Name Arguments 

move-to-location object, new-location 

move-to-touch object, object2, new-location 

move-above object, object2 

move-to-right-of object, object2 

move-below object, object2 

move-to-left-of object, object2 

move-in-front-of object, object2 

move-off-s-image object, location 

move-to-set object, object2 

rotate object, direction 

start-rotating object, direction 

stop-rotating object 

start-translation object, direction 

stop-translation object 

set-size object, new-size 

add-element object, location (optional) 

remove-element object 

decompose object, number-of-resultants, type 

scale object, new-size 

Fig. (2). Galatea’s input and output for the fortress/tumor problem. The top series of s-images shows the visual representation of the 

solved fortress problem. The bottom series of s-images shows the target tumor problem. The bottom left s-image is the initial state of the 
tumor problem. The darkly shaded box shows Galatea’s output. 



14 The Open Artificial Intelligence Journal, 2008, Volume 2 Davies and Goel 

s-image (add-element, remove-element). Making topological 

changes of this kind to imagined physical systems has been 

shown in earlier work to be useful in problem solving [13, 

14]. Like their counterparts in graphic manipulations, trans-

formations take arguments to specify their behavior. 

 Certain transformations (start-rotating, stop-rotating,

start-translation, stop-translation) are changes to the dy-

namic behavior of a single s-image. Start-rotating sets an 

element in motion, as one might spin a top. A square that has 

been affected by this transformation would not simply be 

rotated in the next s-image, but would be actively rotating in 

the next s-image. In contrast, rotate changes the orientation 

of an element once, as one might turn a chair a certain num-

ber of degrees to face a window. Such a transformation 

changes the position of an element between s-images. 

 Covlan’s ontology of primitive visual elements (Table 2)

contains: polygon, rectangle, triangle, ellipse, circle, arrow,

line, point, curve, and text. The elements are frame-like 

structures with slots that can hold values. For example, a 

triangle has a location, size, height, width, and orientation.

All elements have a location, which is an absolute location 

on an s-image (e.g. top, right). 

Table 2. Primitive Visual Elements in Covlan 

Primitive Element Name Attributes 

polygon location, size 

rectangle location, size, height, width, orientation 

triangle location, size, height, width, orientation 

ellipse location, size, height, width, orientation 

circle location, size, height 

arrow 
location, length, start-point, end-point,  

thickness 

line 
location, length, end-point1, end-point2,  

thickness 

point location 

curve 
location, start-point, mid-point, 

end-point, thickness 

text location, length, letters 

 In the fortress problem, the fortress is represented as a 

curve, the army as an arrow with thickness of very-thick.

Likewise, in the tumor problem, the ray of radiation is repre-

sented as an arrow with thickness of very-thick, and the tu-

mor is represented as a curve (Fig. 2). Two s-images are 

generated during processing; the final generated s-image of 

the tumor problem is represented in Fig. (3). 

 In the fortress/tumor example, after the decompose trans-

formation generates a number of smaller armies (by trans-

forming a thick arrow into thinner arrows), they must be 

dispersed to the various roads, in various locations in the 

image. In a previous version of Galatea (Davies & Goel, 

2001; Davies et al., 2005) each army arrow was moved-to-

location individually to each road line. This solution was 

brittle because the number of roads to which the armies 

moved needed to match exactly the number of body areas the 

weaker rays moved to in the target. 

Fig. (3). A portion of the third s-image in the tumor series illus-

trated in Fig. (2). The third s-image in the tumor series represents 

the solution generated by Galatea as a final result of analogical 

transfer. The representation consists of propositions, indicated as 

labeled arrows connecting two elements. The tumor-s-image3 is 

connected with a has-element relation to each primitive visual ele-

ment in the s-image. The elements in the s-image each have a loca-

tion and are connected to a primitive visual element type with a 

looks-like relation. Each ray, represented as an arrow, also has a 

thickness-in this s-image, thin. Each arrow also has start and end 

points, also with locations (not shown in the figure). The s-image is 

connected to the s-image before it with a transform-connection. Not 

shown in the figure are the maps that connect the elements of this s-

image to the previous s-image, as well as the maps to the corre-
sponding source s-image. 

 Galatea uses sets to address this problem. By grouping 

the armies, roads, rays, and body parts into their own sets, 

Galatea adapts the solution in the source analog to accom-

modate differing numbers of any of these elements. Rather 

than using the move-to-location transformation on each 

army, it uses move-to-set to the change the location of the set
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of armies. The argument to this function is a set of roads. 

The move-to-set function takes one set and distributes its 

members around the locations of another set. 

Inference and Processing 

 Galatea focuses on the transfer and adaptation stage of 

analogy. In particular, it adapts and transfers each transfor-

mation in the source problem to the target. 

 A transformation, such as decompose, can be used to turn 

a primitive element into an arbitrary number of resultants, 

which is taken as an argument. An argument of a transforma-

tion can be an instance of one of three cases. First, the argu-

ment can be a literal, like the number 4 or the location bot-

tom. Literals are transferred unchanged to the target. 

 Second, the argument could be a primitive element mem-

ber of the source s-image. In this case, the transfer procedure 

operates on the analogous element in the target s-image. For 

example, in the fortress problem, the soldier-paths are 

moved to the roads. When move-to-set is transferred to the 

tumor problem, the argument set-of-roads is adapted to the 

analogous set-of-body-areas.

 In the third case, the argument can be a function. Since 

this case does not occur in the fortress/tumor problem, we 

will use another example to describe it. Let us suppose that a 

reasoner needs to feed six people with one Sicilian slice 

sheet pizza. An analog in memory of cutting a sheet cake for 

four people is used to generate a solution. Transfer is still 

difficult because somehow the four in the cake analog must 

be adapted to the number six in the source analog. Knowing 

how many pieces into which to cut the cake or pizza depends 

on the number of people each problem. Some notion of 

count is needed. The use of functions as arguments to trans-

formations helps address this problem. The cake analog is 

represented with a function that counts the number of people 

as its argument for the decompose transformation. This func-

tion has an argument of its own, namely the set of cake eat-

ers, which during adaptation adapts into the set of pizza eat-

ers. When the transformation is applied to the pizza, it counts 

the members of the set of people in the pizza problem (which 

results in six). Decompose produces six pieces of pizza in the 

next s-image. 

Algorithm 

1. Identify the first s-images of the target and source 

cases. These are the current source and target s-

images. 

2. Identify the transformations and their associated 

arguments in the current s-image of the source 

case. This step finds out how the source case gets 

from the current s-image to the next s-image. In the 

fortress/tumor example, the transformation is decom-

pose, with four as the number-of-resultants argument 

(not shown). 

3. Identify the objects of the transformations. The 

objects of the transformation are what objects, if any, 

the transformation acts upon. For the decompose

transformation, the object is the soldier-path1 (the 

thick arrow in the top left s-image in Fig. (2)). 

4. Identify the corresponding objects in the target 

problem. Ray1 (the thick arrow in the bottom left s-

image) is the corresponding component of the source 

case’s soldier-path1, as specified by the mapping be-

tween the current source and target s-images (not 

shown). A single object can be mapped to any num-

ber of other objects. If the object in question is 

mapped to more than one other object in the target, 

then the same transformation is applied to all of them. 

5. Apply the transformation with the arguments to 

the target problem component. A new s-image is 

generated for the target problem (bottom middle) to 

record the effects of the transformation. The decom-

pose transformation is applied to the ray1, with the 

argument four. The result can be seen in the bottom 

middle s-image in Fig. (2). The new rays are created 

for this s-image. Adaptation of the arguments can 

happen in three ways, as described above: If the ar-

gument is an element of the source s-image, then its 

analog is found. If the argument is a function, then the 

function is run (note that the function itself may have 

arguments which follow the same adaptation rules as 

transformation arguments). Otherwise the arguments 

are transferred literally. 

6. Map the original objects in the target to the new 

objects in the target. A transform-connection and 

mapping are created between the target problem s-

image and the new s-image (not shown). Maps are 

created between the corresponding objects. In this ex-

ample it would mean a map between ray1 in the left 

bottom s-image and the four rays in the second bot-

tom s-image. A correspondence is also created be-

tween the ray1 to the set of thinner rays. This system 

does not solve the mapping problem, but a mapping 

from the correspondences of the first s-image enables 

the mappings for the subsequent s-images to be auto-

matically generated. 

7. Map the new objects of the target case to the cor-

responding objects in the source case. Here the rays 

of the second target s-image are mapped to soldier 

paths in the second source s-image. This step is nec-

essary for the later iterations (i.e., going on to another 

transformation and s-image). Otherwise the reasoner 

would have no way of knowing on which parts of the 

target s-image the later transformations would oper-

ate. 

8. Check to see if goal conditions are satisfied. If they 

are, exit, and the problem is solved. If not, and there 

are further s-images in the source case, set the current 

s-image equal to the next s-image and go to step 1. If 

there are no further s-images, then exit and fail. Goal 

conditions are represented non-visuospatially [15]. 

 Galatea shows that visuospatial knowledge alone, with 

no amodal knowledge, is sufficient for enabling analogical 

transfer, supporting a central hypothesis of our theory of 

visuospatial analogy. It suggests a computational model of 

analogy based on dynamic visuospatial knowledge that com-

plements traditional models based on amodal knowledge. 
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Although Galatea does not yet address the issues of retrieval 

and mapping for visuospatial knowledge, other implemented 

computer programs have (e.g. [16, 17]). Thus, we confi-

dently conjecture that visuospatial knowledge alone can en-

able the first three stages of analogy: retrieval, mapping, and 

transfer. 

Multi-Modal Analogies: Re-Representation 

 Galatea addresses a core part of our theory of visuospa-

tial analogy: analogical problem-solving transfer using only 

visuospatial knowledge. Our general theory, described in this 

section, suggests why and how visuospatial reasoning is use-

ful even with cases whose representations need not be visu-

ospatial. There is psychological evidence that humans make 

use of visuospatial information when doing problem solving 

in general [18-21], but the details of what makes visuospatial 

knowledge useful for analogy in natural and artificial rea-

soners is largely unknown. 

 Another way to frame this problem is that we do not 

know under what conditions it is useful for a reasoner to 

generate and process a visuospatial representation. Our work 

on Galatea suggests that one reason to use visuospatial rep-

resentations is that ideas that are semantically distant with a 

non-visuospatial representation (e.g. a marching army and a 

ray of radiation) may be semantically closer with a visuospa-

tial representation. Turning non-visuospatial representations 

into visuospatial ones (a process we call visuospatial instan-

tiation) is one possible solution to the ontological mismatch

problem. 

The Ontological Mismatch Problem 

 One kind of ontological mismatch occurs when the sym-

bols representing two similar things are different. In a non-

visuospatial representation of the fortress/tumor problem, the 

ray and the army are represented with different symbols. 

Thus, without some notion of similarity between them, they 

cannot be aligned, which hinders analogical problem solv-

ing. Ontological mismatches can be encountered during 

analogical retrieval, mapping, or transfer. 

 Ontological mismatches can hinder retrieval of appropri-

ate analogs. Psychological studies show that analogs are re-

trieved from memory based on surface similarity of the tar-

get analog to the retrieved source [22]. Similar ideas repre-

sented with different symbols will fail to appear similar to 

the reasoner. 

 Upon retrieval of an analog, the reasoner might have 

trouble with mapping ideas that need to be aligned, such as 

the tumor with the fortress, because they (or their relations 

with other components) are represented with different sym-

bols. 

 Even if this mapping problem is overcome, the reasoner 

could still have a problem in transfer of the solution strategy. 

Suppose that the reasoner knows of a solved problem which 

involves breaking up an army into smaller groups. The army 

is represented as a group of constituent soldiers. The target 

problem involves a ray of radiation which must be turned 

into a number of rays, with less intensity. The ray might be 

represented as a form of energy, with a number associated 

with its intensity, a representation that serves some other task 

(e.g., so that numeric intensities can be added). Not having 

anticipated that the ray and army might need to be aligned, 

they could have been encoded with incompatible representa-

tions. The transformation applied to the army will not work 

on the ray because the representation of the ray, in this ex-

ample, does not have constituent parts: breaking something 

into parts is different from dispersing energy. 

 The point of this analysis is to show that a reasonable 

non-visuospatial representation can fail for transfer in 

analogical problem solving. It is possible to represent this 

problem with no ontological mismatches (e.g. as in [23]), but 

ontological mismatches are bound to occur in any large 

knowledge base [24]. 

Resolution of Ontological Mismatches 

 In our theory, ontological mismatches encountered in 

non-visuospatial representations can be resolved by provid-

ing a level of visuospatial abstraction at which two symbols 

in question are identical or similar. This process of visuospa-

tial instantiation offers a means for resolving ontological 

mismatches different from, say, using a type hierarchy. For 

example, the ray in the fortress and the tumor may not be 

under any same superordinate category. Representing them 

both as curves, however, shows a similarity between these 

distant concepts. This kind of visuospatial abstraction works 

especially well in conditions under which the visuospatial 

properties of the objects represented are related to the prop-

erties relevant to the current task (Fig. 4). 

 For the retrieval task, the reasoner may visuospatially 

instantiate the elements in question, and find similarity 

through comparison of the visuospatial symbols. For exam-

ple, the ray and the soldier-path might both visuospatially 

instantiate to arrows, (the shape, not the weapon) at which 

point the reasoner can identify the similarity by querying 

memory with arrow.

 The mapping stage outputs alignments between elements 

of the source and target initial problem states. As in retrieval, 

visuospatial instantiation of the target and the source can 

help align the symbols. For example, visuospatial instantia-

tion of the tumor and fortress as curves abstracts them to the 

same symbol, adding constraints that can be used to facilitate 

mapping. 

 In the transfer task, the transformations that connect the 

different knowledge states in the source are transferred to the 

target. The elements in the target problem that a transferred 

transformation affect are analogous to the elements that get 

affected in the source. Sometimes, however, there can be 

problems in transfer due to ontological mismatches. For ex-

ample, as discussed above, trying to transfer the break-up

transformation to the ray in the fortress/tumor problem will 

not work because the ray does not have constituent parts. 

 Visuospatial representations can be used as an intermedi-

ate level of abstraction in the transfer task as well. Let us 

suppose that in solving the fortress/tumor problem, both the 

army and the ray get visuospatially instantiated as a line. The 

break-up transformation, too, gets visuospatially instantiated 

as the decompose visual transformation. In the generated 
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visuospatial representation, the transfer of the transformation 

occurs without hindrance because decompose can apply 

equally well to both lines. This is exactly what happens in 

Galatea. 

 In Fig. (5), the top two ovals represent the first two 

knowledge states of a non-visuospatial representation of the 

source case in the fortress/tumor problem, connected with a 

break-up transformation. Also input is the initial state of the 

target problem and the analogical mapping between them. 

The grayed area is generated by the reasoner. 

 Decompose is a visual transformation that takes a visu-

ospatial object and turns it into smaller objects of the same 

type. In this case, it turns the thick lines in the visuospatial 

target into thin lines. Unlike break-up, the decompose func-

tion transfers from the source to the target, because both 

break-up and distribute share the same visuospatial abstrac-

tion, decompose. 

 Now that the problem is solved in the visuospatial repre-

sentation, it is re-specified back into the non-visuospatial 

representation. This can be done because decompose trans-

lates not only into break-up but also into distribute, which 

takes some intensity value and breaks it up into some num-

ber of elements with a weaker intensity. 

Discussion 

 Our theory of visuospatial re-representation in analogical 

problem solving evolves from our earlier work, and shares 

two central themes with it: it provides a content account of 

analogy, and it uses abstractions for analogical transfer. The 

following discussion of related research is organized along 

these two themes. 

 Analogical problem solving pertains to transfer of com-

plex relations from a source case to a target problem. Theo-

ries of analogical problem solving can be categorized as 

structure-based and content-based. Structure-Mapping En-

gine (SME) [22] and LISA [25] are two well-known struc-

ture-based theories of analogy. SME, for example, provides 

a uniform structure-based mechanism for analogical reason-

ing that is intended to work independently of any specific 

content account. 

Fig. (4). The computational process for multi-modal analogies. First, the reasoner evaluates the last knowledge state generated in the tar-

get problem. If the goal conditions are satisfied, then the reasoner stores the target knowledge state sequence in memory and exits. Else it 

may elect to use analogy to address the problem. Retrieval can occur non-visually, but failing that, the reasoner may generate s-images for 

the target problem, and try to retrieve based on those (processes in the top shaded box are visual processes). When a source case is retrieved, 

the reasoner attempts to map the elements. Again, the visual nature of the generated s-images can be used to facilitate mapping. With a map-

ping in place, the reasoner may attempt to transfer the solution from the source to the target by transferring operators and applying them. If 

the transfer processes fail due to an ontological mismatch, the reasoner may use generated s-images and visual transformations to resolve it. 

The procedure transformations are re-specified back into non-visual operators. The final generated solution is evaluated in the non-visual 
representation. 
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 Analogical transfer in content-based theories, in contrast, 

is driven by content accounts of the domain. Winston [26] 

provides an early example of a content-based theory of 

analogical transfer. Our work too focuses on developing con-

tent-based theories of analogical problem solving. The 

IDeAL system [3, 4], for example, used structure-behavior-

function (SBF) models for supporting analogical remindings, 

mappings, and transfer in the context of conceptual design. 

The ToRQUE system [13, 14] used SBF models for analogi-

cal remindings, transfer, and evaluation in the context of 

scientific problem solving. Qian and Gero [27] use similar 

Function-Behavior-Structure models to support analogy-

based design. Galatea too is a content-based theory of 

analogical transfer. However, instead of functional and 

causal knowledge captured in SBF models, Galatea’s uses 

visuospatial knowledge for the transfer task. 

 ANALOGY [28] and Letter Spirit [29] are two well-

known models of visuospatial analogies. It solves multiple 

choice visuospatial analogy problems of the kind found on 

intelligence tests (e.g. A:B::C:?). It does this by describing 

how to turn A into B, and then testing which choice is a best 

fit for how C might be changed in a similar manner. Letter 

Spirit takes a stylized seed letter as input and outputs an en-

tire font that has the same style. It does this by determining 

what letter is presented, determining how the components 

are drawn, and then drawing the same components of other 

letters the same way. The mappings between letters are al-

ready in the system: the vertical bar part of the letter d maps 

to the vertical bar in the letter b, for example. The seed letter 

may be interpreted as an f with the cross-bar suppressed. 

When the system makes a lower-case t, by analogy, it sup-

presses the crossbar. 

 Neither ANALOGY nor Letter Spirit transfers problem-

solving procedures (ordered series of operations) as Galatea 

does. In contrast, one can see how Galatea might be applied 

to the font domain. The stylistic guidelines in Letter Spirit, 

such as “crossbar suppressed” are like the visual transforma-

tions in our theory: it would be a transformation of removing 

an element from the image, where that element was the 

crossbar and the image was a prototype letter f. Then the 

transformation could be applied to the other letters one by 

one. In this way our theory has more generality than Letter 

Spirit, which by design only works on alphabets. 

 The VAMP systems are analogical mappers [30]. 

VAMP.1 uses a hierarchically organized symbol/pixel repre-

sentation. It superimposes two images, and reports which 

components have overlapping pixels. VAMP.2 represented 

images as agents with local knowledge. Mapping is done 

using ACME/ARCS [31]. The radiation problem mapping 

was one of the examples to which VAMP.2 was applied. 

Croft and Thagard [32] created a computational model 

DIVA which does analogical mapping using ACME. What it 

maps are three-dimensional visuospatial situations using 

representations in hierarchically organized scene graphs. 

Elements of the graph can be associated with behaviors, so it 

can represent dynamic systems. This system is a mapping 

system, and though it deals with the fortress/tumor problem, 

it does not transfer the solution procedure. 

 Though not an implemented computer program, the im-

age-schema theory of Lakoff and Johnson [33, 34] says that 

humans use metaphors pertaining to their bodies to reason 

about external situations. Our theory is similar in that it uses 

perceptual abstraction to find similarity between ideas and to 

Fig. (5). Visual re-representation in the transfer stage of analogical problem solving. When the reasoner cannot directly transfer the 

break-up transformation from the source case to the target problem, it creates a visual abstraction of the knowledge states and transforma-

tions. The non-visual break-up transformation instantiates to the visual transformation decompose. Transfer of decompose from the visual 

source to the visual target is now possible. After the transfer, the reasoner specifies the transferred visual transformation back into the appro-
priate non-visual transformation, distribute. Galatea implements the processing in the bottom half of this figure. 
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reason about external ideas. Our ideas differ in that their 

image-schemas are multi-sensory and based primarily on 

bodily action, where our theory, though it does not exclude 

such representations, focuses on visuospatial abstractions. 

 The perceptual symbol system theory [35] holds that all 

mental representations are perceptual in nature, so that all 

reasoning operates on perceptual symbols. On this view, 

what we have called the non-visuospatial or amodal repre-

sentation is actually perceptual as well, and what we are call-

ing the visuospatial level of representation is a more abstract 

perceptual representation. 

 MAGI [17] uses the structure-mapping theory to find 

examples of symmetry and repetition in a single image. 

JUXTA [36] uses MAGI in its processing of a diagram of 

two parts, and a representation of the caption. It outputs a 

description of what aligns with what, along with important 

and distracting differences. It models how humans under-

stand repetition diagrams. Both systems are supported by the 

GeoRep [37] system, which generates visuospatial relations 

between elements. The visual primitives that describe a 

knowledge state in Galatea are similar to that of GeoRep. 

 Like Galatea, MAGI, JUXTA, and the VAMPs use visu-

ospatial knowledge. But unlike Galatea their focus is on the 

creation of the mapping rather than on transfer of a solution 

procedure. MAGI’s and our theory are compatible: a MAGI-

like system might be used to create the mappings that our 

theory uses to transfer knowledge. The theory behind the 

VAMPs is incompatible because they use bitmaps, a differ-

ent level of representation for the images. 

 The second central and consistent theme in our work is 

the use of abstractions to facilitate analogical transfer. In the 

IDeAL system, for example, analogical transfer was enabled 

by behavior-function abstractions of SBF models. IDeAL 

provided an account of the behavior-function abstractions in 

the form of generic teleological mechanisms and generic 

physical principles. The ToRQUE system similarly used 

generic structural transformations-abstractions to facilitate 

analogical reasoning. 

 Other models of analogical problem solving resolve the 

ontology mismatch problem in different ways. Some case-

based reasoning theories appear to assume that memory is so 

massively populated and well organized and the retrieved 

case so similar to the target problem that ontological mis-

matches simply will not occur-if the source is so similar to 

the target that it need only be “tweaked” to get the desired 

solution, then there is simply no ontological mismatch. In 

contrast, Yarlett and Ramscar [38] specifically address the 

ontological mismatch problem in analogical reasoning. Their 

system takes two different symbols and evaluates their simi-

larity using Latent Semantic Analysis [39], a database of 

correlations between all words representing their co-

occurrence in text. The analogical mapper (in this case, 

SME) treats as identical any pair of symbols which correlate 

above a specified threshold. In our theory, objects and opera-

tions are treated as identical if they are visuospatially repre-

sented with the same visuospatial symbol. 

 Although the structure-mapping theory does not specifi-

cally address the ontological mismatch problem, as a struc-

ture-based theory it is applicable to both non-visuospatial 

and visuospatial representations. According to this theory, 

two ideas are considered similar if the idea’s properties and 

the relations between it and surrounding elements are the 

same as the relations between another idea and its surround-

ing elements. For example, an electron is similar to a planet 

because both revolve around some body (a nucleus or star). 

 Galatea represents visuospatial abstractions symbolically. 

The system’s design opts for higher-level visuospatial ab-

stractions whenever possible. In future versions of Galatea, 

we plan to use multiple levels of visuospatial abstractions. 

We will also expand Galatea to computationally demonstrate 

how ontological mismatches in non-visuospatial representa-

tions can be aided by visuospatial instantiation and visuospa-

tial reasoning according to the theory described in this paper. 

CONCLUSION 

 This paper provides additional evidence that visuospatial 

analogical problem solving is computationally feasible on a 

machine. Purely visuospatial knowledge is sufficient for 

analogical problem solving for some cases. Of course, addi-

tional knowledge of goals, plans, causality and other non-

visuospatial concepts would facilitate problem solving. This 

work also indicates that several representational features 

facilitate extraction and transfer of diagrammatic structure 

from source to target problems, including explicit representa-

tion of knowledge states in the form of symbolic images, a 

taxonomy of primitive visual transformations, and use of 

spatial aggregations. 

 According to Mednick [40] reasoners are creative be-

cause they can make semantic connections between dissimi-

lar things. Solving the fortress/tumor problem by transferring 

the solution from the fortress problem to the tumor problem 

requires creativity of this kind. Our theory shows how this 

might occur: by changing representations to visuospatial and 

back again, natural and artificial reasoners can make connec-

tions among distant objects, strategies, and ideas. 
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