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Abstract: We present an algorithm that organizes a song repository upon recording a user’s memory experiences from 

previous music listening activities. Our method forms an affectively annotated network of songs. The network’s connec-

tions correspond to a person’s recorded memory experiences related to song preferences when the person is at different 

states of affective bias. Upon formation of this network, an intelligent affect-sensitive network navigation algorithm syn-

thesizes playlists that conform to desired affective states. The method for the network formation is highly individualized, 

in the sense that it takes in account an individual’s music preferences which are typically subjective and may differ from 

user to user. Also, the method is content independent, in the sense that it does not rely or favor any particular music genre. 

In fact, the method is applicable to any type of media, not only songs. We implement our method and present evaluation 

results from the introspection of our algorithms’ execution and from feedback recorded during the evaluation by human 

test subjects. The evaluation results clearly indicate that the proposed method significantly outperforms the most typical 

paradigm of random song selection. 

1. INTRODUCTION AND BACKGROUND 

 Organization and retrieval mechanisms for media reposi-

tories is a topic of vigorous research activity during the past 

several years The issues addressed in such research are con-

tent-based organization and retrieval mechanisms and effi-

ciency in data access (e.g., [1, 2]). All the reported mecha-

nisms are useful in the sense that they facilitate organization 

and retrieval based on characteristics of the content of the 

media, such as the semantic or grammatical relevance of text 

from a publication, and the relevance of a theme from an 

image or a video clip. Solutions that facilitate efficient data 

access are also useful, especially when dealing with large 

and public media collections. 

1.1. Motivation and Related Work 

 In this paper we cover a different facet of media access. 

Specifically, we address the issue of media organization and 

retrieval based on the user’s emotional state. The difference 

between our approach and methods such as the ones in [1, 

2], mentioned above is that in our approach the data is orga-

nized and retrieved according to its conformity to the user’s 

mood rather than to any structural characteristics of its con-

tent. Our method is applicable to any type of media, such as 

video clips, images, text, and music. For the shake of being 

specific and evaluating our method, we assume that the type 

of media is music. 

 We start with a collection of songs that are available for 

listening. The storage medium of the collection is not impor-

tant although, as it is nowadays typical, the songs may be 

assumed to being stored in a mobile devise such as the iPod  
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or many modern mobile phones. In such an environment it is 

typical that the user has the option to choose to listen to ran-

dom selections of songs or to select serial playing, or to se-

lect individual songs, one by one as she goes along in the 

listening process. The random and the serial playing modes 

are usually the most frequently used since all listening de-

vices provide default settings for both of these modes. How-

ever, for devices that contain at least several hundred songs 

(or more, as it is typical nowadays) a random or serial selec-

tion of songs is bound to contain songs that are not as desir-

able to listen to, based on the listener’s current mood. As 

reported in [3] and also confirmed by our evaluation in sec-

tion 4, playlists of randomly selected songs have an ap-

proximate user satisfaction level of only 20%. The third op-

tion-explicit song selection, one song at a time, by the lis-

tener, would probably produce an optimal listening se-

quence. However this option is rather impractical since it 

requires constant attention and interaction by the user-

searching though the collection and selecting the next song 

to be played. In most real-life cases, a listener is unwilling to 

continuously interact with the listening devise in searching 

and selecting “the best next song” and he just lets the devise 

play whatever comes next. Besides, in many occasions, an 

interaction between the user and her listening devise is really 

not possible, such as in cases when the listener is driving, or 

performing some task that requires her fairly undivided at-

tention. 

 There are several successful attempts (e.g., [3, 4]) to 

automate the creation of playlists. All these approaches are 

based on correlating a person’s physical activity and music 

preferences. They all require that a person is actively en-

gaged in some physical activity (such as jogging) during the 

creation and dispensing of the playlist. The methods are not 

applicable for cases that the person is at rest, or for types of 
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media other than songs. Also, they do not take in account the 

emotional state of the person. 

 In this paper we present a method for organizing a collec-

tion of songs in such a way that after the collection is orga-

nized, the system is able to automatically select, upon re-

quest, a series of songs to play, based and conforming to the 

current emotional state of the listener. Our method forms an 

affectively annotated network of songs. The network’s con-

nections form playlists that correspond to a person’s re-

corded memory experiences with respect to song preferences 

when the person is at different states of affective bias. The 

formation of the network of songs is highly individualized, 

in the sense that it takes in account the individual user’s mu-

sic preferences which are typically subjective and may differ 

from user to user. Also, the method for organizing the song 

collection is content independent, in the sense that it does not 

rely or favor any particular music genre; it can be invariably 

applied for any kind of music and can be used by any user, 

subject only to the user’s preferences and subjective evalua-

tions of what constitutes “good” or appropriate music. Upon 

formation of this network, an intelligent affect-sensitive 

navigation algorithm browses the network and creates play-

lists that conform to desired affective states. 

 The remaining of this section provides related back-

ground knowledge and the main tools and definitions that we 

use in our method. Section 2 presents our method of 

organizing and using a song collection. Section 3 is the 

evaluation of our method. Section 4 summarizes our findings 

and discusses future research directions. 

1.2. Background 

 We employ tools found in three related disciplines-

Artificial Intelligence (AI), Cognitive Science, and Psychol-

ogy. From Psychology we use the emotion theory of Ekman 

[5], which describes universally occurring emotional states 

of human beings. From AI and Cognitive Science we borrow 

from the memory theory of Minsky [6, 7] and specifically a 

structure called K-lines [8]. In recent years, work which 

combines emotion involving issues and these disciplines has 

evolved into a new discipline, under the name Affective 

Computing [9, 10]. 

The Cognitive Science Aspect 

 Picard [9, 11] discusses the significance of computers to 

understand human emotions mainly for the purpose of im-

proving computer-human interactions. One of the possibili-

ties that is pointed in [11] and [9] is to enable a machine to 

select and play music according to someone’s emotions. 

 The opinions of what is the origin of emotions and how 

they mesh with intelligence vary widely (examples of rather 

vastly differing views are [12, 13]), however it is rather 

commonly agreed that emotions play an important role in 

intelligence (e.g., [14]). As it was pointed out more than 25 

years ago by one of the greatest AI visionaries, 

“The old distinctions among emotion, reason, 

and aesthetics are like the earth, air, and fire of 

an ancient alchemy. We will need much better 

concepts than these for a working psychic 

chemistry.” [15], page 1. 

 Recently, it is increasingly recognized that emotions are 

an integral part of many (if not all) intelligence bearing proc-

esses such as human-human interaction, decision making, 

complex task completion, learning, etc. ([9, 10, 16, 17]). As 

such, contrary to the traditionally held belief (or expressed 

desire) that intellectual and emotional processes operate in 

separate and incompatible cognitive realms, it is becoming 

increasingly accepted that mixing purely intellectual with 

emotional processing may have benefits which could not be 

realized by intellectual processing alone. Notable examples 

that contribute to this belief are Damasio’s patient [18, 19], 

in which a human without emotion processing capability is 

deemed unable to make even the simplest of decisions and 

task completion, as well as the decision making and planning 

scenario outlined in [9] in which it is shown how affective 

(emotion bearing) heuristics can prune a vast search space 

dramatically and thus make a decision making and planning 

task reasonably tractable. 

The State of Mind (SM) 

 There are a number of studies that propose different defi-

nitions and classifications of emotions. Among them, Ekman 

[5] is a widely accepted classification and it is used in sev-

eral affective computing projects of the highest caliber (e.g., 

Liu, et al. [20], Matsumoto, et al. [21]). Ekman [5], Minsky 

[6], and Picard [9], all argue that this classification consists 

of basic emotions, meaning emotions that are encountered in 

all humans, regardless of cultural background. In this pro-

ject, we use the same classification. However, we design our 

methodology and algorithm in such a way that it is easily 

amenable to any newer or better classification. The six basic 

Ekman’s [5] emotions are: (1) sadness, (2) happiness, (3) 

anger, (4) fear, (5) disgust, (6) surprise. Using this classifica-

tion, we represent a person’s emotional state, (or, state of 

mind (SM)), as a tuple of 6 attributes 

SM = < Sadness, Happiness, Anger, Fear, Disgust, Surprise>. 

 Note, although some of the above emotions seem contra-

dictory, it is not necessarily so. For example, according to 

[6], “happiness” is not opposite to “sadness”. In order to rep-

resent different SMs we allow each of the 6 attributes to 

fluctuate within a range of values. In this project we set this 

range from 0 to 5. For each emotion attribute, 0 represents 

the lowest possible intensity of that emotion and 5 represents 

the highest possible intensity. For example, in SM = < 3, 3, 

5, 2, 3, 2 > the left-most number 3 means that the left-most 

(1
st
) emotion (sadness) has intensity 3. 

 Note, with our chosen numbers (6 emotion attributes and 

6 integer values per emotion) we allow for 6
6
 = 46,656 pos-

sible SMs, assuming that we only allow integer values for 

each emotion attribute. (In our implementation we also allow 

for non-integer numbers, so the range [0...5] for emotion 

values effectively allows for more than 6 values.) According 

to Minsky’s theory of memory [6] and [7], the human brain 

is a collection of a large number of mental agents and each 

of those agents can be either active or inactive at any particu-

lar time point. The geography and arrangement of agent acti-
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vation at any given point then represents the SM of that per-

son at that time point. In this sense, our model of SM, with 

46,656 possible mental states, resembles Minsky’s model of 

SM. Of course, Minsky’s model also deals with the mecha-

nisms that may be used to trigger activation and deactivation 

of certain mental agents. To the best of our knowledge, there 

is no reported work that gives a full account of the workings 

of those mechanisms. There are, however, partial treatments 

which investigate certain mind activities, based on Minsky’s 

theory. Notable examples of such works are [22-24]. This 

project does not intend to elaborate or investigate such 

mechanisms. Similar to Minsky, we have Sloman’s mind 

architecture, e.g. [25, 26]. Although the two architectures 

seem different on paper, both Minsky and Sloman seemingly 

agree that their approaches share major common characteris-

tics and differ only in the design representation [27]. We 

bypass the difficulty of what mechanisms produce what SMs 

by using Ekman’s emotion list (of the 6 basic emotions) and 

then assuming that any user of our system would be able to 

express her SM by associating values to each of those emo-

tion attributes, to the best of her understanding. We also 

note, however, that relying on the user to express her emo-

tional state is not a perfect scenario either. Reportedly [16, 

17], the average human does not possess enough self-

knowledge to be able to clearly express at any given time 

what her emotional state is. 

The Data Structure 

 Once we decide how to represent a person’s state of 

mind, we need some structure and mechanism to store and 

use this SM. For this, we choose a structure called K-lines. 

The K-lines structure was introduced by Minsky in [8] and it 

is extensively used as one of the tools that Minsky employs 

to describe a mind/brain architecture in [6] and [7]. The basic 

idea is that a K-line is a structure that allows recording and 

storage of memory experiences that are formed during the 

process of learning to perform a task. Once a K-line is 

formed in our brain, future requests for performing the same 

or a similar task cause our brain to activate an appropriate K-

line (provided that such a K-line exists) which consequently 

allows the person to perform the newly requested task by 

using the memory experiences recorded in that K-line and 

thus not having to go through a time consuming (or imprac-

tical) learning process again. Quoting from [8], 

When you “get an idea”, or “solve a problem”, 

or have a “memorable experience”, you create 

what we shall call a K-line. This K-line gets 

connected to those “mental agencies” that were 

actively involved in the memorable mental 

event. When that K-line is later “activated”, it 

reactivates some of those mental agencies, cre-

ating a “partial mental state resembling the 

original”. 

 In its simplest form, a K-line is a chain of K-nodes. Each 

of the K-nodes represents a memory experience (or a process 

that has to be followed) that is learned and recorded in the K-

node during a person’s process of learning to perform a task. 

As we continuously accumulate memory experiences and 

knowledge during our lifetime, a vast system of K-lines is 

formed in our brain. Since many of the experiences of a per-

son are related (or, at least they are not completely different 

from each other), some of the formed K-lines may contain 

K-nodes that are identical, within certain degree of analogy 

or abstraction. 

 Our K-lines are chains of K-nodes, each of which has the 

structure shown in Fig. (1). 

  

Fig. (1). A K-node. 

 This structure consists of one main frame, K-frame, 

which contains another frame, the SD-frame. A frame is an 

AI related structure introduced for knowledge representation, 

also by Minsky [28]. As described in [28], a frame can con-

tain several placeholders (such as the 
 
SM

user
, 

  
SM

interp
, and 

SD-frame shown in Fig. (1)) and some of those placeholders 

can be frames themselves (such as the SD-frame placeholder 

inside the K-frame). In the K-frame, the placeholders 
 
SM

user
 

and 
  
SM

interp
 are SMs expressed as tuples of 6 attributes, ac-

cording to the earlier discussion. From these two SMs, the 

 
SM

user
 is input by the user at some point during our method 

(described in the next section). The 
  
SM

interp
 component is 

calculated by our algorithm. The Song component of the SD-

frame is a pointer to a particular song SG from a song collec-

tion. The assignment of this pointer is done by our algorithm, 

as described in the next section. The Diapason component of 

the SD-frame is a special form of SM. Specifically, a diapa-

son has the form 

  
D = v

1a
,v

1b
, v

2a
,v

2b
,..., v

6a
,v

6b  

where 
  

v
ja

,v
jb  is an interval in which the values 

 
v

ja  and 

 
v

jb  represent acceptable minimum and maximum intensities 

for the j-th emotion (j=1, …, 6). The number of intervals in 

userSM  

interpSM  

SD-Frame 

Song 

Diapason

SD-frame

K-frame

SG 

SM2 

SM1 

D 
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D is 6 since each interval corresponds to one emotion and we 

use 6 emotions throughout this paper. A song SG with 

associated (i.e., in the same SD-frame) diapason D is 

considerd appropriate to be experienced under any SM in 

which the j-th emotion attribute value falls within the 

interval 
  

v
ja

,v
jb . The value of diapason is calculated by 

our algorithm as described in the next section. 

2. PROPOSED METHOD 

 Our purpose is to form K-lines which consist of K-nodes 

that have the structure described in the previous section and 

such that all the K-nodes of each K-line contain songs which 

are appropriate to be experienced (played or listened to) 

upon request, when the user is under a specific SM. Our 

method consists of three parts. 

 Part A: Data Collection. During this part, a user’s lis-

tening experiences are recorded into K-nodes and the K-

nodes form K-lines. The outcome of part A is a collection of 

K-lines, as shown in Fig. (2). Each of the five K-lines shown 

in Fig. (2) contains several K-nodes. Each K-line has a dif-

ference color and boldness for ease of identification. The K-

nodes are the blue-shaded circles. Each K-node has the struc-

ture described in the previous section and shown in Fig. (1). 

 

Fig. (2). Five K-lines. 

 Part B: Formation of K-Line Mesh. This is the heart of 

our method. During this phase, we process the K-line collec-

tion formed in Part A and we calculate and adjust certain 

parts of the K-nodes. This phase results to the formation of a 

K-line mesh, similar to the one shown in Fig. (3). 

 Fig. (3) shows a K-line mesh formed by the five K-lines 

of Fig. (2). 

 Part C: K-Line Mesh Navigation. Our algorithm navi-

gates the K-line mesh and assembles a playlist consisting of 

songs deemed to be a best match (most appropriate to be 

listened to) with the current SM of the user. This phase is 

essentially the way that a typical user is using the system and 

is meant to be performed multiple times, every time that a 

user wants to listen to songs that comply with her SM at that 

time. Fig. (4) shows a playlist that the navigation algorithm 

extracts from the K-line mesh of Fig. (3). 

  

Fig. (3). A K-line mesh. 

  

Fig. (4). K-line mesh navigation result. 

 Next, we describe Part A, Part B, and Part C. 

2.1. Part A: Data Collection and Initial Formation of K-
Lines 

 We start with a repository of songs available for listen-

ing. The purpose of this phase is to form a K-line collection, 

such as the one shown in Fig. (2). Each K-line of Fig. (2) 

contains several K-nodes. Algorithm A describes how such a 

collection of K-lines is formed. 

Algorithm A 

1. Periodicity = P; 
2. next_Kline_ID = 1; 
3. repeat { 

a. form_Kline(next_Kline_ID); 
b. next_Kline_ID++; 

4. }until (system or user quits); 
 

(method) 
Form_Kline(k) { 
1. count = 0; 
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KL3 N1 

N2 



50    The Open Artificial Intelligence Journal, 2008, Volume 2 Toptsis and Dubitski 

2. repeat { 
3. user selects a song S; 
4. if (isKlineIntersection(k, S)){ 

a. user enters 
 
SM

user
; 

b. count = 0; 
5. } 
6. elseif (count % P == 0) { 

a. user enters 
 
SM

user
; 

b. count = 0; 
7. } 

8. else { userSM = null; } 

9. form_Knode( userSM , null, S, null); 

10. count++; 
11. } until (system or user quits) ; 
12. } // end Form_Kline(k) 
(method) 

Form_Knode(
 
SM

user
,
  
SM

interp
, Song, Diapason) 

o Input: the data fields of a K-node per the de-

scription of Section 1. 
o Action: forms a K-node and initializes its fields 

using the input. Appends the K-node to the K-line 

that is in progress. 

o Intelligence: all songs selected during the 

formation of the same K-line are different. 
(method) 
isKlineIntersection (k, S) 

o Input: a K-line ID k and a song S. 

o Returns: True, if song S which is about to be part 

of a K-node of K-line k was selected earlier during 

the formation of another K-line. False, otherwise. 

 In the above algorithm, the user selects songs for listen-

ing (line 3 in method Form_Kline) and the system prompts 

the user for her SM, periodically (lines 4.a. and 6.a. of 

method Form_Kline) and creates a K-node for each chosen 

song (line 9 in method Form_Kline). The criteria used to 

prompt the user for her SM are (a) whether or not the cur-

rently selected song was also selected earlier during the for-

mation of a previous K-line (line 4 in method Form_Kline) 

and (b) if a predetermined periodicity frequency P is reached 

at that K-node (line 6 in method Form_Kline) All K-nodes 

created by the above algorithm have their 
  
SM

interp
 and Dia-

pason fields null (line 9 in method Form_Kline). Some, of 

the K-nodes have their 
 
SM

user
 field initialized (lines 4.a. and 

6.a. of method Form_Kline) but 
 
SM

user
 is null for the most 

of the K-nodes (line 8 in method Form_Kline). Also, all K-

nodes point to songs that have been selected by the user (line 

3 in method Form_Kline). The above algorithm is inspired 

by a data collection process performed for media organiza-

tion, described in [29]. 

 At the end of Algorithm A, a collection of K-lines as 

shown in Fig. (2) is formed. Some of these K-lines “inter-

sect”, i.e. they contain K-nodes which point to the same 

song. 

 

Why the Repeated Requests for SM? 

 One aspect of Algorithm A that may warrant some ex-

planation is why do we repeatedly ask for the current user’s 

SM-either periodically every P K-nodes, or every time that a 

repeat-song selection occurs (i.e., a K-line intersection oc-

curs). In principle, the formation of a K-line could be done 

simply by asking for the SM of the listener only at the for-

mation of the 1
st
 K-node of each K-line and then form all the 

K-nodes of that K-line by just associating with them the se-

lected songs, without ever requesting the user to enter his 

current SM for the duration of the formation of the same K-

line. Since our assumption (and intention) is that each K-line 

captures one listening experience based on the user’s mood 

which is captured at the 1
st
 K-node of that K-line, it could be 

both simple and convenient to consider all songs that are 

selected during the same K-line formation as being appropri-

ate for the SM entered at the 1
st
 K-node of this K-line. Note, 

such a strategy would also make the formation of K-lines 

more efficient since there would be no need to periodically 

interrupt the user (lines 4.a. and 6.a. in method Form_Kline) 

with requests of SM input during the formation of the same 

K-line. Unfortunately, such an approach is not very realistic. 

The reason is that during a song-listening session the SM of 

the listener, changes multiple times. These changes, as re-

ported in [5], are due to the act of listening to the selected 

song. Therefore, by the time that the last K-node of that K-

line is formed, the SM of the listener would most likely be 

significantly different from the SM that was reported at the 

1
st
 K-node of that K-line. It is therefore unrealistic to believe 

that all the K-nodes of that K-line contain songs that are 

compatible to the mood recorded in the head K-node of that 

K-line. In addition, as mentioned in [9], a mood is a series of 

successive emotional states, rather than a single emotional 

state. In our case, each emotional state is represented by a 

SM. Hence, if we follow an approach that requests the user’s 

SM only at the 1
st
 K-node and for none of the remaining 

nodes of each K-line, the memory experiences that would 

end up being captured by the formed K-lines will be rather 

meaningless, even though the formation of the K-lines will 

be very efficient. The ultimate remedy to this problem is to 

request from the user to enter his current SM at every single 

song selection-i.e., at the formation of each and every K-

node during a K-line formation. Unfortunately, this approach 

has at least two significant drawbacks. First, it is very ineffi-

cient to issue and satisfy a request for an updated SM at 

every single K-node. Since a typical K-line may consist of 

50-100 (or more) K-nodes and our assumption is that a large 

number of K-lines is formed, it is prohibitively time consum-

ing to request and record a new SM for every single K-node. 

Second, the act itself of requesting an updated SM so often 

will misdirect the attention of the user from the listening 

process and also most likely irritate the listener; the attention 

loss and the irritation itself will influence the user’s mood, 

resulting to a SM that is contaminated by factors (the loss of 

attention and the irritation impact) other than the listening 

experience. Due to the above drawbacks (high cost and un-

desired side effects due to attention loss and to irritation) we 

reject the option of requesting a SM during every K-node.  
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Therefore, having rejected the two extreme options for fre-

quencies of SM requests (only once per K-line and once per 

K-node) we choose the sole alternative of requesting the SM 

only periodically, as specified by lines 4.a. and 6.a. of 

method Form_Kline, in Algorithm A. 

2.2. Part B: Formation of K-Line Mesh 

 At the end of Part A, there are several K-nodes with a 

SM entered by the user, but there are also many K-nodes 

without their 
 
SM

user
 = null. Also, 

  
SM

interp
 = null and Diapa-

son = null for all K-nodes. The purpose of Part B is two-fold. 

First, we calculate 
  
SM

interp
 for every K-node in our K-lines. 

Second, we calculate the Diapason field for all K-nodes. All 

steps of Part B are performed without any user interference. 

At the end of Part B, all K-nodes have all the their fields 

initialized and the collection of K-lines resembles the one 

shown in Fig. (3). Part B is an iterative process, as shown in 

Algorithm B. 

Algorithm B 

repeat { 

Step 1: Calculate 
  
SM

interp
 for all K-nodes. 

Step 2: Calculate Diapason for all K-nodes. 
Step 3:: Update the interpolated values of step 1 

} 
until (no significant changes are observed in the Diapason 

values); 
Step 1: Calculate 

  
SM

interp
 for all K-Nodes 

 In this step, we calculate the 
  
SM

interp
 for all K-nodes of 

every K-line. Denote by 
  

e
1 jx

,e
2 jx

,...,e
6 jx

 the desired 

  
SM

interp
 of the x-th K-node (x=1, 2, …) of the j-th K-line 

(j=1, 2, …). The sought values in 
  

e
1 jx

,e
2 jx

,...,e
6 jx

 are cal-

culated as 

  
e

mjx
= A + B M

mi
+ C M

mi

2
         (1) 

where A, B, and C in expression (1) are values that satisfy 

the following system of equations: 

  

A ( w)
+ B ( w+1)

+ C ( w+2)
= M

mi
iw

i=1

n

        (2) 

where, 

  

(k )
= ik

i=1

n

, 

for w = 0, 1, 2. 

 In the above system of equations, 
 
M

mi
 is the value of the 

m-th emotion attribute (
  
m 1,...,6{ } ) of the 

 
SM

user
 of the i-

th K-node (i starting from 1) that is populated with a 
 
SM

user
 

within the j-th K-line. Note, the number of K-nodes with 

  
SM

user
 is less than the total number of K-nodes in the j-th K-

line. n is the number of K-nodes whose 
 
SM

user
 is not null 

within this K-line. Note, n is less than or equal (in most 

cases, less) than the total number of K-nodes of this K-line, 

since not all K-nodes have a user assigned SM at the end of 

Part A. The system of equations shown in expression (2) is 

produced by applying the Least Squares Method (LSM) on 

each of the K-lines resulting from Part A. The LSM is a type 

of regression analysis introduced by Gauss around 1794 

[31]. Descriptions of the method can be found in various 

textbooks, including [32-34]. We now give the details of 

how this method is applied for the calculation of the values 

for each 
  
SM

interp
. 

 Recall, during the initial formation of K-lines in Part A, 

the user is prompted periodically (but not always) to enter 

his SM as each K-line is created. As a result, after the K-

lines are formed at the end of Part B, many of the K-nodes 

do not have any SM associated with them. Fig. (5) shows an 

example K-line at the end of Part A. the numbers 1, 2, 3, …, 

7 denote the K-node index (and ID) within the K-line. The 

shown SMs are all 
 
SM

user
, entered by the user during Part 

A. Observe that only K-nodes 1, 5, 6, and 7 have their 

 
SM

user
 initialized; and none of the nodes has 

  
SM

interp
 (i.e., 

all 
  
SM

interp
 are null). 

 

Fig. (5). A K-line. 

 Fig. (6) shows a diagram derived from Fig. (5). This 

diagram is used to explain the interpolation process, i.e., the 

K-Line interpolation done with LSM using the quadratic 

equation shown in expression (1). 

 The horizontal axis of Fig. (6) contains integer values 

which indicate the position (index) of each K-node within 

this K-line. The vertical axis of Fig. (6) contains values 

representing the intensity of an associated emotion value in 

the 
 
SM

user
of the K-node matched in the horizontal axis. Fig. 

(6) is derived from the K-line shown in Fig. (5) and 

corresponds to the 1
st
 emotion of each of the SMs that appear 

in the K-nodes of Fig. (5). For example, the left-most plotted 

point in Fig. (6) is the point [x=1, y=5] because the 1
st
 K-

node in Fig. (5) (i.e., the K-node with index x=1 in Fig. (6)) 

42 31 
<5,3,5,2,3,2>

5 
<2,3,2,2,2,2> 

6 
<1,3,3,2,2,1> 

7 
<3,2,4,2,2,2> 
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has a SM in which the value of the 1
st
 emotion is 5 (i.e., y = 

5). Using the notation introduced in (2), the left-most plotted 

point in Fig. (6) is the point [1, 
  
M

11
]; the 2

nd
 plotted point is 

the point [6, 
  
M

12
] because the 2

nd
 K-node with its userSM  

non-null is K-node 5; and so on. 

 

Fig. (6). Plotted points of the 1
st
 emotion attribute of the K-line of 

Fig. (5) and LSM-estimated curve. 

 Note, not all K-nodes in Fig. (5) have SMs associated 

with them (specifically, K-nodes 2, 3 and 4 do not have 

SMs). The purpose of this step (step 1) is to calculate 

interpolated values for all K-nodes 1, …, 7. This is done by 

calculating a “best-fit” curve as shown by the dashed line in 

Fig. (6), that has an overall minimum distance from the 

existing plotted points. Applying the LSM mentioned above. 

The function that we use to calculate such a curve is 

  
F x( ) = A + Bx + Cx2

           (3) 

where A, B and C are unknown values that need to be 

determined. Once the values A, B, C are found, (see below), 

then each of the points [i, F(i)], for i=1, …, 6 represents an 

estimate of the intensity of the emotion attribute under 

consideration, of the i-th K-node. In particular, for i = 2, 3, 

and 4, the points [i, F(i)] are estimates for the emotion 

intensities for which the plotted points are missing in Fig. 

(6). Note, Fig. (6) corresponds to the 1
st
 emotion of each of 

the SMs contained in the K-nodes of Fig. (5). As part of this 

step (step 1) we will have to construct, similar to Fig. (6), 

five more figures, one for each of the other emotions of each 

SM of Fig. (5), i.e., one figure for the 2
nd

 emotion, one figure 

for the 3
rd

 emotion, etc; and for each such figure, we will 

have to perform the LSM calculation so that we calculate the 

“best fitting” curve and thus fill in any of the missing plotted 

points. Once the best fitting curves are calculated for one K-

line, the process is repeated for each of the remaining K-

lines. That is, if there are 10 lines formed, then the 

interpolation process will be performed 60 times and 60 

curves will be calculated. A curve shown in expression (3) 

has minimum distance from the plotted points of Fig. (6). 

 We describe the process for one of the K-lines-the rest 

being the same. Using the notation introduced in (2), 
  
M

1i
 is 

the value of the 1
st
 emotion of the i-th K-node whose 

 
SM

user
 

is non-null. The curve of expression (3) has minimum 

distance from the plotted ponts of Fig. (6) when the 

expression 

  

E = M
mi

F(i)
2

i=1

n

= M
mi

( A + Bi + Ci2 )
2

i=1

n

 

is minimum. In other words, the sum of the squares of the 

distances (with respect to the horizontal axis) between the 

curve and the points 
  
P

i
: x, M

mi( ) , is minimum (hence the 

name Least Squares Method). Applying standard calculus, E 

attains minimum values when its derivatives with respect to 

A, B, C are zero, i.e., 

  

E

A
=

E

B
=

E

C
= 0 .           (4) 

 Equations (4) yield the system (2) of three linear 

equations shown earlier. Solving this system with respect to 

A, B, C, yields the unknowns A, B, C and thus we have the 

expression for the curve of expression (3). 

Step 2: Diapason Calculation 

 At the end of step 1, every K-node in our K-lines has 

associated with it either one SM (the 
  
SM

interp
, calculated by 

the interpolation process) or two SMs (the 
  
SM

interp
 calculated 

by the interpolation process and the 
 
SM

user
 as originally 

entered by the user). The purpose of this step is to create a 

range of appropriate emotion values for each K-node, 

instead of just having a single value indicating the 

appropriateness of any song associated with each K-node 

through its SM, or just having two separate SMs with 

concrete values, both associated with a K-node. The 

resulting range of such values is the Diapason of the 

corresponding K-node. Since, in general, more than one K-

node can point to the same song, the Diapasons of all K-

nodes that point to the same song are made equal. 

 Note, the meaning of a SM associated the a song SG is 

that SG is appropriate for listening when a listener is at that 

SM. specifically, in cases that a K-node has both its 
 
SM

user
 

and 
  
SM

interp
 intitialized at the end of step 1, the song pointed 

to by that K-node is deemed appropriate to be listened to if 

the listener is at SM=
 
SM

user
; regarding the SM=

  
SM

interp
, the 

song is probably (but not for sure) appropriate to be listened 

to if the listener is at SM=
  
SM

interp
, since the 

  
SM

interp
 is an 

estimated, rather than a user entered value. The presence of 

two SMs inititialized in a K-node is an advantage, in the 

sense that it gives two (instead of only one) alternative SMs 

signaling the appropriateness of that song. At the same time, 

it raises the following issue: what happens if the listener is at 

a SM which is close, but not exactly equal to either 
 
SM

user
 

or 
  
SM

interp
? The same issue becomes more profound for those 

K-nodes that have only one SM, the 
  
SM

interp
, initialized at the 

end of step 1. Specifically, if the listener’s SM happens to be 
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close, but not exactly equal to that one SM, is the 

corresponding song considered appropriate to be listened to 

or should it be outright rejected? The purpose of this step 

(step 2) is to address the above issues. Specifically, we create 

the Diapason for each song in our K-lines collection. The 

Diapason is a special form of SM as shown at the end of 

section 1. Even though the Diapason is one of the fields of 

every K-node in the K-line collection, it is considered to be 

associated with the song component of that K-node. That is, 

all Diapasons of all K-nodes that point to the song are equal 

by the end of step 2 (and Part B). Due to this characteristic of 

the Diapason, if a song is selected, based on its Diapason, 

later on by our retrieval mechanism, there will be no 

controversy regarding which K-node among the ones that 

point to that song contains the most appropriate Diapason for 

the selected song. For every song SG in the K-line 

collection, denote 

  
T (SG) = KN

1
, KN

2
,..., KN

j{ }  

the set of all K-nodes pointing to SG. The size, j, of the set 

T(SG) is the number of K-lines that interesect at any of those 

K-nodes. Note, j=1 for those songs that are pointed to by K-

nodes whose K-lines do not intersect with other K-lines. 

Denote by 
 
a

xi
 the value of the i-th emotion attribute (recall, 

the 1
st
 emotion attribute is “sadness”) of the 

 
SM

user
 of K-

node 
 
KN

x
, and by 

 
b

xi
 the value of the i-th emotion attribute 

of the 
  
SM

interp
 of K-node 

 
KN

x
, for a given set T(SG). For 

each song SG in the K-line collection, define 

• 

  
a = min

j
a

ji{ } , the min 
xia , across all K-nodes 

 
KN

x
, 

x=1, …, j, of the set T(SG) for song SG. 

• 

  
b = max

j
a

ji{ } , the max 
 
a

xi
, across all K-nodes xKN , 

x=1, …, j, of the set T(SG) for song SG. 

• 

  
x = min

j
b

ji{ } , the min 
 
b

xi
 across all K-nodes xKN , 

x=1, …, j, of the set T(SG) for song SG. 

• 

  
y = max

j
b

ji{ } , the max 
xib  across all K-nodes 

 
KN

x
, 

x=1, …, j, of the set T(SG) for song SG. 

 Define 

  
W (SG, i) = min a, x{ } ,max b, y{ } . 

 W(SG,i) is an interval of values that represent intensities 

of the i-th emotion attribute for a given song SG. The left 

boundary of this interval is the minimum intensity of the i-th 

emotion attribute ever reported by the user or calculated by 

the interpolation process during PartB.step1 for song SG The 

right boundary of W(SG,i) is the maximum such value. 

Special case: At the end of PartB.step1, not all K-nodes have 

their 
 
SM

user
 initialized. Specifically, this happens for any K-

node 
 
KN

special
 that points to a song SG such that T(SG) = 

{
 
KN

special
} and 

 
KN

special
 is not at the periodicity boundary P 

of Algorithm A. In such cases, the size of T(SG) = 1, i.e., 

 
KN

special
 is not at the intersection of any K-lines. Conse-

quently, the system does not prompt the user for her 
 
SM

user
 

during the creation of 
 
KN

special
 in Algorithm A. Therefore, 

only the 
  
SM

interp
 is initialized, during Algorithm B, for K-

node 
 
KN

special
. Moreover, 

 
KN

special
 has x=y since there is 

only one 
  
SM

interp
 for 

 
KN

special
. This means that the interval 

W(SG, i) for song SG pointed to by K-node 
 
KN

special
, be-

comes W(SG, i) = [x, x], i.e., collapses to a single value, x. 

 Note, W(SG,i) fits the description of the i-th interval 

  
v

ia
,v

ib
 of the Diapason D as given at the end of Section 1. 

In principle, step 2 can stop here and W(SG,i) can be defined 

to be the Diapason sought in this step. However, upon closer 

observation, such a final definition of D has some 

undesirable features. The first undesirable feature is for cases 

that x < a and y > b. In these cases W(SG,i) is equal to [x, 

y], and [x, y] contains the entire [a, b]. Such a W(SG,i) is 

unnecessarily too wide. Note, [a, b] represents a user 

specified interval of emotion intensities deemed appropriate 

for song SG. [x,y] represents a calculated (by the 

interpolation process) such interval. We argue that the user’s 

wishes (values a and b) have precedence over the estimated 

values (x and y) derived from the interpolation process. 

Therefore, in this case, W(SG,i) = [x,y] is considered to be 

unnecessarily too wide and its size should be reduced so that 

it becomes closer to the size of [a,b]. The second undesirable 

feature is for cases when |a-b| is “very small” and a < x and b 

> y. In these cases, W(SG,i) = [a,b] and W(SG,i) is too 

narrow. In fact, if the K-line of K-node KN pointing to SG 

happens not to have any intersecting K-lines at node KN, a = 

b and |a-b| = 0. In such cases the interval [a,b] collapses to a 

single value. Similar to this is the special case identified 

above, for K-nodes such as node 
 
KN

special
, for which x = y 

and |x-y| = 0, and thus the interval [x, y] collapses to a single 

value. 

 To remedy the above concerns, we define a Default 

Diapason. The Default Diapason, DD, is a number that 

represents the size of a hypothetical ideal Diapason and a 

guideline which all W(SG,i) intervals strive to achieve. 

Specifically, if the size of W(SG,i) is bigger than DD, we 

shrink W(SG,i) so that its resulting size is as close as 

possible to DD; and if the size of W(SG,i) is smaller than 

DD, we expand W(SG,i) so that its resulting size is equal to 

DD. Note, when we shrink W(SG,i), it is not always 

desirable to shrink it enough for its size to reach DD. This 

happens in cases when the size of [a,b] is already bigger than 

DD. In these cases, further shrinkage of W(SG,i) will result 

to an interval which does not include a, or b, or either. We 

consider the importance of values a and b to have precedence 

over the importance of the DD value for the same reasons 

(mentioned above) that we consider a and b more important 

than x and y. 

 Based on the above discussion and definitions, Algorithm 

“Diapason calculation”, next, specifies the calculation of the 

Diapason for all songs in the K-line collection. 
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Algorithm “Diapason Calculation” 

Set DefaultDiapason DD; 

// D is the calculated Diapason 
for (each song SG) { 

1. T = T_set(SG); 
2. for (i = 1 to 6) { 

a. W_i = W_interval(SG,i); 
b. W_i_size = the size of W_i; 
c. d = |DD-W_i_size|; 
d. if (W_i == DD) 

i. D_i = W_i; 
e. if (W_i < DD) 

i. D= expand(W_i, d); 
f. if (W_i > DD) 

i. D_i=shrink(W_i, d); 
3. } //end for (i = 1 to 6) 
4. D = <D_1, D_2, …, D_6 >; 

} // end for (each song SG) 
(Method) 
T_set(SG) 

o Input: a song SG 

o Returns: the set T(SG) of K-nodes point-

ing to SG, as described above. 

(method) 
W_interval(SG, i) 

o Input: a song SG and a 

o Returns: the set T(SG) of K-nodes point-

ing to SG, as described above. 

(Method) 
expand(W, d) 

o Input: W is an interval of type W(SG,i) as 

described above; d is a number indicating 

the amount of expansion. 

o Returns: the expanded interval W. 

o Action: this method increases the size of 

W by expanding it from the left and from 

the right by a total amount d. The size of 

the resulting interval is equal to the size of 

the default diapason DD. The expansion is 

done equally from both sides of W. Note, 

an expansion occasionally causes one of 

the boundaries of W to become either less 

than 0 (which is the minimum possible 

value for any emotion attribute in our sys-

tem) or greater than 5 (the max possible 

value for any emotion attribute in our sys-

tem), but not both. In such cases, the inter-

val maintains its acquired width, but it is 

adjusted by sliding it to the left or to the 

right, as necessary, so that none of its 

boundaries is less than 0 or greater than 5. 

It is easy to show that such sliding never 

causes a violation of the opposite bound-

ary. 

(Method) 
shrink(W, d) 

o Input: W is an interval of type W(SG,i) as 

described above; d is a number indicating 

the amount of shrinking. 

o Returns: the shrunk interval W. 

o Knowledge: this method is aware of the 

quantities a, b, x, and y that are related to 

interval W, as described above. 

o Action: this method reduces the size of W 

by shrinking it from the left and/or from 

the right by an amount not to exceed d. 

The size of the resulting interval is no less 

than the size of the default diapason DD. 

Also, a and b (the user-entered values for 

emotion intensities) are never left outside 

the resulting interval. The details of how 

the shrinking of W is performed depend on 

the relative order of a, b, x, and y, and are 

as follows. Define z1 = |y-b| and z2 = |a-x|. 

o If the ordering is “x y a b”, 

then shrink W from the left 

only, by an amount equal to 

min {d, z2}. 

o If the ordering is “a x b y”, 

then shrink W from the right 

only by an amount equal to 

min {d, z1}. 

o If the ordering is “x a y b”, 

then shrink from the left only 

by min {d, z2}. 

o If the ordering is “x a b y”, 

then shrink from the left and 

from the right, for a total 

amount of min {d, z1 + z2}. 

o If the ordering is “a b x y”, 

then shrink from the right 

only, by min {d, z1}. 

 At the end of Algorithm “Diapason Calculation” the 

Diapason D of each song has the form 

  
D = D

1
, D

2
,..., D

6
 

(line 4 of Algorithm “Diapason Calculation”), where each 

 
D

i
 has the form 

  
v

ia
,v

ib
, as described at the end of Section 

1; and all K-nodes that point to the same song have the same 

Diapason D. 

Step 3: Update of the Interpolated Values of Step 1 

 In step 3 we adjust, as necessary, the interpolated values 

calculated in step 1. Assume 

  
SM

interp
= a

1
, a

2
,..., a

6
 and 

  
D = D

1
, D

2
,..., D

6
, 

  
D

i
= v

ia
,v

ib
 

are the 
  
SM

interp
 calculated by step 1 and the Diapason 

calculated by step 2, for a K-node. In this step we set 

 
a

i
= v

ia
, if 

 
a

i
< v

ia
, and 

 
a

i
= v

ib
, if 

 
a

i
> v

ib
. In other words, 

for every K-node, we adjust the interpolated values of that 

K-node to fall inside the corresponding Diapason interval of 

that K-node. 
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 The motivation for doing step 3 is to improve on the es-

timations of the values done by the interpolation process of 

step 1. Recall, the interpolation process calculates a best-fit 

curve based on existing plotted points representing user en-

tered values (Fig. 6, Section 2). The quality of the 
  
SM

interp
 

depends entirely on the quality of that curve, i.e., on the ex-

tend to which the calculated best-fit curve is an accurate pre-

diction of the true SM of the user at the corresponding K-

node. On the other hand, the Diapason associated with a 

song SG, as calculated in step 2, captures the collective 

knowledge of all K-nodes of the set T(SG). Therefore, if a 

LSM-calculated value is outside the corresponding Diapason 

range, this is evidence that the LSM-calculated value is pos-

sibly off and, thus, it is adjusted. 

 Note, the update of the interpolated values in step 3 

produces new interpolated values. These new values are the 

values that are used for the next iteration, in step 1. 

 Steps step 1, step 2 and step 3 are repeated until two 

successive executions of the <step 1; step 2; step 3> 

sequence produce negligible changes in the diapasons 

throughout the collection. When this happens, the system is 

considered to be trained and the K-line mesh to be fully 

formed. Fig. (7) shows such a K-line mesh, containing 5 K-

lines KL1, …, KL5. 

 

Fig. (7). A K-line mesh. 

 The nodes shown to be at the intersection of K-lines in 

Fig. (7) (e.g., nodes N1 and N2) are K-nodes that point to the 

same song. For example, for node N1 which is at the 

interesection of K-lines KL3, KL4, and KL5, it means that 

there is a song SG which is selected by the user during the 

formation of these 3 K-lines and (the subfrane SD-frame of) 

node N1 points to that song SG. Note, during the K-line 

formation process, each of those 3 K-lines maintains a 

separate copy of node N1. The song component of the SD-

frame of each such copy of N1 in the 3 separate K-lines 

points to the same song SG, but the Diapason component of 

each SD-frame holds a different value. During the iterative 

process of the repetitive execution of steps 1, 2, and 3 in Part 

B, those Diapason values change and approach each other 

during each iteration, until at some iteration they are close 

enough (within a system defined threshold) to be considered 

equal to a common Diapason value D. Once this 

convergence occurs, the three copies of node N1 can be 

represented by a single node N1 whose SD-frame points to 

the common song SG and has a Diapason value D. Fig. (8) 

shows how this perceived common SD-frame of node N1 

looks like. 

 

Fig. (8). K-line intersection. 

 Note, Fig. (8) resembles the part of Fig. (7) that shows 

node N1 at the intersection of K-lines KL3, KL4, and KL5. 

2.3. Part C: K-line Mesh Navigation 

 We now describe the process of mining songs from the 

formed K-line mesh. The process is divided into 4 steps. 

 Step 1: The user enters a SM, 
 
SM

input
, which captures 

her present mood and according to which the system should 

retrieve and play songs. For example, 
 
SM

input
= <3, 1, 4, 3, 5, 

2>. 

 Step 2: The system chooses one of the K-lines that is a 

closest match to the input SM. to determine the closest 

matching K-line the system calculates the distance between 

inputSM  and each of the 1
st
 K-nodes of the existing K-lines 

and chooses the K-line produces the shortest distance. The 

distance between inputSM  and the 1
st
 K-node of a K-line KL 

is calculated as 

  

dist KL, SM
input( ) =

u
i
+ v

i

2
w

i

2

i=1

6

         (1) 

where iu  and iv  is the i-th emotion attribute value of the 

userSM  and interpSM  of the 1
st
 K-node of K-line KL and iw  

is the i-th emotion attribute value of inputSM . That is, 

  

SM
user

= u
1
,...,u

6
,

SM
interp

= v
1
,...,v

6
,

SM
input

= w
1
,..., w

6
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 Based on the distance calculation of expression (1), the 

closest matching K-line is the one whose 1
st
 K-node 

produced the smallest distance among all the 1
st
 K-nodes of 

all K-lines. 

 Step 3: Once the best matching K-line is determined, the 

system starts from the 1
st
 K-node of that K-line and plays the 

song pointed to by that node. Then it traverses that K-line 

sequentially and plays only those songs that are pointed to by 

K-nodes for which at least L out of the possible 6 Diapason 

intervals (L=6, initially) cover the corresponding emotion 

values of 
  
SM

input
= w

1
,..., w

6
. These are the songs which 

have a Diapason 

  
D = v

1a
,v

1b
, v

2a
,v

2b
,..., v

6a
,v

6b  

such that the condition 

   
w

i
v

ia
,v

ib
, i 1, ,6{ }  

is satisfied for at least L out of the possible 6 values of i. The 

number L is the Matching Level in this algorithm. The 

highest matching level is 6. The minimum Matching Level 

that we tolerate is 3 (see Step 4, below). 

 Step 4: This step is performed as part of step 3. As the 

iterator moves from the current K-Node to the next K-node 

during step 3, the system checks if the currently visited K- 

node is at the intersection of two or more K-lines. If this is 

so, then the system decides to which K-line among the 

intersecting K-lines to move next. This decision is made 

similar to step 2 above. That is the system calculates the 

distance between the 
 
SM

input
 and each of the K-nodes that 

are candidates to be selected next. Then, it resumes by 

following the K-line that contains the K-node that produces 

the minimum distance. In case that the entire K-line mesh 

has been traversed and the created playlist does not contain 

enough songs, then decrement the Matching Level L by one 

and repeat step 3, unless the decremenet causes the Matching 

Level to fall below 3. Algorithm C, next, summarizes the 

above steps. 

Algorithm C 

/** 

Note, method ClosestKline is overloaded. 

There is one version of this method with one pa-

rameter and one version with two parameters. The 

two versions have different functionality, as de-

scribed under each of the corresponding methods, 

below. 

**/ 
Input SM_input; 
KL = ClosestKline(SM_input); 
CurrentKLine = KL; 
MatchingLevel = 6; 
CurrentKNode = 1st K-node of 
CurrentKLine; 
Repeat { 

Repeat { 

If (CurrentKLine has no more K-
nodes) 

KL = ClosestKline (SM_input) ; 
Else { 

Condition1 = Matches(SM_input, 
CurrentKNode, 
MatchingLevel); 

Condition2 = song SG pointed to 
by CurrentKNode is not in 
Playlist; 

If (Condition1 ==True and 
Condition2 ==True) 

Playlist = Playlist + {SG}; 
If (isKLineIntersection 
(CurrentKNode) 

CurrentKLine=ClosestKLine(Cu
rrentKNode, SM_input); 
CurrentKNode = next K-node 
of CurrentKLine; 

} // end else 
} until (playlist size is 

satisfactory or entire K-line mesh 
is traversed); 

MatchingLevel--; 
If (MatchingLevel < 3) exit; 

} until (playlist size is satisfactory) 
; 

(Method) 
ClosestKLine (SM_input) 

o Input: A SM, SM_input. 

o Returns: A K-line that is the closest match to the 

SM_input, as described in step 1. 

o Intelligence: upon several invocations this method 

returns a best matching K-line which has not been 

selected in any previous invocation. 

(Method) 
ClosestKLine (SM_input, KNode) 

o Input: A SM, SM_input; a K-node, Knode. 

Condition: Knode is at the intersection of several 

K-lines. 

o Returns: A K-line which is the closest match to the 

SM_input, starting from the Knode, as described in 

step 4. 

o Intelligence: upon several invocations this method 

returns a best matching K-line which has not been 

selected in any previous invocation. 

(Method) 
Matches (SM_input, Knode, ML) 

o Input: A SM, SM_input; a K-node, Knode; the 

Matching Level ML for this invocation, as 

described in step 3 and step 4. 

o Returns: True, if the SM_input falls within at least 

ML out of the 6 intervals of the Diapason of the 

Knode, as described in step 3; False, otherwise. 

(Method) 
isKLineIntersection (Knode): (Method) 

o Input: A K-node, KNode. 

o Returns: True, if the input Knode is at the 

intersection of two or more K-lines in the K-line 

mesh; False, otherwise. 
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3. EVALUATION 

 The algorithms and method presented in Section 2 (Part 

A, Part B, and Part C) are implemented (in Java) on a typical 

notebook computer. Our evaluation covers three different 

dimensions: (1) behaviour of the algorithm of Part B for the 

formation of the K-line mesh. (2) Quality of the K-line mesh 

navigation algorithm of Part C, in terms of its ability to de-

liver playlists that conform to a desired SM. (3) comparison 

of the overall quality of our method against the most fre-

quently used typical alternative of random song selections. 

 The evaluation of the K-line mesh formation and re-

trieval of songs is done in two stages, E-Stage I and E- Stage 

II. E-Stage I corresponds to Part A together with Part B of 

section 2-i.e., the initial creation of the K-lines followed by 

the creation of the K-line mesh. In E-Stage II the quality of 

the created K-line mesh is judged. As it is customary in pro-

jects of this type (e.g., [3, 4, 35]) human volunteers are used 

as test subjects. Eight volunteers are used in our evaluation. 

Each volunteer performs both E-Stage I and E-Stage II. That 

is, each of the participants trains the system by selecting 

songs that the participant judges to be fitting to her SM (E-

Stage I), and then the participant judges if the song selec-

tions offered by the system are indeed appropriate to her SM 

(E-Stage II). The reason that the same participant performs 

both E-Stage I and E-Stage II (instead if using different par-

ticipants for E-Stage I than the ones we used for E-Stage II) 

is that music tastes and preferences may vary widely among 

different individuals and also opinions regarding what kind 

of music is more fitting for certain SMs may also be a highly 

subjective matter. As such, it would be rather meaningless to 

form a K-line mesh based on one person’s music preferences 

and SMs (in E-Stage I) and then to use a different individual 

to evaluate the appropriateness of song selections offered by 

the system (during E-Stage II). 

Songs Collection 

 For evaluation we use a collection of 300 songs. Care is 

taken, after interviewing the users, so that the collection con-

tains only types of songs that all the participants would like 

to listen to. Since our system is designed to organize private 

song collections (i.e., song collections of individual users, as 

opposed to song collections designed for public use) it is 

realistic to assume that a user includes in her song collection 

songs (or type of music) that she likes to listen, at least from 

time to time. According to [30] the song’s length has a very 

low impact on the six Ekman emotions. As such, we trim the 

length of every song to exactly 30 seconds. 

E-Stage I: Formation of K-Line Mesh 

 In this stage the user trains the system by listening to 

songs and entering her SM periodically, as described in Part 

A of section 2, using an interface shown in Fig. (9). 

 Each user performs 6 sessions, and each session corre-

sponds to one K-Line formed by the system. Each K-Line 

consists of 10 K-Nodes and exactly 10 songs. Songs are not 

repeated during the same session, i.e., all songs within the 

same K-line are different. At the end of E-Stage I, a mesh of 

6 K-Lines is formed with 10 K-nodes in each K-line. The  

 

 

Fig. (9). User interface for song selection. 

number of songs in the K-line mesh is at most 60, since re-

peat-songs may occur across different K-lines due to K-line 

intersections. As the user selects songs, Part A of our algo-

rithm (formation of K-lines) is executed. Once the user com-

pletes the song selection process, Part B of our algorithm is 

executed and forms the K-line mesh. Recall, Part B includes 

the iterative process which is the repetition of <step1; step2; 

step 3>. At this point of E-Stage I we monitor the perform-

ance of the iterative process. In all our tests we find that the 

differences in the calculated Diapasons between successive 

iterations become negligible after at most 5 iterations. Figs. 

(10) and (11) show the impact of successive iterations on the 

Diapason values. 

 

Fig. (10). 
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 Each plotted point of the curve shown in Fig. (10) is the 

point 

  
p

k
= k,max

i
ik{ }( ) , k = iteration # 

where 
  

ik
= D

i

(k 1) D
i

(k )
, and with 

  
D

i

( j )
 being the i-th in-

terval of a Diapason at the end of iteration j. Recall, the Dia-

pason of every K-node consists of 6 such intervals. During 

each iteration k of algorithm Part B, our K-line collection 

contains 360 such intervals, 
  
D

1

(k )
, 

  
D

2

(k )
, …, 

  
D

360

(k )
 (since our 

collection contains 360 K-nodes). To plot the point kp  (k in 

{1, 2, …, 7}) in Fig. (10), we compute 
  

ik
= D

i

(k 1) D
i

(k )
, 

for i=1, …, 360. (The difference D1-D2 between any two 

Diapason intervals D1 = [b1, b2] and D2 = [b3, b4] is com-

puted as max {|b1-b3|, |b2-b4|}.) The plotted point kp  repre-

sents the maximum difference observed in a Diapason inter-

val, across the entire K-line collection, as the interval is ad-

justed from iteration k-1 to iteration k, during the execution 

of Algorithm Part B. As we see in Fig. (10), the maximum 

difference decreases during successive iterations. This means 

that during the execution of Algorithm Part B the Diapasons 

stabilize across the entire K-line collection. (Fig. (10) dis-

plays 7 iterations for illustration purposes. Actually, the al-

gorithm stops as soon as the maximum difference drops be-

low 0.1. This happens at the 3
rd

 iteration in Fig. (10), i.e., just 

below the red line. Note, 0.1 is a realistic threshold, i.e., a 

small enough difference, since it is only 2% of the entire 

width of the range of values ([0...5]) covered by any emotion 

attribute). 
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Fig. (11). 
  
SM

interp
 fluctuation. K-line 4, emotion attribute 4 

(“fear”). 

 Fig. (11) shows the changes in the interpolated values 

(i.e., values of emotion attributes from the 
  
SM

interp
 field of 

each K-node) during the course of several iterations of Algo-

rithm Part B. Recall, in step 3 of Algorithm Part B, the inter-

polated values of each K-node are updated based on the Dia-

pason computed during step 2, and then the new interpolated 

values are used for the next iteration. Each curve in Fig. (11) 

corresponds to a single iteration. As we see, the curve for 

iteration 0 (represented by the blue dashed line in Fig. (11)) 

is the only curve which is clearly distinguishable. The curves 

for iterations 1, 2, and 3 overlap almost completely. In fact, 

the curves for iterations beyond iteration 3 overlap even 

more so and are not displayed in order to avoid cluttering 

Fig. (11). This means that the values of the 
  
SM

interp
 during 

step 3 become closer with the pass of every iteration. The 

implication of this is that the changes in the Diapason calcu-

lation that is performed in step 2 of the next iteration will 

also be negligible, which will result to even smaller changes 

in 
  
SM

interp
 during step 3, and so on. Eventually, by iteration 

3, as shown in Fig. (11), the changes are so small as to be 

considered negligible for all practical purposes. Note, also, 

Fig. (11) shows the value fluctuations occurring in a particu-

lar emotion attribute (emotion attribute 4 (“Fear”) for a par-

ticular K-line (K-line 4). We select this data because it ex-

hibits the most vivid fluctuations across the K-line collec-

tion. All other emotion attributes and other K-lines exhibit 

even smaller fluctuations. 

 Based on the above discussion, all K-nodes that point to 

the same song have the same Diapason value by the end of 

the algorithm Part B. At this point, the K-line mesh is con-

sidered to be formed, and the system is ready for use. 

E-Stage II: Using the System 

 In this stage the user enters her SM at the beginning of 

each session and as a result the system provides her with a 

playlist. In our testing we set the length of the produced 

playlist to be exactly 10 songs. Each user performs 10 ses-

sions and in each session the user listens to ten songs. During 

the listening process, the user evaluates each of the 10 songs 

on a scale from 0 to 10. Ten means that in the user’s opinion, 

the song matches her mood perfectly; zero means that the 

song does not match her mood at all. 

 In addition to judging how a user perceives the quality of 

the retrieved songs, we design our experiment in such a way 

that our retrieval mechanism is also compared to the random 

song selection mode which is typically used when operating 

a song listening devise. In doing so, each of the 10 playlists 

presented to each evaluator is a mix of two types of songs. 

One type of songs are the songs retrieved by our method, 

based on the navigation of the K-line mesh, as described in 

section 2. The second type of songs in the mix, are songs 

randomly selected from the songs of the K-line mesh. Each 

of the playlists presented to the evaluator consists of 10 

songs. Of those 10 songs, 5 are selected by our retrieval 

mechanism and 5 are selected randomly from the song re-

pository. To ensure that the relative locations of the random 

songs with respect to the system selected songs is neutral 

toward forming any bias to the user’s SM during the evalua-

tion process, we create the 10 playlists by mixing the ran-

domly selected songs and the system selected songs in three 

different ways: 

 Mix (I). From a playlist of 10 songs which are se-

lected by the system, we randomly remove 5 songs 

and replace them with 5 randomly selected songs. 
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 Mix (II). From a playlist of 10 songs which are se-

lected by the system, we remove the last 5 songs and 

replace them with 5 randomly selected songs. 

 Mix (III). From a playlist of 10 songs which are se-

lected by the system, we remove the first 5 songs and 

replace them with 5 randomly selected songs. 

 Using the above three mixing strategies, we create 10 

playlists: 4 of the 10 playlists are of type Mix (I); 3 of the 10 

playlists are of type Mix (II); 3 of the 10 playlists are of type 

Mix (III). Before the playlists are presented to the user for 

evaluation, we put the playlists in random order so that the 

user does not intentionally receive blocks of playlists of the 

same mix. 

Performance Comparison 

 As the users listen and evaluate the songs, we record the 

user-reported satisfaction values for each song. Table 1 

shows relevant statistics from the reported values. 

Table 1. 

 

 Our Algorithm Random Selection 

Mix (I) 72.6 22.2 

Mix (II) 74.5 21.7 

Mix (III) 69.9 22.9 

Mix (ALL) 72.3 22.3 

 

 In Table 1, each of the entries of the first three rows 

shows the average of all reported user satisfaction values 

(across all participants and across all playlists) for all songs 

S, such that S is a song which was selected by either our al-

gorithm (“Our Algorithm” column of the Table), or ran-

domly from the K-line mesh (“Random selection” column of 

the Table). For example, [Mix (III), Random selection] is 

the average of all reported user satisfaction values (across all 

participants and across all playlists) for all songs S, such that 

S is a song which was selected randomly from the K-line 

mesh and S is in a playlist formed with Mixing strategy (III). 

And so on. The last row of the Table 1 shows the average of 

all reported user satisfaction values (across all participants 

and across all playlists) for all songs S, such that S is a song 

which was selected by our algorithm and S is in any playlist 

regardless of the mixing strategy used to form that playlist. 

Essentially, the values of row MIX(ALL) are the averages of 

the values of the entries of the rows MIX (I), MIX (II), and 

MIX (III). 

Conclusions from the Performance Results 

 Behaviour of our Algorithm for the Formation of the 

K-Line Mesh: The essence of the results shown in Figs. (10) 

and (11) is that the iterative process of Algorithm Part B 

stabilizes the Diapasons and converges, within a small num-

ber of iterations. As illustrated by Fig. (10), during the exe-

cution of step 2 of algorithm Part B, the Diapasons stabilize 

across the entire K-line collection. As illustrated by Fig. 

(11), during the execution of step 3 of algorithm Part B, the 

  
SM

interp
 also stabilizes within a few iterations. This means 

that algorithm B overall forms a stable K-line mesh. 

 Quality of the K-Line Mesh Navigation Algorithm 

Part C and Comparison of our Method Against the Most 

Frequently Used Typical Alternative of Random Song 

Selections: For Mix (I) the overall average for our algorithm 

is 72.6%. For Mix (II) the overall average is 74.5% and for 

Mix (III) the average for our algorithm is 69.9%. For Ran-

dom song selection the average is approximately the same 

for all three Mixing strategies (with an insignificant differ-

ence of no more than 1.2%). This is strong evidence that 

random song selection performs equally in all cases. There-

fore, our different mix strategies do not generate any confu-

sion to the user regarding what constitutes a randomly se-

lected song versus a song that is supposed to conform to her 

SM. For Mix (ALL), the average satisfaction among our 

algorithm’s song selection is 72.3% and among Random 

song selections is 22.3%. The overall percentage is calcu-

lated by taking the overall average among all playlists and 

among all users. Since there are eight users and each user 

evaluates 10 playlists, there is a total of 80 playlists contain-

ing a total of 800 songs (recall, each playlist has 10 songs). 

Note, our repository contains 300 songs, so there are many 

duplicates among the 800 songs. However, there are no du-

plicates within each playlist. Of those 800 songs, 400 are 

songs retrieved by our algorithm Part C, and 400 are songs 

selected randomly for the purposes of creating the different 

types of mix. Our observed 22.3% average for randomly 

selected songs is in agreement with the typical reported 20% 

average for randomly generated playlists as, for example, is 

reported in [3]. We attribute the 2.3% difference (our 22.3% 

versus the generally reported 20%) to be either coincidental 

or due to the fact that in our experiments we deliver the ran-

domly selected songs together with songs that are generated 

by our algorithm (using our mix strategies). We speculate 

that as the user listens to SM-conforming songs (which are 

included in the delivered playlists of different types of mix), 

her satisfaction posture is positively affected (such influ-

ences to a person’s mood are reported in [30]) and as a side-

effect the user gives also higher satisfaction level points to 

the randomly selected songs. In either case, the 2.3% differ-

ence is not significant. 

 The results of the evaluation clearly indicate that the pro-

posed method is much more preferable than the random song 

selection which is the common choice of a typical music 

listener. Specifically, the results of the evaluation (72.3% 

versus 22.3%) suggest that our method outperforms the ran-

dom song selection method by a margin of more than 3 

times. 

4. CONCLUSION 

 Our method is comprised of two main parts. The first part 

is algorithm Part A together with Algorithm Part B. The sec-

ond part is algorithm Part C. All algorithms are described in 

Section 2. Algorithms Part A and Part B organize a song 

repository upon recording a user’s memory experiences from 

previous listening activities. Algorithm Part C provides a 

retrieval mechanism acting on the organized repository. The 
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user’s memory experiences are captured in K-lines, an AI-

related data structure proposed by Minsky [8]. Our retrieval 

mechanism is based on activating appropriate K-lines from a 

formed K-line mesh and is inspired by Minsky’s theory of 

memory as described in [6-8]. 

 We implement our method and test it by monitoring the 

internals of our algorithm execution and by recording, at the 

same time, feedback of human participants. The results of 

the introspection of the algorithms’ execution reveal that our 

algorithm converges within a few iterations and forms a sta-

ble K-line mesh (Figs. 10, 11). The feedback of the human 

participants (Table 1) provides clear evidence that our 

method outperforms the typical random song selection mode 

by a margin of more than 3 times. 

 Our method is implemented here for a song collection but 

it is applicable to any type of media, such as video clips, 

images, and text. This is because our method relies on the 

“overall impression” and “degree of likeness” of the con-

sumer of the media (as represented by the consumer’s SM), 

rather than on characteristics of the media content which are 

typically proprietary to the type of the media. To the best of 

our knowledge, there is no published research work that uses 

K-lines for organizing any type of media. Moreover, as re-

ported in [36], “… no implementation details have been 

given [by Minsky], and in twenty-five years no one has 

claimed to have implemented it [K-lines]”. [36], end of sec-

tion 2.1, page 13. ([36] discusses a topic completely different 

from media organization and chooses an approach other than 

K-lines). 

FURTHER RESEARCH DIRECTIONS 

 The work presented in this paper is amenable to further 

research. We consider the following research directions 

worth further investigation. 

 Analytical Performance Evaluation of Our Method. In 

this work we evaluated our proposed method using human 

participants. Although this is a common way for evaluation 

of such systems, we are interested to provide an analytical 

performance evaluation as well. The main difficulty of such 

an evaluation is the development of a model which captures 

the expected song selections for constructing the initial K-

lines. In other words, the issue is how to model a system-

driven, as opposed to a human-driven, initial song selection 

and how to model the periodic input of an appropriate SM 

which is required during the K-line formation process. Note, 

the obvious approach of forming K-lines by randomly gener-

ating SMs and pairing them with randomly selected songs 

will provide a working system. However, any results gener-

ated by such a system will be meaningless. This because 

such a system contains only artificial (and, in no way mean-

ingful) pairings of the 
 
SM

user
 and the Song components of 

any K-node. 

 Refinement of SM Representation. In our model we 

use the 6 basic Ekman emotions to represent a SM. Although 

Ekman’s emotion theory is widely accepted and often used 

in similar projects, it is of interest to explore how different 

representations of the SM affect the system. Specifically, 

Minsky’s mind architecture [6, 7], proposes that a state of 

mind is an instance of a collection of “agents” that are active 

at any given time point. It is of great interest to explore rep-

resentations of SM based on this architecture. The main 

problem in such an approach is to map emotional states to 

agent activation configurations. To the best of our knowl-

edge no such research has been reported. 

 Mood Altering Effects of the Listening Process, when 

the System is Used: As it stands, the system is trained and 

the K-lines are formed based on algorithms Part A and Part 

B, as described in Section 2. At the end of algorithm Part B, 

the K-lines mesh is frozen (i.e., no further modified), al-

though it allows for intelligent song selection, as done by 

algorithm Part C. It is conceivable (and probably likely, ac-

cording to the discussion in subsection 2.1) that when we use 

the system, the process of listening to the songs offered by 

the system further alters the mood of the listener and in ways 

that were not possible to be predicted during the K-line mesh 

formation. As such, the act of using the system may cause 

the user to fall into new SMs which are different from the 

SMs that are predicted by the system through its K-line 

mesh. Although those new SMs may only slightly differ 

from the SMs that are predicted by the K-line mesh, it is 

worthwhile to investigate the significance (and possible con-

sequences) of such variations. Such an investigation could 

produce research in at least two different fronts: 

1. How to amend the system in order to be able to adjust 

in the presence of such variations. Possible scenarios 

could include dynamic updates of the K-lines, or the 

development of some indexing or clustering tech-

niques that take in account the dynamic mood varia-

tions. 

2. How to use the knowledge of such mood variations, 

in conjunction with the songs that are available in the 

K-line mesh, in order to build a system with mood-

altering capabilities. In such a system, the primary 

feature would be that a user enters a desired target 

SM and the system provides a series of songs whose 

purpose is to influence the user’s mood (rather than 

conform to the user’s mood, as is done by the current 

system) so that eventually reaches the desired target 

input SM. 

 Testing the Current System with X-Dimensional SMs, 

for X < 6; Automation of the Input of the User SM: In our 

current system we use all six Ekman’s emotions to express a 

SM. It may be of interest to see if there are any significant 

findings if only fewer than six emotion attributes are active 

and the remaining attributes are dormant. If such a system 

works as well as the current system, the obvious benefits are 

simplification and increased ease of use. In addition, a bene-

fit may also be, surprisingly, increased accuracy. According 

to [16] and [17] the average person does not possess enough 

self-knowledge and self-awareness to know exactly what her 

SM is at any given point. The problem may be further com-

plicated in cases that cognitive clarity is affected by in-

creased levels of anxiety or fatigue. In case that the user is 

required to input fewer than six values for the system to form 

a SM, it might be that the accuracy of the user in expressing 

her true SM, is increased. As a result, the performance of the 
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system, in terms of providing satisfactory playlists, will also 

be increased. Similar effects are possible if the process of 

acquisition of the user’s SM is automated. Several automatic 

emotion acquisition mechanisms exist as, for example, the 

Electroencephalography (EEG) devises, and the devise 

described in [37]. Our future plans include experimenting 

with some of these devises. 
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