
46 The Open Artificial Intelligence Journal, 2008, 2, 46-61

 1874-0618/08 2008 Bentham Open

Open Access

Iterative K-Line Meshing via Non-Linear Least Squares Interpolation of
Affectively Decorated Media Repositories

Anestis A. Toptsis
*
 and Alexander Dubitski

Department of Computer Science and Engineering, York University, Toronto, Ontario, M3J 1P3, Canada

Abstract: We present an algorithm that organizes a song repository upon recording a user’s memory experiences from

previous music listening activities. Our method forms an affectively annotated network of songs. The network’s connec-

tions correspond to a person’s recorded memory experiences related to song preferences when the person is at different

states of affective bias. Upon formation of this network, an intelligent affect-sensitive network navigation algorithm syn-

thesizes playlists that conform to desired affective states. The method for the network formation is highly individualized,

in the sense that it takes in account an individual’s music preferences which are typically subjective and may differ from

user to user. Also, the method is content independent, in the sense that it does not rely or favor any particular music genre.

In fact, the method is applicable to any type of media, not only songs. We implement our method and present evaluation

results from the introspection of our algorithms’ execution and from feedback recorded during the evaluation by human

test subjects. The evaluation results clearly indicate that the proposed method significantly outperforms the most typical

paradigm of random song selection.

1. INTRODUCTION AND BACKGROUND

 Organization and retrieval mechanisms for media reposi-

tories is a topic of vigorous research activity during the past

several years The issues addressed in such research are con-

tent-based organization and retrieval mechanisms and effi-

ciency in data access (e.g., [1, 2]). All the reported mecha-

nisms are useful in the sense that they facilitate organization

and retrieval based on characteristics of the content of the

media, such as the semantic or grammatical relevance of text

from a publication, and the relevance of a theme from an

image or a video clip. Solutions that facilitate efficient data

access are also useful, especially when dealing with large

and public media collections.

1.1. Motivation and Related Work

 In this paper we cover a different facet of media access.

Specifically, we address the issue of media organization and

retrieval based on the user’s emotional state. The difference

between our approach and methods such as the ones in [1,

2], mentioned above is that in our approach the data is orga-

nized and retrieved according to its conformity to the user’s

mood rather than to any structural characteristics of its con-

tent. Our method is applicable to any type of media, such as

video clips, images, text, and music. For the shake of being

specific and evaluating our method, we assume that the type

of media is music.

 We start with a collection of songs that are available for

listening. The storage medium of the collection is not impor-

tant although, as it is nowadays typical, the songs may be

assumed to being stored in a mobile devise such as the iPod

*Address correspondence to this author at the Department of Computer

Science and Engineering, York University, Toronto, Ontario, M3J 1P3,

Canada; Tel: (416) 736-2100, Ext. 66675;

E-mail: anestis.toptsis@gmail.com, anestis@cse.yorku.ca

or many modern mobile phones. In such an environment it is

typical that the user has the option to choose to listen to ran-

dom selections of songs or to select serial playing, or to se-

lect individual songs, one by one as she goes along in the

listening process. The random and the serial playing modes

are usually the most frequently used since all listening de-

vices provide default settings for both of these modes. How-

ever, for devices that contain at least several hundred songs

(or more, as it is typical nowadays) a random or serial selec-

tion of songs is bound to contain songs that are not as desir-

able to listen to, based on the listener’s current mood. As

reported in [3] and also confirmed by our evaluation in sec-

tion 4, playlists of randomly selected songs have an ap-

proximate user satisfaction level of only 20%. The third op-

tion-explicit song selection, one song at a time, by the lis-

tener, would probably produce an optimal listening se-

quence. However this option is rather impractical since it

requires constant attention and interaction by the user-

searching though the collection and selecting the next song

to be played. In most real-life cases, a listener is unwilling to

continuously interact with the listening devise in searching

and selecting “the best next song” and he just lets the devise

play whatever comes next. Besides, in many occasions, an

interaction between the user and her listening devise is really

not possible, such as in cases when the listener is driving, or

performing some task that requires her fairly undivided at-

tention.

 There are several successful attempts (e.g., [3, 4]) to

automate the creation of playlists. All these approaches are

based on correlating a person’s physical activity and music

preferences. They all require that a person is actively en-

gaged in some physical activity (such as jogging) during the

creation and dispensing of the playlist. The methods are not

applicable for cases that the person is at rest, or for types of

Iterative K-Line Meshing via Non-Linear Least Squares Interpolation The Open Artificial Intelligence Journal, 2008, Volume 2 47

media other than songs. Also, they do not take in account the

emotional state of the person.

 In this paper we present a method for organizing a collec-

tion of songs in such a way that after the collection is orga-

nized, the system is able to automatically select, upon re-

quest, a series of songs to play, based and conforming to the

current emotional state of the listener. Our method forms an

affectively annotated network of songs. The network’s con-

nections form playlists that correspond to a person’s re-

corded memory experiences with respect to song preferences

when the person is at different states of affective bias. The

formation of the network of songs is highly individualized,

in the sense that it takes in account the individual user’s mu-

sic preferences which are typically subjective and may differ

from user to user. Also, the method for organizing the song

collection is content independent, in the sense that it does not

rely or favor any particular music genre; it can be invariably

applied for any kind of music and can be used by any user,

subject only to the user’s preferences and subjective evalua-

tions of what constitutes “good” or appropriate music. Upon

formation of this network, an intelligent affect-sensitive

navigation algorithm browses the network and creates play-

lists that conform to desired affective states.

 The remaining of this section provides related back-

ground knowledge and the main tools and definitions that we

use in our method. Section 2 presents our method of

organizing and using a song collection. Section 3 is the

evaluation of our method. Section 4 summarizes our findings

and discusses future research directions.

1.2. Background

 We employ tools found in three related disciplines-

Artificial Intelligence (AI), Cognitive Science, and Psychol-

ogy. From Psychology we use the emotion theory of Ekman

[5], which describes universally occurring emotional states

of human beings. From AI and Cognitive Science we borrow

from the memory theory of Minsky [6, 7] and specifically a

structure called K-lines [8]. In recent years, work which

combines emotion involving issues and these disciplines has

evolved into a new discipline, under the name Affective

Computing [9, 10].

The Cognitive Science Aspect

 Picard [9, 11] discusses the significance of computers to

understand human emotions mainly for the purpose of im-

proving computer-human interactions. One of the possibili-

ties that is pointed in [11] and [9] is to enable a machine to

select and play music according to someone’s emotions.

 The opinions of what is the origin of emotions and how

they mesh with intelligence vary widely (examples of rather

vastly differing views are [12, 13]), however it is rather

commonly agreed that emotions play an important role in

intelligence (e.g., [14]). As it was pointed out more than 25

years ago by one of the greatest AI visionaries,

“The old distinctions among emotion, reason,

and aesthetics are like the earth, air, and fire of

an ancient alchemy. We will need much better

concepts than these for a working psychic

chemistry.” [15], page 1.

 Recently, it is increasingly recognized that emotions are

an integral part of many (if not all) intelligence bearing proc-

esses such as human-human interaction, decision making,

complex task completion, learning, etc. ([9, 10, 16, 17]). As

such, contrary to the traditionally held belief (or expressed

desire) that intellectual and emotional processes operate in

separate and incompatible cognitive realms, it is becoming

increasingly accepted that mixing purely intellectual with

emotional processing may have benefits which could not be

realized by intellectual processing alone. Notable examples

that contribute to this belief are Damasio’s patient [18, 19],

in which a human without emotion processing capability is

deemed unable to make even the simplest of decisions and

task completion, as well as the decision making and planning

scenario outlined in [9] in which it is shown how affective

(emotion bearing) heuristics can prune a vast search space

dramatically and thus make a decision making and planning

task reasonably tractable.

The State of Mind (SM)

 There are a number of studies that propose different defi-

nitions and classifications of emotions. Among them, Ekman

[5] is a widely accepted classification and it is used in sev-

eral affective computing projects of the highest caliber (e.g.,

Liu, et al. [20], Matsumoto, et al. [21]). Ekman [5], Minsky

[6], and Picard [9], all argue that this classification consists

of basic emotions, meaning emotions that are encountered in

all humans, regardless of cultural background. In this pro-

ject, we use the same classification. However, we design our

methodology and algorithm in such a way that it is easily

amenable to any newer or better classification. The six basic

Ekman’s [5] emotions are: (1) sadness, (2) happiness, (3)

anger, (4) fear, (5) disgust, (6) surprise. Using this classifica-

tion, we represent a person’s emotional state, (or, state of

mind (SM)), as a tuple of 6 attributes

SM = < Sadness, Happiness, Anger, Fear, Disgust, Surprise>.

 Note, although some of the above emotions seem contra-

dictory, it is not necessarily so. For example, according to

[6], “happiness” is not opposite to “sadness”. In order to rep-

resent different SMs we allow each of the 6 attributes to

fluctuate within a range of values. In this project we set this

range from 0 to 5. For each emotion attribute, 0 represents

the lowest possible intensity of that emotion and 5 represents

the highest possible intensity. For example, in SM = < 3, 3,

5, 2, 3, 2 > the left-most number 3 means that the left-most

(1
st
) emotion (sadness) has intensity 3.

 Note, with our chosen numbers (6 emotion attributes and

6 integer values per emotion) we allow for 6
6
 = 46,656 pos-

sible SMs, assuming that we only allow integer values for

each emotion attribute. (In our implementation we also allow

for non-integer numbers, so the range [0...5] for emotion

values effectively allows for more than 6 values.) According

to Minsky’s theory of memory [6] and [7], the human brain

is a collection of a large number of mental agents and each

of those agents can be either active or inactive at any particu-

lar time point. The geography and arrangement of agent acti-

48 The Open Artificial Intelligence Journal, 2008, Volume 2 Toptsis and Dubitski

vation at any given point then represents the SM of that per-

son at that time point. In this sense, our model of SM, with

46,656 possible mental states, resembles Minsky’s model of

SM. Of course, Minsky’s model also deals with the mecha-

nisms that may be used to trigger activation and deactivation

of certain mental agents. To the best of our knowledge, there

is no reported work that gives a full account of the workings

of those mechanisms. There are, however, partial treatments

which investigate certain mind activities, based on Minsky’s

theory. Notable examples of such works are [22-24]. This

project does not intend to elaborate or investigate such

mechanisms. Similar to Minsky, we have Sloman’s mind

architecture, e.g. [25, 26]. Although the two architectures

seem different on paper, both Minsky and Sloman seemingly

agree that their approaches share major common characteris-

tics and differ only in the design representation [27]. We

bypass the difficulty of what mechanisms produce what SMs

by using Ekman’s emotion list (of the 6 basic emotions) and

then assuming that any user of our system would be able to

express her SM by associating values to each of those emo-

tion attributes, to the best of her understanding. We also

note, however, that relying on the user to express her emo-

tional state is not a perfect scenario either. Reportedly [16,

17], the average human does not possess enough self-

knowledge to be able to clearly express at any given time

what her emotional state is.

The Data Structure

 Once we decide how to represent a person’s state of

mind, we need some structure and mechanism to store and

use this SM. For this, we choose a structure called K-lines.

The K-lines structure was introduced by Minsky in [8] and it

is extensively used as one of the tools that Minsky employs

to describe a mind/brain architecture in [6] and [7]. The basic

idea is that a K-line is a structure that allows recording and

storage of memory experiences that are formed during the

process of learning to perform a task. Once a K-line is

formed in our brain, future requests for performing the same

or a similar task cause our brain to activate an appropriate K-

line (provided that such a K-line exists) which consequently

allows the person to perform the newly requested task by

using the memory experiences recorded in that K-line and

thus not having to go through a time consuming (or imprac-

tical) learning process again. Quoting from [8],

When you “get an idea”, or “solve a problem”,

or have a “memorable experience”, you create

what we shall call a K-line. This K-line gets

connected to those “mental agencies” that were

actively involved in the memorable mental

event. When that K-line is later “activated”, it

reactivates some of those mental agencies, cre-

ating a “partial mental state resembling the

original”.

 In its simplest form, a K-line is a chain of K-nodes. Each

of the K-nodes represents a memory experience (or a process

that has to be followed) that is learned and recorded in the K-

node during a person’s process of learning to perform a task.

As we continuously accumulate memory experiences and

knowledge during our lifetime, a vast system of K-lines is

formed in our brain. Since many of the experiences of a per-

son are related (or, at least they are not completely different

from each other), some of the formed K-lines may contain

K-nodes that are identical, within certain degree of analogy

or abstraction.

 Our K-lines are chains of K-nodes, each of which has the

structure shown in Fig. (1).

Fig. (1). A K-node.

 This structure consists of one main frame, K-frame,

which contains another frame, the SD-frame. A frame is an

AI related structure introduced for knowledge representation,

also by Minsky [28]. As described in [28], a frame can con-

tain several placeholders (such as the

SM

user
,

SM

interp
, and

SD-frame shown in Fig. (1)) and some of those placeholders

can be frames themselves (such as the SD-frame placeholder

inside the K-frame). In the K-frame, the placeholders

SM

user

and

SM

interp
 are SMs expressed as tuples of 6 attributes, ac-

cording to the earlier discussion. From these two SMs, the

SM

user
 is input by the user at some point during our method

(described in the next section). The

SM

interp
 component is

calculated by our algorithm. The Song component of the SD-

frame is a pointer to a particular song SG from a song collec-

tion. The assignment of this pointer is done by our algorithm,

as described in the next section. The Diapason component of

the SD-frame is a special form of SM. Specifically, a diapa-

son has the form

D = v

1a
,v

1b
, v

2a
,v

2b
,..., v

6a
,v

6b

where

v
ja

,v
jb is an interval in which the values

v

ja and

v

jb represent acceptable minimum and maximum intensities

for the j-th emotion (j=1, …, 6). The number of intervals in

userSM

interpSM

SD-Frame

Song

Diapason

SD-frame

K-frame

SG

SM2

SM1

D

Iterative K-Line Meshing via Non-Linear Least Squares Interpolation The Open Artificial Intelligence Journal, 2008, Volume 2 49

D is 6 since each interval corresponds to one emotion and we

use 6 emotions throughout this paper. A song SG with

associated (i.e., in the same SD-frame) diapason D is

considerd appropriate to be experienced under any SM in

which the j-th emotion attribute value falls within the

interval

v
ja

,v
jb . The value of diapason is calculated by

our algorithm as described in the next section.

2. PROPOSED METHOD

 Our purpose is to form K-lines which consist of K-nodes

that have the structure described in the previous section and

such that all the K-nodes of each K-line contain songs which

are appropriate to be experienced (played or listened to)

upon request, when the user is under a specific SM. Our

method consists of three parts.

 Part A: Data Collection. During this part, a user’s lis-

tening experiences are recorded into K-nodes and the K-

nodes form K-lines. The outcome of part A is a collection of

K-lines, as shown in Fig. (2). Each of the five K-lines shown

in Fig. (2) contains several K-nodes. Each K-line has a dif-

ference color and boldness for ease of identification. The K-

nodes are the blue-shaded circles. Each K-node has the struc-

ture described in the previous section and shown in Fig. (1).

Fig. (2). Five K-lines.

 Part B: Formation of K-Line Mesh. This is the heart of

our method. During this phase, we process the K-line collec-

tion formed in Part A and we calculate and adjust certain

parts of the K-nodes. This phase results to the formation of a

K-line mesh, similar to the one shown in Fig. (3).

 Fig. (3) shows a K-line mesh formed by the five K-lines

of Fig. (2).

 Part C: K-Line Mesh Navigation. Our algorithm navi-

gates the K-line mesh and assembles a playlist consisting of

songs deemed to be a best match (most appropriate to be

listened to) with the current SM of the user. This phase is

essentially the way that a typical user is using the system and

is meant to be performed multiple times, every time that a

user wants to listen to songs that comply with her SM at that

time. Fig. (4) shows a playlist that the navigation algorithm

extracts from the K-line mesh of Fig. (3).

Fig. (3). A K-line mesh.

Fig. (4). K-line mesh navigation result.

 Next, we describe Part A, Part B, and Part C.

2.1. Part A: Data Collection and Initial Formation of K-
Lines

 We start with a repository of songs available for listen-

ing. The purpose of this phase is to form a K-line collection,

such as the one shown in Fig. (2). Each K-line of Fig. (2)

contains several K-nodes. Algorithm A describes how such a

collection of K-lines is formed.

Algorithm A

1. Periodicity = P;
2. next_Kline_ID = 1;
3. repeat {

a. form_Kline(next_Kline_ID);
b. next_Kline_ID++;

4. }until (system or user quits);

(method)
Form_Kline(k) {
1. count = 0;

KL1

KL2

KL3

KL4

KL5

KL1

KL2

KL3

KL4

KL5

N1

N2

KL3 N1

N2

50 The Open Artificial Intelligence Journal, 2008, Volume 2 Toptsis and Dubitski

2. repeat {
3. user selects a song S;
4. if (isKlineIntersection(k, S)){

a. user enters

SM

user
;

b. count = 0;
5. }
6. elseif (count % P == 0) {

a. user enters

SM

user
;

b. count = 0;
7. }

8. else { userSM = null; }

9. form_Knode(userSM , null, S, null);

10. count++;
11. } until (system or user quits) ;
12. } // end Form_Kline(k)
(method)

Form_Knode(

SM

user
,

SM

interp
, Song, Diapason)

o Input: the data fields of a K-node per the de-

scription of Section 1.
o Action: forms a K-node and initializes its fields

using the input. Appends the K-node to the K-line

that is in progress.

o Intelligence: all songs selected during the

formation of the same K-line are different.
(method)
isKlineIntersection (k, S)

o Input: a K-line ID k and a song S.

o Returns: True, if song S which is about to be part

of a K-node of K-line k was selected earlier during

the formation of another K-line. False, otherwise.

 In the above algorithm, the user selects songs for listen-

ing (line 3 in method Form_Kline) and the system prompts

the user for her SM, periodically (lines 4.a. and 6.a. of

method Form_Kline) and creates a K-node for each chosen

song (line 9 in method Form_Kline). The criteria used to

prompt the user for her SM are (a) whether or not the cur-

rently selected song was also selected earlier during the for-

mation of a previous K-line (line 4 in method Form_Kline)

and (b) if a predetermined periodicity frequency P is reached

at that K-node (line 6 in method Form_Kline) All K-nodes

created by the above algorithm have their

SM

interp
 and Dia-

pason fields null (line 9 in method Form_Kline). Some, of

the K-nodes have their

SM

user
 field initialized (lines 4.a. and

6.a. of method Form_Kline) but

SM

user
 is null for the most

of the K-nodes (line 8 in method Form_Kline). Also, all K-

nodes point to songs that have been selected by the user (line

3 in method Form_Kline). The above algorithm is inspired

by a data collection process performed for media organiza-

tion, described in [29].

 At the end of Algorithm A, a collection of K-lines as

shown in Fig. (2) is formed. Some of these K-lines “inter-

sect”, i.e. they contain K-nodes which point to the same

song.

Why the Repeated Requests for SM?

 One aspect of Algorithm A that may warrant some ex-

planation is why do we repeatedly ask for the current user’s

SM-either periodically every P K-nodes, or every time that a

repeat-song selection occurs (i.e., a K-line intersection oc-

curs). In principle, the formation of a K-line could be done

simply by asking for the SM of the listener only at the for-

mation of the 1
st
 K-node of each K-line and then form all the

K-nodes of that K-line by just associating with them the se-

lected songs, without ever requesting the user to enter his

current SM for the duration of the formation of the same K-

line. Since our assumption (and intention) is that each K-line

captures one listening experience based on the user’s mood

which is captured at the 1
st
 K-node of that K-line, it could be

both simple and convenient to consider all songs that are

selected during the same K-line formation as being appropri-

ate for the SM entered at the 1
st
 K-node of this K-line. Note,

such a strategy would also make the formation of K-lines

more efficient since there would be no need to periodically

interrupt the user (lines 4.a. and 6.a. in method Form_Kline)

with requests of SM input during the formation of the same

K-line. Unfortunately, such an approach is not very realistic.

The reason is that during a song-listening session the SM of

the listener, changes multiple times. These changes, as re-

ported in [5], are due to the act of listening to the selected

song. Therefore, by the time that the last K-node of that K-

line is formed, the SM of the listener would most likely be

significantly different from the SM that was reported at the

1
st
 K-node of that K-line. It is therefore unrealistic to believe

that all the K-nodes of that K-line contain songs that are

compatible to the mood recorded in the head K-node of that

K-line. In addition, as mentioned in [9], a mood is a series of

successive emotional states, rather than a single emotional

state. In our case, each emotional state is represented by a

SM. Hence, if we follow an approach that requests the user’s

SM only at the 1
st
 K-node and for none of the remaining

nodes of each K-line, the memory experiences that would

end up being captured by the formed K-lines will be rather

meaningless, even though the formation of the K-lines will

be very efficient. The ultimate remedy to this problem is to

request from the user to enter his current SM at every single

song selection-i.e., at the formation of each and every K-

node during a K-line formation. Unfortunately, this approach

has at least two significant drawbacks. First, it is very ineffi-

cient to issue and satisfy a request for an updated SM at

every single K-node. Since a typical K-line may consist of

50-100 (or more) K-nodes and our assumption is that a large

number of K-lines is formed, it is prohibitively time consum-

ing to request and record a new SM for every single K-node.

Second, the act itself of requesting an updated SM so often

will misdirect the attention of the user from the listening

process and also most likely irritate the listener; the attention

loss and the irritation itself will influence the user’s mood,

resulting to a SM that is contaminated by factors (the loss of

attention and the irritation impact) other than the listening

experience. Due to the above drawbacks (high cost and un-

desired side effects due to attention loss and to irritation) we

reject the option of requesting a SM during every K-node.

Iterative K-Line Meshing via Non-Linear Least Squares Interpolation The Open Artificial Intelligence Journal, 2008, Volume 2 51

Therefore, having rejected the two extreme options for fre-

quencies of SM requests (only once per K-line and once per

K-node) we choose the sole alternative of requesting the SM

only periodically, as specified by lines 4.a. and 6.a. of

method Form_Kline, in Algorithm A.

2.2. Part B: Formation of K-Line Mesh

 At the end of Part A, there are several K-nodes with a

SM entered by the user, but there are also many K-nodes

without their

SM

user
 = null. Also,

SM

interp
 = null and Diapa-

son = null for all K-nodes. The purpose of Part B is two-fold.

First, we calculate

SM

interp
 for every K-node in our K-lines.

Second, we calculate the Diapason field for all K-nodes. All

steps of Part B are performed without any user interference.

At the end of Part B, all K-nodes have all the their fields

initialized and the collection of K-lines resembles the one

shown in Fig. (3). Part B is an iterative process, as shown in

Algorithm B.

Algorithm B

repeat {

Step 1: Calculate

SM

interp
 for all K-nodes.

Step 2: Calculate Diapason for all K-nodes.
Step 3:: Update the interpolated values of step 1

}
until (no significant changes are observed in the Diapason

values);
Step 1: Calculate

SM

interp
 for all K-Nodes

 In this step, we calculate the

SM

interp
 for all K-nodes of

every K-line. Denote by

e
1 jx

,e
2 jx

,...,e
6 jx

 the desired

SM

interp
 of the x-th K-node (x=1, 2, …) of the j-th K-line

(j=1, 2, …). The sought values in

e
1 jx

,e
2 jx

,...,e
6 jx

 are cal-

culated as

e

mjx
= A + B M

mi
+ C M

mi

2
 (1)

where A, B, and C in expression (1) are values that satisfy

the following system of equations:

A (w)
+ B (w+1)

+ C (w+2)
= M

mi
iw

i=1

n

 (2)

where,

(k)
= ik

i=1

n

,

for w = 0, 1, 2.

 In the above system of equations,

M

mi
 is the value of the

m-th emotion attribute (

m 1,...,6{ }) of the

SM

user
 of the i-

th K-node (i starting from 1) that is populated with a

SM

user

within the j-th K-line. Note, the number of K-nodes with

SM

user
 is less than the total number of K-nodes in the j-th K-

line. n is the number of K-nodes whose

SM

user
 is not null

within this K-line. Note, n is less than or equal (in most

cases, less) than the total number of K-nodes of this K-line,

since not all K-nodes have a user assigned SM at the end of

Part A. The system of equations shown in expression (2) is

produced by applying the Least Squares Method (LSM) on

each of the K-lines resulting from Part A. The LSM is a type

of regression analysis introduced by Gauss around 1794

[31]. Descriptions of the method can be found in various

textbooks, including [32-34]. We now give the details of

how this method is applied for the calculation of the values

for each

SM

interp
.

 Recall, during the initial formation of K-lines in Part A,

the user is prompted periodically (but not always) to enter

his SM as each K-line is created. As a result, after the K-

lines are formed at the end of Part B, many of the K-nodes

do not have any SM associated with them. Fig. (5) shows an

example K-line at the end of Part A. the numbers 1, 2, 3, …,

7 denote the K-node index (and ID) within the K-line. The

shown SMs are all

SM

user
, entered by the user during Part

A. Observe that only K-nodes 1, 5, 6, and 7 have their

SM

user
 initialized; and none of the nodes has

SM

interp
 (i.e.,

all

SM

interp
 are null).

Fig. (5). A K-line.

 Fig. (6) shows a diagram derived from Fig. (5). This

diagram is used to explain the interpolation process, i.e., the

K-Line interpolation done with LSM using the quadratic

equation shown in expression (1).

 The horizontal axis of Fig. (6) contains integer values

which indicate the position (index) of each K-node within

this K-line. The vertical axis of Fig. (6) contains values

representing the intensity of an associated emotion value in

the

SM

user
of the K-node matched in the horizontal axis. Fig.

(6) is derived from the K-line shown in Fig. (5) and

corresponds to the 1
st
 emotion of each of the SMs that appear

in the K-nodes of Fig. (5). For example, the left-most plotted

point in Fig. (6) is the point [x=1, y=5] because the 1
st
 K-

node in Fig. (5) (i.e., the K-node with index x=1 in Fig. (6))

42 31
<5,3,5,2,3,2>

5
<2,3,2,2,2,2>

6
<1,3,3,2,2,1>

7
<3,2,4,2,2,2>

52 The Open Artificial Intelligence Journal, 2008, Volume 2 Toptsis and Dubitski

has a SM in which the value of the 1
st
 emotion is 5 (i.e., y =

5). Using the notation introduced in (2), the left-most plotted

point in Fig. (6) is the point [1,

M

11
]; the 2

nd
 plotted point is

the point [6,

M

12
] because the 2

nd
 K-node with its userSM

non-null is K-node 5; and so on.

Fig. (6). Plotted points of the 1
st
 emotion attribute of the K-line of

Fig. (5) and LSM-estimated curve.

 Note, not all K-nodes in Fig. (5) have SMs associated

with them (specifically, K-nodes 2, 3 and 4 do not have

SMs). The purpose of this step (step 1) is to calculate

interpolated values for all K-nodes 1, …, 7. This is done by

calculating a “best-fit” curve as shown by the dashed line in

Fig. (6), that has an overall minimum distance from the

existing plotted points. Applying the LSM mentioned above.

The function that we use to calculate such a curve is

F x() = A + Bx + Cx2

 (3)

where A, B and C are unknown values that need to be

determined. Once the values A, B, C are found, (see below),

then each of the points [i, F(i)], for i=1, …, 6 represents an

estimate of the intensity of the emotion attribute under

consideration, of the i-th K-node. In particular, for i = 2, 3,

and 4, the points [i, F(i)] are estimates for the emotion

intensities for which the plotted points are missing in Fig.

(6). Note, Fig. (6) corresponds to the 1
st
 emotion of each of

the SMs contained in the K-nodes of Fig. (5). As part of this

step (step 1) we will have to construct, similar to Fig. (6),

five more figures, one for each of the other emotions of each

SM of Fig. (5), i.e., one figure for the 2
nd

 emotion, one figure

for the 3
rd

 emotion, etc; and for each such figure, we will

have to perform the LSM calculation so that we calculate the

“best fitting” curve and thus fill in any of the missing plotted

points. Once the best fitting curves are calculated for one K-

line, the process is repeated for each of the remaining K-

lines. That is, if there are 10 lines formed, then the

interpolation process will be performed 60 times and 60

curves will be calculated. A curve shown in expression (3)

has minimum distance from the plotted points of Fig. (6).

 We describe the process for one of the K-lines-the rest

being the same. Using the notation introduced in (2),

M

1i
 is

the value of the 1
st
 emotion of the i-th K-node whose

SM

user

is non-null. The curve of expression (3) has minimum

distance from the plotted ponts of Fig. (6) when the

expression

E = M
mi

F(i)
2

i=1

n

= M
mi

(A + Bi + Ci2)
2

i=1

n

is minimum. In other words, the sum of the squares of the

distances (with respect to the horizontal axis) between the

curve and the points

P

i
: x, M

mi() , is minimum (hence the

name Least Squares Method). Applying standard calculus, E

attains minimum values when its derivatives with respect to

A, B, C are zero, i.e.,

E

A
=

E

B
=

E

C
= 0 . (4)

 Equations (4) yield the system (2) of three linear

equations shown earlier. Solving this system with respect to

A, B, C, yields the unknowns A, B, C and thus we have the

expression for the curve of expression (3).

Step 2: Diapason Calculation

 At the end of step 1, every K-node in our K-lines has

associated with it either one SM (the

SM

interp
, calculated by

the interpolation process) or two SMs (the

SM

interp
 calculated

by the interpolation process and the

SM

user
 as originally

entered by the user). The purpose of this step is to create a

range of appropriate emotion values for each K-node,

instead of just having a single value indicating the

appropriateness of any song associated with each K-node

through its SM, or just having two separate SMs with

concrete values, both associated with a K-node. The

resulting range of such values is the Diapason of the

corresponding K-node. Since, in general, more than one K-

node can point to the same song, the Diapasons of all K-

nodes that point to the same song are made equal.

 Note, the meaning of a SM associated the a song SG is

that SG is appropriate for listening when a listener is at that

SM. specifically, in cases that a K-node has both its

SM

user

and

SM

interp
 intitialized at the end of step 1, the song pointed

to by that K-node is deemed appropriate to be listened to if

the listener is at SM=

SM

user
; regarding the SM=

SM

interp
, the

song is probably (but not for sure) appropriate to be listened

to if the listener is at SM=

SM

interp
, since the

SM

interp
 is an

estimated, rather than a user entered value. The presence of

two SMs inititialized in a K-node is an advantage, in the

sense that it gives two (instead of only one) alternative SMs

signaling the appropriateness of that song. At the same time,

it raises the following issue: what happens if the listener is at

a SM which is close, but not exactly equal to either

SM

user

or

SM

interp
? The same issue becomes more profound for those

K-nodes that have only one SM, the

SM

interp
, initialized at the

end of step 1. Specifically, if the listener’s SM happens to be

�

�

�

�

�

�

� � � � � � � �

�
�

�
	

�
�

�

�

	�
�

�

	�

�������
����

Iterative K-Line Meshing via Non-Linear Least Squares Interpolation The Open Artificial Intelligence Journal, 2008, Volume 2 53

close, but not exactly equal to that one SM, is the

corresponding song considered appropriate to be listened to

or should it be outright rejected? The purpose of this step

(step 2) is to address the above issues. Specifically, we create

the Diapason for each song in our K-lines collection. The

Diapason is a special form of SM as shown at the end of

section 1. Even though the Diapason is one of the fields of

every K-node in the K-line collection, it is considered to be

associated with the song component of that K-node. That is,

all Diapasons of all K-nodes that point to the song are equal

by the end of step 2 (and Part B). Due to this characteristic of

the Diapason, if a song is selected, based on its Diapason,

later on by our retrieval mechanism, there will be no

controversy regarding which K-node among the ones that

point to that song contains the most appropriate Diapason for

the selected song. For every song SG in the K-line

collection, denote

T (SG) = KN

1
, KN

2
,..., KN

j{ }

the set of all K-nodes pointing to SG. The size, j, of the set

T(SG) is the number of K-lines that interesect at any of those

K-nodes. Note, j=1 for those songs that are pointed to by K-

nodes whose K-lines do not intersect with other K-lines.

Denote by

a

xi
 the value of the i-th emotion attribute (recall,

the 1
st
 emotion attribute is “sadness”) of the

SM

user
 of K-

node

KN

x
, and by

b

xi
 the value of the i-th emotion attribute

of the

SM

interp
 of K-node

KN

x
, for a given set T(SG). For

each song SG in the K-line collection, define

•

a = min

j
a

ji{ } , the min
xia , across all K-nodes

KN

x
,

x=1, …, j, of the set T(SG) for song SG.

•

b = max

j
a

ji{ } , the max

a

xi
, across all K-nodes xKN ,

x=1, …, j, of the set T(SG) for song SG.

•

x = min

j
b

ji{ } , the min

b

xi
 across all K-nodes xKN ,

x=1, …, j, of the set T(SG) for song SG.

•

y = max

j
b

ji{ } , the max
xib across all K-nodes

KN

x
,

x=1, …, j, of the set T(SG) for song SG.

 Define

W (SG, i) = min a, x{ } ,max b, y{ } .

 W(SG,i) is an interval of values that represent intensities

of the i-th emotion attribute for a given song SG. The left

boundary of this interval is the minimum intensity of the i-th

emotion attribute ever reported by the user or calculated by

the interpolation process during PartB.step1 for song SG The

right boundary of W(SG,i) is the maximum such value.

Special case: At the end of PartB.step1, not all K-nodes have

their

SM

user
 initialized. Specifically, this happens for any K-

node

KN

special
 that points to a song SG such that T(SG) =

{

KN

special
} and

KN

special
 is not at the periodicity boundary P

of Algorithm A. In such cases, the size of T(SG) = 1, i.e.,

KN

special
 is not at the intersection of any K-lines. Conse-

quently, the system does not prompt the user for her

SM

user

during the creation of

KN

special
 in Algorithm A. Therefore,

only the

SM

interp
 is initialized, during Algorithm B, for K-

node

KN

special
. Moreover,

KN

special
 has x=y since there is

only one

SM

interp
 for

KN

special
. This means that the interval

W(SG, i) for song SG pointed to by K-node

KN

special
, be-

comes W(SG, i) = [x, x], i.e., collapses to a single value, x.

 Note, W(SG,i) fits the description of the i-th interval

v

ia
,v

ib
 of the Diapason D as given at the end of Section 1.

In principle, step 2 can stop here and W(SG,i) can be defined

to be the Diapason sought in this step. However, upon closer

observation, such a final definition of D has some

undesirable features. The first undesirable feature is for cases

that x < a and y > b. In these cases W(SG,i) is equal to [x,

y], and [x, y] contains the entire [a, b]. Such a W(SG,i) is

unnecessarily too wide. Note, [a, b] represents a user

specified interval of emotion intensities deemed appropriate

for song SG. [x,y] represents a calculated (by the

interpolation process) such interval. We argue that the user’s

wishes (values a and b) have precedence over the estimated

values (x and y) derived from the interpolation process.

Therefore, in this case, W(SG,i) = [x,y] is considered to be

unnecessarily too wide and its size should be reduced so that

it becomes closer to the size of [a,b]. The second undesirable

feature is for cases when |a-b| is “very small” and a < x and b

> y. In these cases, W(SG,i) = [a,b] and W(SG,i) is too

narrow. In fact, if the K-line of K-node KN pointing to SG

happens not to have any intersecting K-lines at node KN, a =

b and |a-b| = 0. In such cases the interval [a,b] collapses to a

single value. Similar to this is the special case identified

above, for K-nodes such as node

KN

special
, for which x = y

and |x-y| = 0, and thus the interval [x, y] collapses to a single

value.

 To remedy the above concerns, we define a Default

Diapason. The Default Diapason, DD, is a number that

represents the size of a hypothetical ideal Diapason and a

guideline which all W(SG,i) intervals strive to achieve.

Specifically, if the size of W(SG,i) is bigger than DD, we

shrink W(SG,i) so that its resulting size is as close as

possible to DD; and if the size of W(SG,i) is smaller than

DD, we expand W(SG,i) so that its resulting size is equal to

DD. Note, when we shrink W(SG,i), it is not always

desirable to shrink it enough for its size to reach DD. This

happens in cases when the size of [a,b] is already bigger than

DD. In these cases, further shrinkage of W(SG,i) will result

to an interval which does not include a, or b, or either. We

consider the importance of values a and b to have precedence

over the importance of the DD value for the same reasons

(mentioned above) that we consider a and b more important

than x and y.

 Based on the above discussion and definitions, Algorithm

“Diapason calculation”, next, specifies the calculation of the

Diapason for all songs in the K-line collection.

54 The Open Artificial Intelligence Journal, 2008, Volume 2 Toptsis and Dubitski

Algorithm “Diapason Calculation”

Set DefaultDiapason DD;

// D is the calculated Diapason
for (each song SG) {

1. T = T_set(SG);
2. for (i = 1 to 6) {

a. W_i = W_interval(SG,i);
b. W_i_size = the size of W_i;
c. d = |DD-W_i_size|;
d. if (W_i == DD)

i. D_i = W_i;
e. if (W_i < DD)

i. D= expand(W_i, d);
f. if (W_i > DD)

i. D_i=shrink(W_i, d);
3. } //end for (i = 1 to 6)
4. D = <D_1, D_2, …, D_6 >;

} // end for (each song SG)
(Method)
T_set(SG)

o Input: a song SG

o Returns: the set T(SG) of K-nodes point-

ing to SG, as described above.

(method)
W_interval(SG, i)

o Input: a song SG and a

o Returns: the set T(SG) of K-nodes point-

ing to SG, as described above.

(Method)
expand(W, d)

o Input: W is an interval of type W(SG,i) as

described above; d is a number indicating

the amount of expansion.

o Returns: the expanded interval W.

o Action: this method increases the size of

W by expanding it from the left and from

the right by a total amount d. The size of

the resulting interval is equal to the size of

the default diapason DD. The expansion is

done equally from both sides of W. Note,

an expansion occasionally causes one of

the boundaries of W to become either less

than 0 (which is the minimum possible

value for any emotion attribute in our sys-

tem) or greater than 5 (the max possible

value for any emotion attribute in our sys-

tem), but not both. In such cases, the inter-

val maintains its acquired width, but it is

adjusted by sliding it to the left or to the

right, as necessary, so that none of its

boundaries is less than 0 or greater than 5.

It is easy to show that such sliding never

causes a violation of the opposite bound-

ary.

(Method)
shrink(W, d)

o Input: W is an interval of type W(SG,i) as

described above; d is a number indicating

the amount of shrinking.

o Returns: the shrunk interval W.

o Knowledge: this method is aware of the

quantities a, b, x, and y that are related to

interval W, as described above.

o Action: this method reduces the size of W

by shrinking it from the left and/or from

the right by an amount not to exceed d.

The size of the resulting interval is no less

than the size of the default diapason DD.

Also, a and b (the user-entered values for

emotion intensities) are never left outside

the resulting interval. The details of how

the shrinking of W is performed depend on

the relative order of a, b, x, and y, and are

as follows. Define z1 = |y-b| and z2 = |a-x|.

o If the ordering is “x y a b”,

then shrink W from the left

only, by an amount equal to

min {d, z2}.

o If the ordering is “a x b y”,

then shrink W from the right

only by an amount equal to

min {d, z1}.

o If the ordering is “x a y b”,

then shrink from the left only

by min {d, z2}.

o If the ordering is “x a b y”,

then shrink from the left and

from the right, for a total

amount of min {d, z1 + z2}.

o If the ordering is “a b x y”,

then shrink from the right

only, by min {d, z1}.

 At the end of Algorithm “Diapason Calculation” the

Diapason D of each song has the form

D = D

1
, D

2
,..., D

6

(line 4 of Algorithm “Diapason Calculation”), where each

D

i
 has the form

v

ia
,v

ib
, as described at the end of Section

1; and all K-nodes that point to the same song have the same

Diapason D.

Step 3: Update of the Interpolated Values of Step 1

 In step 3 we adjust, as necessary, the interpolated values

calculated in step 1. Assume

SM

interp
= a

1
, a

2
,..., a

6
 and

D = D

1
, D

2
,..., D

6
,

D

i
= v

ia
,v

ib

are the

SM

interp
 calculated by step 1 and the Diapason

calculated by step 2, for a K-node. In this step we set

a

i
= v

ia
, if

a

i
< v

ia
, and

a

i
= v

ib
, if

a

i
> v

ib
. In other words,

for every K-node, we adjust the interpolated values of that

K-node to fall inside the corresponding Diapason interval of

that K-node.

Iterative K-Line Meshing via Non-Linear Least Squares Interpolation The Open Artificial Intelligence Journal, 2008, Volume 2 55

 The motivation for doing step 3 is to improve on the es-

timations of the values done by the interpolation process of

step 1. Recall, the interpolation process calculates a best-fit

curve based on existing plotted points representing user en-

tered values (Fig. 6, Section 2). The quality of the

SM

interp

depends entirely on the quality of that curve, i.e., on the ex-

tend to which the calculated best-fit curve is an accurate pre-

diction of the true SM of the user at the corresponding K-

node. On the other hand, the Diapason associated with a

song SG, as calculated in step 2, captures the collective

knowledge of all K-nodes of the set T(SG). Therefore, if a

LSM-calculated value is outside the corresponding Diapason

range, this is evidence that the LSM-calculated value is pos-

sibly off and, thus, it is adjusted.

 Note, the update of the interpolated values in step 3

produces new interpolated values. These new values are the

values that are used for the next iteration, in step 1.

 Steps step 1, step 2 and step 3 are repeated until two

successive executions of the <step 1; step 2; step 3>

sequence produce negligible changes in the diapasons

throughout the collection. When this happens, the system is

considered to be trained and the K-line mesh to be fully

formed. Fig. (7) shows such a K-line mesh, containing 5 K-

lines KL1, …, KL5.

Fig. (7). A K-line mesh.

 The nodes shown to be at the intersection of K-lines in

Fig. (7) (e.g., nodes N1 and N2) are K-nodes that point to the

same song. For example, for node N1 which is at the

interesection of K-lines KL3, KL4, and KL5, it means that

there is a song SG which is selected by the user during the

formation of these 3 K-lines and (the subfrane SD-frame of)

node N1 points to that song SG. Note, during the K-line

formation process, each of those 3 K-lines maintains a

separate copy of node N1. The song component of the SD-

frame of each such copy of N1 in the 3 separate K-lines

points to the same song SG, but the Diapason component of

each SD-frame holds a different value. During the iterative

process of the repetitive execution of steps 1, 2, and 3 in Part

B, those Diapason values change and approach each other

during each iteration, until at some iteration they are close

enough (within a system defined threshold) to be considered

equal to a common Diapason value D. Once this

convergence occurs, the three copies of node N1 can be

represented by a single node N1 whose SD-frame points to

the common song SG and has a Diapason value D. Fig. (8)

shows how this perceived common SD-frame of node N1

looks like.

Fig. (8). K-line intersection.

 Note, Fig. (8) resembles the part of Fig. (7) that shows

node N1 at the intersection of K-lines KL3, KL4, and KL5.

2.3. Part C: K-line Mesh Navigation

 We now describe the process of mining songs from the

formed K-line mesh. The process is divided into 4 steps.

 Step 1: The user enters a SM,

SM

input
, which captures

her present mood and according to which the system should

retrieve and play songs. For example,

SM

input
= <3, 1, 4, 3, 5,

2>.

 Step 2: The system chooses one of the K-lines that is a

closest match to the input SM. to determine the closest

matching K-line the system calculates the distance between

inputSM and each of the 1
st
 K-nodes of the existing K-lines

and chooses the K-line produces the shortest distance. The

distance between inputSM and the 1
st
 K-node of a K-line KL

is calculated as

dist KL, SM
input() =

u
i
+ v

i

2
w

i

2

i=1

6

 (1)

where iu and iv is the i-th emotion attribute value of the

userSM and interpSM of the 1
st
 K-node of K-line KL and iw

is the i-th emotion attribute value of inputSM . That is,

SM
user

= u
1
,...,u

6
,

SM
interp

= v
1
,...,v

6
,

SM
input

= w
1
,..., w

6

KL2

KL3

KL4

KL1

KL5

N1

N2

KL3

KL4

KL5

Song

Diapason

SD-frame of K-
node N1

SG

D

56 The Open Artificial Intelligence Journal, 2008, Volume 2 Toptsis and Dubitski

 Based on the distance calculation of expression (1), the

closest matching K-line is the one whose 1
st
 K-node

produced the smallest distance among all the 1
st
 K-nodes of

all K-lines.

 Step 3: Once the best matching K-line is determined, the

system starts from the 1
st
 K-node of that K-line and plays the

song pointed to by that node. Then it traverses that K-line

sequentially and plays only those songs that are pointed to by

K-nodes for which at least L out of the possible 6 Diapason

intervals (L=6, initially) cover the corresponding emotion

values of

SM

input
= w

1
,..., w

6
. These are the songs which

have a Diapason

D = v

1a
,v

1b
, v

2a
,v

2b
,..., v

6a
,v

6b

such that the condition

w

i
v

ia
,v

ib
, i 1, ,6{ }

is satisfied for at least L out of the possible 6 values of i. The

number L is the Matching Level in this algorithm. The

highest matching level is 6. The minimum Matching Level

that we tolerate is 3 (see Step 4, below).

 Step 4: This step is performed as part of step 3. As the

iterator moves from the current K-Node to the next K-node

during step 3, the system checks if the currently visited K-

node is at the intersection of two or more K-lines. If this is

so, then the system decides to which K-line among the

intersecting K-lines to move next. This decision is made

similar to step 2 above. That is the system calculates the

distance between the

SM

input
 and each of the K-nodes that

are candidates to be selected next. Then, it resumes by

following the K-line that contains the K-node that produces

the minimum distance. In case that the entire K-line mesh

has been traversed and the created playlist does not contain

enough songs, then decrement the Matching Level L by one

and repeat step 3, unless the decremenet causes the Matching

Level to fall below 3. Algorithm C, next, summarizes the

above steps.

Algorithm C

/**

Note, method ClosestKline is overloaded.

There is one version of this method with one pa-

rameter and one version with two parameters. The

two versions have different functionality, as de-

scribed under each of the corresponding methods,

below.

**/
Input SM_input;
KL = ClosestKline(SM_input);
CurrentKLine = KL;
MatchingLevel = 6;
CurrentKNode = 1st K-node of
CurrentKLine;
Repeat {

Repeat {

If (CurrentKLine has no more K-
nodes)

KL = ClosestKline (SM_input) ;
Else {

Condition1 = Matches(SM_input,
CurrentKNode,
MatchingLevel);

Condition2 = song SG pointed to
by CurrentKNode is not in
Playlist;

If (Condition1 ==True and
Condition2 ==True)

Playlist = Playlist + {SG};
If (isKLineIntersection
(CurrentKNode)

CurrentKLine=ClosestKLine(Cu
rrentKNode, SM_input);
CurrentKNode = next K-node
of CurrentKLine;

} // end else
} until (playlist size is

satisfactory or entire K-line mesh
is traversed);

MatchingLevel--;
If (MatchingLevel < 3) exit;

} until (playlist size is satisfactory)
;

(Method)
ClosestKLine (SM_input)

o Input: A SM, SM_input.

o Returns: A K-line that is the closest match to the

SM_input, as described in step 1.

o Intelligence: upon several invocations this method

returns a best matching K-line which has not been

selected in any previous invocation.

(Method)
ClosestKLine (SM_input, KNode)

o Input: A SM, SM_input; a K-node, Knode.

Condition: Knode is at the intersection of several

K-lines.

o Returns: A K-line which is the closest match to the

SM_input, starting from the Knode, as described in

step 4.

o Intelligence: upon several invocations this method

returns a best matching K-line which has not been

selected in any previous invocation.

(Method)
Matches (SM_input, Knode, ML)

o Input: A SM, SM_input; a K-node, Knode; the

Matching Level ML for this invocation, as

described in step 3 and step 4.

o Returns: True, if the SM_input falls within at least

ML out of the 6 intervals of the Diapason of the

Knode, as described in step 3; False, otherwise.

(Method)
isKLineIntersection (Knode): (Method)

o Input: A K-node, KNode.

o Returns: True, if the input Knode is at the

intersection of two or more K-lines in the K-line

mesh; False, otherwise.

Iterative K-Line Meshing via Non-Linear Least Squares Interpolation The Open Artificial Intelligence Journal, 2008, Volume 2 57

3. EVALUATION

 The algorithms and method presented in Section 2 (Part

A, Part B, and Part C) are implemented (in Java) on a typical

notebook computer. Our evaluation covers three different

dimensions: (1) behaviour of the algorithm of Part B for the

formation of the K-line mesh. (2) Quality of the K-line mesh

navigation algorithm of Part C, in terms of its ability to de-

liver playlists that conform to a desired SM. (3) comparison

of the overall quality of our method against the most fre-

quently used typical alternative of random song selections.

 The evaluation of the K-line mesh formation and re-

trieval of songs is done in two stages, E-Stage I and E- Stage

II. E-Stage I corresponds to Part A together with Part B of

section 2-i.e., the initial creation of the K-lines followed by

the creation of the K-line mesh. In E-Stage II the quality of

the created K-line mesh is judged. As it is customary in pro-

jects of this type (e.g., [3, 4, 35]) human volunteers are used

as test subjects. Eight volunteers are used in our evaluation.

Each volunteer performs both E-Stage I and E-Stage II. That

is, each of the participants trains the system by selecting

songs that the participant judges to be fitting to her SM (E-

Stage I), and then the participant judges if the song selec-

tions offered by the system are indeed appropriate to her SM

(E-Stage II). The reason that the same participant performs

both E-Stage I and E-Stage II (instead if using different par-

ticipants for E-Stage I than the ones we used for E-Stage II)

is that music tastes and preferences may vary widely among

different individuals and also opinions regarding what kind

of music is more fitting for certain SMs may also be a highly

subjective matter. As such, it would be rather meaningless to

form a K-line mesh based on one person’s music preferences

and SMs (in E-Stage I) and then to use a different individual

to evaluate the appropriateness of song selections offered by

the system (during E-Stage II).

Songs Collection

 For evaluation we use a collection of 300 songs. Care is

taken, after interviewing the users, so that the collection con-

tains only types of songs that all the participants would like

to listen to. Since our system is designed to organize private

song collections (i.e., song collections of individual users, as

opposed to song collections designed for public use) it is

realistic to assume that a user includes in her song collection

songs (or type of music) that she likes to listen, at least from

time to time. According to [30] the song’s length has a very

low impact on the six Ekman emotions. As such, we trim the

length of every song to exactly 30 seconds.

E-Stage I: Formation of K-Line Mesh

 In this stage the user trains the system by listening to

songs and entering her SM periodically, as described in Part

A of section 2, using an interface shown in Fig. (9).

 Each user performs 6 sessions, and each session corre-

sponds to one K-Line formed by the system. Each K-Line

consists of 10 K-Nodes and exactly 10 songs. Songs are not

repeated during the same session, i.e., all songs within the

same K-line are different. At the end of E-Stage I, a mesh of

6 K-Lines is formed with 10 K-nodes in each K-line. The

Fig. (9). User interface for song selection.

number of songs in the K-line mesh is at most 60, since re-

peat-songs may occur across different K-lines due to K-line

intersections. As the user selects songs, Part A of our algo-

rithm (formation of K-lines) is executed. Once the user com-

pletes the song selection process, Part B of our algorithm is

executed and forms the K-line mesh. Recall, Part B includes

the iterative process which is the repetition of <step1; step2;

step 3>. At this point of E-Stage I we monitor the perform-

ance of the iterative process. In all our tests we find that the

differences in the calculated Diapasons between successive

iterations become negligible after at most 5 iterations. Figs.

(10) and (11) show the impact of successive iterations on the

Diapason values.

Fig. (10).
 ik

 fluctuation.

�������

����	����

����

���

�	�����

�����	��

�����������

����������	
��

����	�	��

����

���

���

����

���

����

�

����
	�����	����

� � � � � � 	

����������������������	���
�������	���������

58 The Open Artificial Intelligence Journal, 2008, Volume 2 Toptsis and Dubitski

 Each plotted point of the curve shown in Fig. (10) is the

point

p

k
= k,max

i
ik{ }() , k = iteration #

where

ik
= D

i

(k 1) D
i

(k)
, and with

D

i

(j)
 being the i-th in-

terval of a Diapason at the end of iteration j. Recall, the Dia-

pason of every K-node consists of 6 such intervals. During

each iteration k of algorithm Part B, our K-line collection

contains 360 such intervals,

D

1

(k)
,

D

2

(k)
, …,

D

360

(k)
 (since our

collection contains 360 K-nodes). To plot the point kp (k in

{1, 2, …, 7}) in Fig. (10), we compute

ik
= D

i

(k 1) D
i

(k)
,

for i=1, …, 360. (The difference D1-D2 between any two

Diapason intervals D1 = [b1, b2] and D2 = [b3, b4] is com-

puted as max {|b1-b3|, |b2-b4|}.) The plotted point kp repre-

sents the maximum difference observed in a Diapason inter-

val, across the entire K-line collection, as the interval is ad-

justed from iteration k-1 to iteration k, during the execution

of Algorithm Part B. As we see in Fig. (10), the maximum

difference decreases during successive iterations. This means

that during the execution of Algorithm Part B the Diapasons

stabilize across the entire K-line collection. (Fig. (10) dis-

plays 7 iterations for illustration purposes. Actually, the al-

gorithm stops as soon as the maximum difference drops be-

low 0.1. This happens at the 3
rd

 iteration in Fig. (10), i.e., just

below the red line. Note, 0.1 is a realistic threshold, i.e., a

small enough difference, since it is only 2% of the entire

width of the range of values ([0...5]) covered by any emotion

attribute).

0

1

2

3

4

5

6

1 2 3 4 5 6 7

Iter. 0 Iter. 1

Iter. 2 Iter. 3

K-node IDe
m

o
ti
o
n
 i
n
te

n
s
it
y

v
a
lu

e

Fig. (11).

SM

interp
 fluctuation. K-line 4, emotion attribute 4

(“fear”).

 Fig. (11) shows the changes in the interpolated values

(i.e., values of emotion attributes from the

SM

interp
 field of

each K-node) during the course of several iterations of Algo-

rithm Part B. Recall, in step 3 of Algorithm Part B, the inter-

polated values of each K-node are updated based on the Dia-

pason computed during step 2, and then the new interpolated

values are used for the next iteration. Each curve in Fig. (11)

corresponds to a single iteration. As we see, the curve for

iteration 0 (represented by the blue dashed line in Fig. (11))

is the only curve which is clearly distinguishable. The curves

for iterations 1, 2, and 3 overlap almost completely. In fact,

the curves for iterations beyond iteration 3 overlap even

more so and are not displayed in order to avoid cluttering

Fig. (11). This means that the values of the

SM

interp
 during

step 3 become closer with the pass of every iteration. The

implication of this is that the changes in the Diapason calcu-

lation that is performed in step 2 of the next iteration will

also be negligible, which will result to even smaller changes

in

SM

interp
 during step 3, and so on. Eventually, by iteration

3, as shown in Fig. (11), the changes are so small as to be

considered negligible for all practical purposes. Note, also,

Fig. (11) shows the value fluctuations occurring in a particu-

lar emotion attribute (emotion attribute 4 (“Fear”) for a par-

ticular K-line (K-line 4). We select this data because it ex-

hibits the most vivid fluctuations across the K-line collec-

tion. All other emotion attributes and other K-lines exhibit

even smaller fluctuations.

 Based on the above discussion, all K-nodes that point to

the same song have the same Diapason value by the end of

the algorithm Part B. At this point, the K-line mesh is con-

sidered to be formed, and the system is ready for use.

E-Stage II: Using the System

 In this stage the user enters her SM at the beginning of

each session and as a result the system provides her with a

playlist. In our testing we set the length of the produced

playlist to be exactly 10 songs. Each user performs 10 ses-

sions and in each session the user listens to ten songs. During

the listening process, the user evaluates each of the 10 songs

on a scale from 0 to 10. Ten means that in the user’s opinion,

the song matches her mood perfectly; zero means that the

song does not match her mood at all.

 In addition to judging how a user perceives the quality of

the retrieved songs, we design our experiment in such a way

that our retrieval mechanism is also compared to the random

song selection mode which is typically used when operating

a song listening devise. In doing so, each of the 10 playlists

presented to each evaluator is a mix of two types of songs.

One type of songs are the songs retrieved by our method,

based on the navigation of the K-line mesh, as described in

section 2. The second type of songs in the mix, are songs

randomly selected from the songs of the K-line mesh. Each

of the playlists presented to the evaluator consists of 10

songs. Of those 10 songs, 5 are selected by our retrieval

mechanism and 5 are selected randomly from the song re-

pository. To ensure that the relative locations of the random

songs with respect to the system selected songs is neutral

toward forming any bias to the user’s SM during the evalua-

tion process, we create the 10 playlists by mixing the ran-

domly selected songs and the system selected songs in three

different ways:

 Mix (I). From a playlist of 10 songs which are se-

lected by the system, we randomly remove 5 songs

and replace them with 5 randomly selected songs.

Iterative K-Line Meshing via Non-Linear Least Squares Interpolation The Open Artificial Intelligence Journal, 2008, Volume 2 59

 Mix (II). From a playlist of 10 songs which are se-

lected by the system, we remove the last 5 songs and

replace them with 5 randomly selected songs.

 Mix (III). From a playlist of 10 songs which are se-

lected by the system, we remove the first 5 songs and

replace them with 5 randomly selected songs.

 Using the above three mixing strategies, we create 10

playlists: 4 of the 10 playlists are of type Mix (I); 3 of the 10

playlists are of type Mix (II); 3 of the 10 playlists are of type

Mix (III). Before the playlists are presented to the user for

evaluation, we put the playlists in random order so that the

user does not intentionally receive blocks of playlists of the

same mix.

Performance Comparison

 As the users listen and evaluate the songs, we record the

user-reported satisfaction values for each song. Table 1

shows relevant statistics from the reported values.

Table 1.

 Our Algorithm Random Selection

Mix (I) 72.6 22.2

Mix (II) 74.5 21.7

Mix (III) 69.9 22.9

Mix (ALL) 72.3 22.3

 In Table 1, each of the entries of the first three rows

shows the average of all reported user satisfaction values

(across all participants and across all playlists) for all songs

S, such that S is a song which was selected by either our al-

gorithm (“Our Algorithm” column of the Table), or ran-

domly from the K-line mesh (“Random selection” column of

the Table). For example, [Mix (III), Random selection] is

the average of all reported user satisfaction values (across all

participants and across all playlists) for all songs S, such that

S is a song which was selected randomly from the K-line

mesh and S is in a playlist formed with Mixing strategy (III).

And so on. The last row of the Table 1 shows the average of

all reported user satisfaction values (across all participants

and across all playlists) for all songs S, such that S is a song

which was selected by our algorithm and S is in any playlist

regardless of the mixing strategy used to form that playlist.

Essentially, the values of row MIX(ALL) are the averages of

the values of the entries of the rows MIX (I), MIX (II), and

MIX (III).

Conclusions from the Performance Results

 Behaviour of our Algorithm for the Formation of the

K-Line Mesh: The essence of the results shown in Figs. (10)

and (11) is that the iterative process of Algorithm Part B

stabilizes the Diapasons and converges, within a small num-

ber of iterations. As illustrated by Fig. (10), during the exe-

cution of step 2 of algorithm Part B, the Diapasons stabilize

across the entire K-line collection. As illustrated by Fig.

(11), during the execution of step 3 of algorithm Part B, the

SM

interp
 also stabilizes within a few iterations. This means

that algorithm B overall forms a stable K-line mesh.

 Quality of the K-Line Mesh Navigation Algorithm

Part C and Comparison of our Method Against the Most

Frequently Used Typical Alternative of Random Song

Selections: For Mix (I) the overall average for our algorithm

is 72.6%. For Mix (II) the overall average is 74.5% and for

Mix (III) the average for our algorithm is 69.9%. For Ran-

dom song selection the average is approximately the same

for all three Mixing strategies (with an insignificant differ-

ence of no more than 1.2%). This is strong evidence that

random song selection performs equally in all cases. There-

fore, our different mix strategies do not generate any confu-

sion to the user regarding what constitutes a randomly se-

lected song versus a song that is supposed to conform to her

SM. For Mix (ALL), the average satisfaction among our

algorithm’s song selection is 72.3% and among Random

song selections is 22.3%. The overall percentage is calcu-

lated by taking the overall average among all playlists and

among all users. Since there are eight users and each user

evaluates 10 playlists, there is a total of 80 playlists contain-

ing a total of 800 songs (recall, each playlist has 10 songs).

Note, our repository contains 300 songs, so there are many

duplicates among the 800 songs. However, there are no du-

plicates within each playlist. Of those 800 songs, 400 are

songs retrieved by our algorithm Part C, and 400 are songs

selected randomly for the purposes of creating the different

types of mix. Our observed 22.3% average for randomly

selected songs is in agreement with the typical reported 20%

average for randomly generated playlists as, for example, is

reported in [3]. We attribute the 2.3% difference (our 22.3%

versus the generally reported 20%) to be either coincidental

or due to the fact that in our experiments we deliver the ran-

domly selected songs together with songs that are generated

by our algorithm (using our mix strategies). We speculate

that as the user listens to SM-conforming songs (which are

included in the delivered playlists of different types of mix),

her satisfaction posture is positively affected (such influ-

ences to a person’s mood are reported in [30]) and as a side-

effect the user gives also higher satisfaction level points to

the randomly selected songs. In either case, the 2.3% differ-

ence is not significant.

 The results of the evaluation clearly indicate that the pro-

posed method is much more preferable than the random song

selection which is the common choice of a typical music

listener. Specifically, the results of the evaluation (72.3%

versus 22.3%) suggest that our method outperforms the ran-

dom song selection method by a margin of more than 3

times.

4. CONCLUSION

 Our method is comprised of two main parts. The first part

is algorithm Part A together with Algorithm Part B. The sec-

ond part is algorithm Part C. All algorithms are described in

Section 2. Algorithms Part A and Part B organize a song

repository upon recording a user’s memory experiences from

previous listening activities. Algorithm Part C provides a

retrieval mechanism acting on the organized repository. The

60 The Open Artificial Intelligence Journal, 2008, Volume 2 Toptsis and Dubitski

user’s memory experiences are captured in K-lines, an AI-

related data structure proposed by Minsky [8]. Our retrieval

mechanism is based on activating appropriate K-lines from a

formed K-line mesh and is inspired by Minsky’s theory of

memory as described in [6-8].

 We implement our method and test it by monitoring the

internals of our algorithm execution and by recording, at the

same time, feedback of human participants. The results of

the introspection of the algorithms’ execution reveal that our

algorithm converges within a few iterations and forms a sta-

ble K-line mesh (Figs. 10, 11). The feedback of the human

participants (Table 1) provides clear evidence that our

method outperforms the typical random song selection mode

by a margin of more than 3 times.

 Our method is implemented here for a song collection but

it is applicable to any type of media, such as video clips,

images, and text. This is because our method relies on the

“overall impression” and “degree of likeness” of the con-

sumer of the media (as represented by the consumer’s SM),

rather than on characteristics of the media content which are

typically proprietary to the type of the media. To the best of

our knowledge, there is no published research work that uses

K-lines for organizing any type of media. Moreover, as re-

ported in [36], “… no implementation details have been

given [by Minsky], and in twenty-five years no one has

claimed to have implemented it [K-lines]”. [36], end of sec-

tion 2.1, page 13. ([36] discusses a topic completely different

from media organization and chooses an approach other than

K-lines).

FURTHER RESEARCH DIRECTIONS

 The work presented in this paper is amenable to further

research. We consider the following research directions

worth further investigation.

 Analytical Performance Evaluation of Our Method. In

this work we evaluated our proposed method using human

participants. Although this is a common way for evaluation

of such systems, we are interested to provide an analytical

performance evaluation as well. The main difficulty of such

an evaluation is the development of a model which captures

the expected song selections for constructing the initial K-

lines. In other words, the issue is how to model a system-

driven, as opposed to a human-driven, initial song selection

and how to model the periodic input of an appropriate SM

which is required during the K-line formation process. Note,

the obvious approach of forming K-lines by randomly gener-

ating SMs and pairing them with randomly selected songs

will provide a working system. However, any results gener-

ated by such a system will be meaningless. This because

such a system contains only artificial (and, in no way mean-

ingful) pairings of the

SM

user
 and the Song components of

any K-node.

 Refinement of SM Representation. In our model we

use the 6 basic Ekman emotions to represent a SM. Although

Ekman’s emotion theory is widely accepted and often used

in similar projects, it is of interest to explore how different

representations of the SM affect the system. Specifically,

Minsky’s mind architecture [6, 7], proposes that a state of

mind is an instance of a collection of “agents” that are active

at any given time point. It is of great interest to explore rep-

resentations of SM based on this architecture. The main

problem in such an approach is to map emotional states to

agent activation configurations. To the best of our knowl-

edge no such research has been reported.

 Mood Altering Effects of the Listening Process, when

the System is Used: As it stands, the system is trained and

the K-lines are formed based on algorithms Part A and Part

B, as described in Section 2. At the end of algorithm Part B,

the K-lines mesh is frozen (i.e., no further modified), al-

though it allows for intelligent song selection, as done by

algorithm Part C. It is conceivable (and probably likely, ac-

cording to the discussion in subsection 2.1) that when we use

the system, the process of listening to the songs offered by

the system further alters the mood of the listener and in ways

that were not possible to be predicted during the K-line mesh

formation. As such, the act of using the system may cause

the user to fall into new SMs which are different from the

SMs that are predicted by the system through its K-line

mesh. Although those new SMs may only slightly differ

from the SMs that are predicted by the K-line mesh, it is

worthwhile to investigate the significance (and possible con-

sequences) of such variations. Such an investigation could

produce research in at least two different fronts:

1. How to amend the system in order to be able to adjust

in the presence of such variations. Possible scenarios

could include dynamic updates of the K-lines, or the

development of some indexing or clustering tech-

niques that take in account the dynamic mood varia-

tions.

2. How to use the knowledge of such mood variations,

in conjunction with the songs that are available in the

K-line mesh, in order to build a system with mood-

altering capabilities. In such a system, the primary

feature would be that a user enters a desired target

SM and the system provides a series of songs whose

purpose is to influence the user’s mood (rather than

conform to the user’s mood, as is done by the current

system) so that eventually reaches the desired target

input SM.

 Testing the Current System with X-Dimensional SMs,

for X < 6; Automation of the Input of the User SM: In our

current system we use all six Ekman’s emotions to express a

SM. It may be of interest to see if there are any significant

findings if only fewer than six emotion attributes are active

and the remaining attributes are dormant. If such a system

works as well as the current system, the obvious benefits are

simplification and increased ease of use. In addition, a bene-

fit may also be, surprisingly, increased accuracy. According

to [16] and [17] the average person does not possess enough

self-knowledge and self-awareness to know exactly what her

SM is at any given point. The problem may be further com-

plicated in cases that cognitive clarity is affected by in-

creased levels of anxiety or fatigue. In case that the user is

required to input fewer than six values for the system to form

a SM, it might be that the accuracy of the user in expressing

her true SM, is increased. As a result, the performance of the

Iterative K-Line Meshing via Non-Linear Least Squares Interpolation The Open Artificial Intelligence Journal, 2008, Volume 2 61

system, in terms of providing satisfactory playlists, will also

be increased. Similar effects are possible if the process of

acquisition of the user’s SM is automated. Several automatic

emotion acquisition mechanisms exist as, for example, the

Electroencephalography (EEG) devises, and the devise

described in [37]. Our future plans include experimenting

with some of these devises.

REFERENCES

[1] H. Mandviwala, S. Blackwell, C. Weikart, and J. Van Thong,

“Multimedia content analysis and indexing: evaluation of a distrib-
uted and scalable architecture”, ITCom, Internet Multimedia Man-

agement Systems IV, vol. 5242, pp. 137-145, 2003.
[2] L. Rutledge, J. van Ossenbruggen, and L. Hardman, “Structuring

and presenting annotated media repositories”, Proceedings of the
13th International World Wide Web conference on Alternate track

papers & posters, ACM press, 2004, pp. 466-467.
[3] G.T. Elliott and B. Tomlinson, “Personal Soundtrack: Context-

aware playlists that adapt to user pace”, Proc. CHI 2006, Canada,
ACM Press, pp. 736-741, 2006.

[4] S. Dornbush, Jesse English, Tim Oates, Zary Segall, and Joshi
Anumpam, “XPod: A Human Activity Aware Learning Mobile

Music Player”, Proc. Workshop on Ambient Intelligence, 20th In-
ternational Joint Conference on Artificial Intelligence, 2007.

[5] P. Ekman, “Facial expression of emotion”, American Psychologist,
vol. 48, pp. 384-392, 1993.

[6] M. Minsky, The emotion machine, Simon & Schuster, November 7,
2006.

[7] M. Minsky, The Society of Mind, Simon & Schuster, March 15,
1988.

[8] M. Minsky, “K-Lines: A Theory of Memory”, Cognitive Science,
vol. 4, pp. 117-133, 1980.

[9] R.W. Picard, Affective Computing, The MIT Press, July 31, 2000.
[10] B.R. Duffy, “Fundamental Issues in Affective Intelligent Social

Machines”, Open Artificial Intelligence Journal, vol. 2, pp. 21-34,
2008.

[11] R.W. Picard, “Toward computers that recognize and respond to
user emotion”, IBM Systems Journal, vol. 39, pp. 705-719, 2000.

[12] D.C. Dennett, Consciousness Explained. New York: Little, Brown
and Company, 1991.

[13] C.D. Pope, “Somatic Computationalism: Damasio’s clever error”,
M.A.Thesis, Louisiana State University, Agricultural and Mechani-

cal College, August 2007.
[14] A. M. Isen, K. A. Daubman, and G. P., Nowicki “Positive affect

facilitates creative problem solving”, Journal of Personality and
Social Psychology, vol. 52, pp. 1122-31, June 1987.

[15] M. Minsky, “Music, Mind, and Meaning”, MIT-AI Laboratory
Memo 616, fall 1981, http://web.media.mit.edu/~minsky/papers/

MusicMindMeaning.html (accessed August 23, 2008).
[16] D. Goleman, Emotional intelligence, Bantam Books, 1995.

[17] D. Goleman, Social Intelligence, Bantam Books, 2006.
[18] A. Damasio, Descartes’ Error: Emotion, Reason and the Human

Brain. New York: Penguin Books, 1994.
[19] A. Damasio, The Feeling of What Happens: Body and Emotions in

the Making of Consciousness. New York: Harcourt, 1999.
[20] H. Liu, H. Lieberman, and T. Selker, “A Model of Textual Affect

Sensing using Real-World Knowledge”, Proceedings of the 8th in-

ternational conference on Intelligent User Interfaces, IUI 2003,

Miami, FL, USA, 2003, pp.125-132.
[21] K. Matsumoto, F. Ren, S. Kuroiwa, and S. Tsuchiya, “Emotion

Estimation Algorithm Based on Interpersonal Emotion Included in
Emotional Dialogue Sentences”, MICAI 2007: Advances in Artifi-

cial Intelligence, Lecture Notes in Computer Science, vol. 4827,
Springer, 2007, pp. 1035-1045.

[22] P. Singh, “Failure Directed Reformulation”, M.Eng.. thesis, Massa-
chusetts Institute of Technology, Department of Electrical Engi-

neering and Computer Science, 1998.
[23] P. Singh, “EM-ONE”: “An Architecture for Reflective Common-

sense Thinking”, Ph.D. Thesis, Massachusetts Institute of Technol-
ogy, Department of Electrical Engineering and Computer Science,

June 2005.
[24] P. Singh and M. Minsky, “An Architecture for Combining Ways to

Think”, International Conference on Knowledge Intensive Multi-
Agent Systems, Cambridge, MA, 2003.

[25] N. Hawes, J. Wyatt, and A. Sloman, “An Architecture Schema for
Embodied Cognitive Systems”, Technical Report COSY-TR-0610,

November 24, 2006, (accessed August 21, 2008). http://www.cs.
bham.ac.uk/research/projects/cosy/papers/#tr0610

[26] A. Sloman, “Grand challenge 5: The Architecture of Brain and
Mind: Integrating Low-Level Neuronal Brain Processes with High-

Level Cognitive Behaviours in a Functioning Robot”, Technical
Report COSY-TR-0607, July 2006, (accessed August 21, 2008).

http://www.cs.bham.ac.uk/research/projects/cosy/papers/#tr 0607
[27] M. Minsky, P. Singh, and A. Sloman, “The St. Thomas Common

Sense Symposium: Designing Architectures for Human-Level In-
telligence”, AI Magazine, American Association for Artificial Intel-

ligence, pp. 113-124, Summer 2004.
[28] M. Minsky, “A Framework for Representing Knowledge-

FRAMES”, MIT-AI Laboratory Memo 306, June, 1974, (accessed
August 21, 2008). http://web.media.mit.edu/~minsky/papers/Fram

es/frames.html
[29] A.A. Toptsis and A. Dubitski, Organization and Retrieval in Affec-

tively Annotated K-line Indexed Media Repositories, Proc. Soft-
ware Engineering and Applications (SEA 2008), pp. 148-153,

November 2008.
[30] K.R. Scherer, and M.R. Zentner, Emotional Effects of Music: Pro-

duction Rules, Music and emotion: theory and research, Oxford
University Press, pp. 361-392, 2001.

[31] O. Bretscher, Linear Algebra With Applications, 3rd ed.. Upper
Saddle River NJ: Prentice Hall, 1995.

[32] C. R. Rao, H. Toutenburg, A. Fieger, C. Heumann, T. Nittner, and
S. Scheid, Linear Models: Least Squares and Alternatives, Springer

Series in Statistics, 1999.
[33] T. Kariya, H. Kurata, Generalized Least Squares, Wiley, 2004.

[34] J. Wolberg, Data Analysis Using the Method of Least Squares:
Extracting the Most Information from Experiments, Springer, 2005.

[35] H. Liu, and P. Maes, “What would they think? a computational
model of attitudes”, Proceedings of the ACM International Confer-

ence on Intelligent User Interfaces, IUI 2004, pp. 38-45, Portugal,
2004

[36] C. Miller, “Modeling Trust in Human Conversation”, M.Sc. Thesis,
Massachusetts Institute of Technology, Department of Electrical

Engineering and Computer Science, 2006.
[37] C. Peter, E. Ebert, and H. Beikirch, “A wearable multi-sensor sys-

tem for mobile acquisition of emotion-related physiological data”,
Proceedings of the First International Conference on Affective

Computing and Intelligent Interaction: ACII 2005, Springer,
pp. 691-698, 2005.

Received: September 2, 2008 Revised: November 10, 2008 Accepted: November 17, 2008

© Toptsis and Dubitski; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

