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Abstract:

Background:

Prostate cancer is a leading cause of death among men who do not participate in a screening programme. MRI forms a possible alternative for
prostate analysis of a higher level of sensitivity than the PSA test or biopsy. Magnetic resonance is a non-invasive method and magnetic resonance
tomography produces a large amount of data. If a screening programme were implemented, a dramatic increase in radiologist workload and patient
waiting time will follow. Computer Aided-Diagnose (CAD) could assist radiologists to decrease reading times and cost, and increase diagnostic
effectiveness. CAD mimics radiologist and imaging guidelines to detect prostate cancer.

Aim:

The  purpose  of  this  study  was  to  analyse  and  describe  current  research  in  MRI  prostate  examination  with  the  aid  of  CAD.  The  aim was  to
determine if CAD systems form a reliable method for use in prostate screening.

Methods:

This study was conducted as a systematic literature review of current scientific articles. Selection of articles was carried out using the “Preferred
Reporting Items for  Systematic  Reviews and for  Meta-Analysis”  (PRISMA).  Summaries  were created from reviewed articles  and were then
categorised into relevant data for results.

Results:

CAD has shown that its capability concerning sensitivity or specificity is higher than a radiologist. A CAD system can reach a peak sensitivity of
100% and two CAD systems showed a specificity of 100%. CAD systems are highly specialised and chiefly focus on the peripheral zone, which
could mean missing cancer in the transition zone. CAD systems can segment the prostate with the same effectiveness as a radiologist.

Conclusion:

When CAD analysed clinically-significant tumours with a Gleason score greater than 6, CAD outperformed radiologists. However, their focus on
the peripheral zone would require the use of more than one CAD system to analyse the entire prostate.
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1. INTRODUCTION

CAD with MRT images may be used as an early detection
method  and  as  part  of  the  screening  process.  Artificial
intelligence can reduce image analysis time for radiologists and
improve quality performance for radiology  departments.  This
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study will systematically review research articles on magnetic
resonance  with  CAD  that  could  be  applicable  to  detecting
prostate  cancer.

2. BACKGROUND

Prostate  cancer  is  the  second  most  common  cause  of
cancer  death  among  men.  However,  to  date  there  is  no
screening  program [1].  The  Prostate  Specific  Antigen  (PSA)
test  can  detect  prostate  cancer,  but  has  a  low  degree  of
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sensitivity. Magnetic Resonance Tomography (MRT) is under
discussion  for  use  in  screening  programmes,  but  this  would
generate  a  large  amount  of  data  and  image  slices.  Computer
Aided Diagnosis (CAD) could assist radiologists by analysing
these images.

2.1. Data System for Reading Radiological Images

In  1966,  the  first  attempts  at  computer  automated
diagnoses were made and failed simultaneously [2]. Automated
computer  diagnosis  caused  fear  that  radiologists  may  be
replaced  in  1966,  1980s  and  again  recently  with  modern
advancement  in  artificial  intelligence.  But  Computer-Aided
Diagnosis (CAD) differs from automated computer diagnosis,
in  that  CAD assists  in  giving  a  diagnosis  and  the  automated
version gives the diagnosis [2].

Data  systems  for  reading  medical  images  have  been
growing and developing since the 1980s. CAD is a machine-
learning  service  built  on  algorithms  to  help  in  diagnosis.
Fundamentally,  it  trains  a  computer  system  to  read  images.
First doctors look at images and they give a diagnosis. Then a
computer  attempts  to  analyse  the  images  with  the  aid  of
algorithms  and  gives  the  precisely  the  same  result  as  the
doctors  [3].  The  data  system  marks  suspicious  forms  or
pathologies in the image. These data systems have a plethora of
different  names  such  as  CADs,  machine  learning,  cognitive
learning, artificial intelligence, deep learning and many more.
These  systems  are  usually  designed  with  a  specific  area  of
interest  in  the  human  body  such  as  lung  CAD  or  mammo-
graphy  CAD.  These  specific  and  specialised  CADs  may  use
special algorithms to detect lung nodules in case of overlapping
in chest x-ray [2].

2.2.  Machine  Learning  Versus  Artificial  Intelligence  and
CAD

Artificial  intelligence-based computer  systems consist  of
implanted rules [4] which disallow or exclude certain criteria
but  do  not  enable  free  learning.  Machine  learning,  or  deep
learning data systems do not have these implanted stop rules
[5] which are important as they allow these systems to learn on
their own. Deep learning systems can learn on their own and do
not  always  require  large  fodder  data  to  analyse  new  data
properly  [6].

These different data systems become more accurate with
larger  image  databases.  However,  in  order  to  determine  if
artificial intelligence is working properly, a large influx of new
images must be scanned. These data systems must perform at a
very high level in order to be acceptable [2].

The hierarchy of CAD can be confusing and, in order not
to baffle the readers of this study, the following terms will be
referred by the collective names of CAD: artificial intelligence,
deep learning and CAD.

2.3. Radiologists’ Imaging Guidelines

(This  section  on  radiologists’  imaging  guidelines  is
important because it shows what CAD must mimic and do if it
is  to  be  effective.  This  section  supports  other  information  in
later sections.)

Image guidelines for prostate cancer are found and repor-
ted in the “Prostate Imaging Reporting and Data System” (PI-
RADS). These guidelines are revised and published jointly by
the American College of Radiology and the European Society
of  Urogenital  Radiology.  This  data  system  contains  various
prostate  maps  that  aid  in  the  diagnosis  and  analysis  of  the
prostate. One map type is the prostate sector map that divides
the  prostate  into  thirty-six  sectors.  Other  maps  also  show
common areas for cancer and their different types. The system
contains pathological images for reference. PI-RADS contains
other  data  such  as  standardised  reporting,  biopsy
scoring/Gleason’s score, MRI data and images, classification,
staging  and  diagnostic  performance  for  detection  [7,  8].
Radiologists  can  use  the  PI-RADS data  system as  an  aid  on
how to analyse images and judge image pathology in order to
give their diagnoses.

The primary use of PI-RADS with MRI is to evaluate the
extent of prostate cancer and whether it has spread throughout
the prostate. Radiologists use standardised reporting for MRI
prostate  scans which segments  the  seminal  vesicles,  plus  the
prostate  into  three  main  regions  (apex,  mid,  base)  and  nine
subregions.  Radiologists  examine  the  prostate  using  four
different scanning images types. Any areas of interest are noted
on a report and the PI-RADS scores for those four image types
[7,  8].  It  is  recommended  that  they  have  PI-RADS  prostate
maps  on  a  screen  beside  patient  images  for  diagnostic
reference.

2.4. Radiological Analysis

The reading process starts from the anterior to the posterior
portion  of  axial  image.  The  radiologist  reads  from  a  left
superior  to  right  superior  area  of  the  image  then  reads
downward  inferior  as  they  scroll  through  the  images.  This
process takes a long time due to the number of images and a
series of MRT images (Fig. 1) and the inhomogeneous texture
of the prostate [8].

Fig. (1). Section map dividing the prostate into different sectors and
zones. Image from pi-rads version 2.
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2.5. Pathology and Cancer Detection

Prostate  cancer  is  divided  into  different  stages  which
describe the severity of cancer. Prioritising of patients depends
on the availability of modalities, their cost, their effectiveness
and how serious the patient’s situation is [9, 10].

To  help  diagnose  prostate  cancer,  health  services  should
suggest  a  specific  blood  test  called  the  Prostate-Specific
Antigen (PSA) to men between 50-70 years of age. PSA tests
can  help  decrease  the  risk  of  death,  but  the  test  is  not  one-
hundred percent reliable and can lead to overdiagnosis. Patients
with  a  positive  PSAs  are  often  followed  up  with  ultrasound
examination and biopsy to the prostate or lymph nodes in the
pelvic region [10]. Ultrasound guided transrectal biopsy of the
prostate  has  an  approximate  sensitivity  of  48%  and  a
specificity of 96% [11]. Negative side effects from a diagnostic
biopsy and treatment of the prostate can include loss of sexual
function, urine leakage and rectal issues [10, 11] which may be
due to cutting through the rectal intestine to access the prostate.

MRT prostate examinations are non-invasive and give an
exact  volume  of  the  prostate  and  aid  in  segmenting.  MRI
features  such  as  apparent  diffusion  coefficients  and  gives  an
indication if the tumour detected is cancerous or not [12]. It is
still  unknown  how  many  men  have  prostate  cancer  without
symptoms  or  at  which  age  cancer  becomes  prominent  [10].
Only  with  routine  screening  more  accurate  data  can  be
collected  in  order  to  understand  prostate  cancer  better.

2.6. Effects of an Active Screening Programme

An  active  screening  programme,  aimed  at  identifying
potentially curable cancer, may be considered effective if, on
average,  it  increases  life  expectancy  of  screened  prostate
cancer patients by 1 year or more. Cost effectiveness is vital,
total cost estimate in 2004 for digital rectal examination with
PSA  test  every  three  years  would  cost  an  extra  SEK  244
million  annually.  Effectiveness,  time,  materials,  cost  and
workload must be considered when implementing a screening
programme  [1].  CAD  could  assist  radiologists  by  increasing
effectiveness,  decreasing  workload,  decreasing  costs  and
saving  time  when  analysing  images  [2,  5].  Benefits  of
screening would  be  early  detection  of  prostate  cancer,  better
understanding  of  the  disease,  increased  life  expectancy  and
improved well-being of the patients.

3. AIM

The purpose of this study is to analyse and describe current
research  in  MRI  prostate  examination  with  the  aid  of  CAD.
The aim is to determine if CAD systems provide a viable and
reliable  method  together  with  MRI  to  assist  radiologists  and
even become part of the screening process.

4. MATERIALS AND METHODS

4.1. Eligibility Criteria and Search

Methodology  used  involved  the  systematic  search  and
collection  of  articles  from  medical  databases  based  on  key
search  terms.  A  systematic  compilation  of  earlier  scientific
studies and articles covering the subjects of “MRI”, “prostate

cancer” and “CAD” or “artificial intelligence”. Only original
articles  were  selected  and  articles  older  than  2014  were
classified  as  old  research  [13].  Systematic  compilation  was
performed using the “Preferred Reporting Items for Systematic
Reviews  and  for  Meta-Analysis”  (PRISMA)  system  for
reporting systematic research. Inclusion criteria were the most
up to date CAD system or artificial intelligence in order to see
if  they were fully developed and of use clinically.  Exclusion
criteria were articles covering combination examinations with
CAD,  such  as  PET/CT  or  MRT.  Studies  of  biopsy  led  by
artificial intelligence were excluded but results from prostate
biopsies with a focus in MRI prostate examinations that used
artificial  intelligence  or  CAD  were  used.  These  inclusion
criteria were selected to improve the quality of the article. A
series of filters were used to help narrow down the articles to
review:  peer  reviewed,  human  studies  and  articles  published
February 2014-2019 [14 - 16].

4.2. Implementation and Information Sources

This is a literature study including a qualitative systematic
review  of  original  scientific  articles  with  its  focus  on  CAD
systems  in  the  use  of  MRT  prostate  exams  from  medical
databases [17 - 19]. Almost all the information was searched
from  medical  databases  such  as  PubMed,  Web  of  Science,
CINAHL. A PRISMA table  of  search methods for  databases
and search words was created Table 1. Multiple searches were
used with multiple search terms and filters in order to collect
the  most  relevant,  up-to-date  articles  on  a  continuous  basis.
The final search was carried out in PubMed and used as this
was a better source of medicine-based articles. The final day
for searching and all data collection was 25 March 2019.

4.3. Search Methods

A final search of terms in the Pubmed medical database.
The main search terms were “MRI, “prostate cancer” and one
of the following two terms: “CAD” or “artificial intelligence”.
The search results were then filtered based upon free access,
year, human studies, original article and peer review. Results
were saved and sent to a common folder in the Endnote digital
software. Articles were checked for duplicates and any dupli-
cates  were  removed.  The  search  terms  “MRI”  and  “prostate
cancer”  and  “CAD”  yielded  22  articles,  while  “MRI”  and
“prostate  cancer”  and  “artificial  intelligence”  yielded  67
articles.

4.4. Study Selection

This  study  uses  a  qualitative  analysis  method  for
comparison of the original articles in the 2014-2019 timeframe
[19]. A total of 89 articles were first reviewed and then filtered
more  thoroughly.  A  final  compliment  and  reiteration  of  39
original articles for results and 12 separate articles for use in
the discussion were carried out.

Following  the  system  for  preferred  reporting  items  for
systematic reviews and meta-analyses “PRISMA”, a systematic
screening  method  was  implemented  for  sorting  and  listing
reference articles. First a quick selection of articles based on
their titles. If it  was unclear whether a title was beneficial to
this study, a quick review of its abstract was performed. Titles
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and abstracts that were assessed as fulfilling exclusion criteria
were  removed  from  further  review.  Articles  which  were  not
relevant or titles that had no relevance were also excluded. A
second stage was implemented in which the remaining articles
were reviewed. This stage was followed by the analysis of all
remaining articles. Any abstract or article that was not relevant
or content that focused on exclusion parameters was removed
at that point. In the final review process, the quality of content
in the remaining articles was assessed, a written summary was
made  indicating  categories  of  content  within  each  article.
Quality assessment was performed using a quality protocol for
studies [20]. The entire process is iterated in a PRISMA flow
diagram Table 1. Articles that met inclusion criteria focused on
the  radiological  processing  by  artificial  intelligence/CAD
working with MRIs of prostates. They also included data about
their learning, training and performance with radiologists or in
comparison  to  another  CAD system.  The  focus  was  on  their
more basic medical applications in this study and not on high-
level technical information.

4.5. Data Collection

Summaries  were  created  of  a  total  of  39,  fully-reviewed
articles  from  PubMed  from  which  the  relevant  data  was
obtained. Data was organised into different categories. Organi-
sed category data from all studies was paired together and then
analysed for use in results. Finally, organised, paired data was
summarised and given a title in the results.

4.6. Analysis and Synthesis of Results

After  all  the  selected  articles  were  summarised,  their
results  were  obtained.  The  summaries  were  analysed  for
keywords and main themes which were then highlighted. These
main themes were organised into a categorised group content,
based  upon  their  common  area  of  use.  Shared  themes  were
extrapolated from these articles including: CAD sensitivity and
specificity  versus  radiologists,  CAD  pathological  detection
sensitivity and specificity-PAD versus CAD, segmentation of
the  prostate-manual  method  versus  CAD,  CAD-assisted
reading times, error correction with CAD, radiological image
inter-pretation  by  CAD  and  radiologist,  gold  standards  PSA
and  biopsy  versus  CAD  detection  with  MRT,  MRI  CAD
training and testing. All relevant article data pertaining to the
main theme was placed under its corresponding theme title.

4.7. Research Ethics

Only original scientific articles on examination of humans
are  cited  in  this  study,  excluding  review  articles  [13].  All
information is reiterated in the authors’ own words from their
own understanding of the articles read. No third parties were
used to write or do the work of this study. Scientific articles
older  than  five  years  only  appear  in  the  background  as  they
pertain to the history of the subject and previous research. Only
scientific articles within the last five years are used in the study
so as to include only the most modern, up-to-date information.

5. RESULTS

The  results  are  based  on  39  different  scientific,  peer-
reviewed,  original  articles  that  focus  on  CAD  and  artificial

intelligence in MRI prostate scans. Various researchers tested
modified version of previous artificial intelligence programs,
tested newly-developed artificial intelligence/CAD systems or
tested  the  accuracy  of  CAD  against  seasoned  radiologists.
Results will address sensitivity and specificity, segmentation,
image  interpretation,  error  correction,  time  aspects,  training
and testing of artificial intelligence systems.

5.1. CAD Sensitivity and Specificity Versus Radiologists

The average sensitivity for cancer detection for all relevant
studies was 86.8% [14 - 31].  For all  studies,  peak sensitivity
was  98%  and  lowest  was  46.8%  (25,  30).  The  average
specificity of CAD was 79.8% [14 - 31]. Peak specificity for
all studies with CAD was 100% and lowest 57.1% [21, 27, 31].
CAD can reach a 100% sensitivity in distinguishing indolent
from  aggressive  cancer  tumours  [22].  CAD  showed  higher
sensitivity of tumour detection when tumours were clinically
significant, with a Gleason score greater than 6 [18, 24].

The  average  sensitivity  of  a  seasoned  radiologist  is  94%
and specificity  85.5% [32,  33].  The average first  year  radio-
logist had a sensitivity of 81% and specificity of 83% [32]. In
every study where radiologists used CAD in tumour detection,
they showed increased sensitivity [14, 15, 27, 31] Table 2

5.2. CAD Pathological Detection, Sensitivity and Specificity
- PAD Versus CAD

A combination of digitalised pathology, multi-parametric
MRT and CAD creates probability maps with specific charac-
teristic histology of prostate cancer focal position. Pathologists
segmented  the  prostate  on  MRT  images  of  patients  before
proctectomy  and  created  individual  3D  models  to  aid  the
identification of pathology within the prostate. These prostate
models  are  used  when  manually  segmenting  and  slicing  the
prostate. In this process the prostate is scored with Gleason or
Likert  score.  Prostates  are  dyed  at  the  time  of  surgical
extraction to identify clinically-significant finds and to divide
the prostate into different regions.  These prostates were then
sliced  to  5  micro-meters  and  digitally  scanned  and  added  to
MRI data space to create prediction maps for CAD [20, 33 -
35].

Regions  of  decreased  lumen  and  higher  density  of
epithelium  indicated  high  grade  tumours  shown  in  radio-
pathologic maps with matching pathologic annotation. Because
algorithms  could  detect  cell  density  voxel-wise,  densities  of
different tissues can be quantitively estimated [18, 36].

5.3. Segmentation of Prostate-Manual Method Versus CAD

Accuracy of manual segmentation can vary due to image
quality and how the observer interprets  the image.  There are
multiple  and  different  approaches  to  the  analysis  and
segmentation  of  the  prostate.  A  volume-based  approach  is
where one voxel is compared with other voxels around it and
similar  voxels  were  clustered  together.  CAD  algorithms  can
generate  a map  of the  prostate from  this voxel  cluster  data
[23, 37, 38]. The prostate can be segmented well in 3D slices
from a 3D generated MRI, however this method is unpopular
because it takes longer than normal manual segmentation [37].



Prostate Cancer Detection The Open Artificial Intelligence Journal, 2020, Volume 06   5

Another approach is axial registration, one axial image is
registered with the next and fused together until the prostate is
segmented [38, 39]. However, this process causes overlapping
and  decreases  specificity  but  does  possess  increased  re-
peatability. Axial segmentation uses axial images and then co-
registration images to detect the entire prostate. CAD combines
regions  together  and  separates  different  parts  of  prostate.
Images are smoothed around the edges and the background was
blackened out in order to focus on analysing the prostate only.
When  CAD  combined  structural  data,  it  greatly  enhanced
segmentation. Accuracy of this type of segmentation yielded a
DICE  coefficient  of  90.77%  from  combined  data  [32].  The
average DICE score for all segmentation data is 90.05%.

5.4. CAD-Assisted Reading Times

The average prostate reading timings improved with CAD
for  radiologists.  In  one  study  timings  improved  from  4.6
minutes unassisted to 3.4 minutes with the system [26]. Other
studies showed a 50% increase in reading times [18].

5.4.1. Segmentation Reading Times

Manual segmentation can be time consuming, tedious and
subjective  depending  upon  the  radiologist  [20].  The  fastest
time for an experienced radiologist to segment the prostate in
30 seconds and a radiologist technician 1 minute [32]. Average
CAD segmentation time is 26 seconds and the fastest time is 4
seconds from data [40 - 42].

5.5. Error Correction with CAD

MRI with  CAD can  avoid  unnecessary  surgeries.  In  one
study, CAD corrected errors where 21 of 44 tumours showed a
false positive with Likert score of 3. And 29 of 82 showed false
negative  findings  with  a  Likert  score  of  4  in  the  same study
[16].  CAD can act  as  a  second reader verifying findings and
reducing false findings [16, 31]. This aids radiologists and re-
duces diagnostic oversight [21].

5.6. Radiological Image Interpretation of CAD

CAD increases the security of medical image assessment
among radiologists [14]. CAD also increase the sensitivity and
specificity  of  radiologists  after  viewing  CAD-generated  pro-
bability  maps  [20].  CAD  increases  the  sensitivity  of  all  its
readers.  CAD  systems  can  colour  code  voxels  based  on  the
probability  of  malignant  cancer.  With  over  60% malignancy
per voxel, the CAD algorithm will colour voxels red to alert the
reader of significant cancer suspicions [23, 24]. CAD systems
can give other, visually-represented findings before, during or
after  the  reader  has  analysed  images.  Such  as  showing  low-
signal intensities to differentiate between benign, malignant or
image  artefacts  [24,  32,  43  -  45].  CAD  systems  can  diffe-
rentiate tumours with very high specificity, up to 100%, which
means CAD can give grading analyses of tumours [27]. High
signal intensity artefacts limit the detection of tumours in the
peripheral zone for CAD systems but have little or no effect on
the observer [46].

Table 1. Prisma flow diagram.
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Table 2. Mean statistical data of CAD cancer detection rates in percent from search study results.

Study/ Author Zone/ Area of Interest Sensitivity Specificity Gleason Score>6
Sensitivity

Gleason Score>6
Specificity

DICE Similarity
Coefficient/ Accuracy

Greer et al. PZ & TZ 86.3% 57.1% - - -
Dinh et al. PZ 95.0% - - - -
Thon et al. - 46.8% 75.4% - - -

Giannini V. et al. 2017 - 94.3 % 87.6% 91.3% 87.6% -
Gao G. et al. 2017
Rida I. et al. 2017

PZ & TZ 81.8%
83.3%

94.5%
100%

-
-

-
-

92.3%
-

Giannini V. et al. 2015 PZ 84.0% 86.0% - - -
Citak-Er F, et al. 2014 - 86.5% 87.9% - - -
To, MNN, et al. 2018 - - - - - 95.1%

Tian et al. 2018 - - - - - 85.3%
Li J, et al. 2018 Dataset 1 PZ, CG 95.2% 100% - - 97.6%
Li J, et al. 2018 Dataset 2 PZ, CG 90.3% 92.2% - - 89.7%

Iyama. Dataset 1 PZ, TZ 90.0% 60-90% ¤ - - -
Iyama. Dataset 2 PZ, TZ 82.0% 95.3% - - -

Zhu Y, et al. 2017 - 91.5% 88.5% - - -
Tian Z. 2017

Merisaari (SVM)
-
-

-
93.0%

-
91.7%

-
-

-
-

87.2%
-

Merisaari (LR) - 86.7% 77.2% - - -
Guo Y. et al. 2014 - - - - - 90.1%

Stember JN, et al. 2014 - 84.4% 78.1% - - -
¤Table II key: Peripheral zone=PZ, Transitional zone=TZ, Central gland=CG.

5.6.1. Tumour Differences in Prostate Zones

Peripheral zone tumours appear to be round on MRI and
are  easier  to  detect.  Tumours  in  the  transition  zone  are
heterogenous  and  very  hypointense.  Normal  MRI  visualises
transition zone tumours best with the aid of apparent diffusion
coefficient [24]. Transition zone tumours are very difficult to
distinguish from other tissues. A study in 2017 showed 80% of
small  tumours  in  the  transition  zone  had  a  Gleason  score
greater than 6 [47]. Zone specific CAD could assist detection
of small tumours in the transition zone.

5.6.2. Radiologist’s Interpretation of Images

There is great variability among radiologists’ performance
[16,  24].  Interpretation  of  of  images  by  radiologists  is  very
subjective  based  upon  expertise  and  what  the  observers  see
[23]. Radiologist expertise is based on education, experience in
medical  imaging,  personal  preferences  and  medical  culture
level. Medical culture level is how much a radiologist interacts
with other radiologists and specialists [28]. These factors can
limit  repitition  and  accuracy  of  radiologist  assessments  [28]
repeatably.  These  factors  can  cause  strong  inconsistencies
between radiologist’s reading of images. An example of this is
the radiologist distinguishing cancer in the transition zone [23].

5.7. PSA and Biopsy Versus CAD Detection with MRT

For prostate cancer detection there is the Prostate Specific
Antigen  (PSA)  test,  followed  by  ultrasound  biopsy  of  the
prostate. PSA is the most popular method for prostate cancer
detection  but  has  low  specificity  and  a  high  rate  of  false
positives  [17,  48].  After  a  positive  PSA the  average  waiting
period  for  biopsy  is  a  month  [16].  It  is  not  uncommon  that
biopsy  needles  can  be  missed  or  harvest  the  wrong  cells.

Usually 5-7 samples are taken to avoid a return visit. It is not
uncommon  to  have  to  return  for  another  biopsy  due  to  a
negative biopsy with positive PSA [27, 48]. Urologists usually
target the peripheral zone where 70% of cancerous tumours are
present.  But  half  of  the  30% of  cancers  within  the  transition
zone are very aggressive and often missed [48]. Due to these
factors,  ultrasound  biopsy  shows  a  high  false  negative  rate
[23].

CAD with MRT can limit or avoid unnecessary biopsies by
eliminating false positives or negatives and targeting the entire
prostate  [16].  CAD  systems  are  primarily  trained  for  the
peripheral  zone,  but  certain  CAD  systems  focus  on  the
transition  zone  or  both  zones  [20,  24,  26,  48].

5.8. MRI CAD Training and Testing

Training for  CAD systems to function without  input  and
testing  their  performance  against  datasets  is  popular.  One
common  technique  during  the  training  phase  is  that  the
radiologist encircles the regions of interest on images. While
this is positive training for CADfor the radiologist, it can create
learned  bias  from a  subjective  diagnostic  approach  [41,  49  -
51].  If  the  CAD system only mimics  the  radiologist-directed
regions of interest, it is quite possible to miss other areas. To
avoid this problem, many modern CAD systems are developed
to  be  multi-functional  and  focus  on  areas  of  interest,  signal
intensities,  feature  extractions,  pattern  mining  and  other
parameters.

5.8.1. Errors Using Signal Intensity-based CAD Systems

During  MRT  scans,  tissue  does  not  retain  the  same
numeric  signal  intensity  value.  Signal  intensities  change
because of  poor  radio  frequency coils.  Also because  of  MRI
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protocol, body region and excessive heat build-up [27] except
for the diffusion-weighted images and their derivative are the
apparent  diffusion  coefficient.  These  factors  are  important
because  certain  CAD systems are  based on signal  intensities
only  and  lack  standardised  intensity.  They  do  not  retain  the
same  data  value,  nor  do  they  maintain  the  same  sensitivity
despite  retaining all  parameters  and running the same scan a
second time [27, 41].

5.8.2. Specific Extracted Features

A  CAD  system  can  extract  up  to  300  hundred  specific
features in prostate MRT images, many of which the observer
cannot  see.  CAD  uses  these  to  interpret  images  and
differentiate tissue [20, 23, 26, 30, 50, 51]. A type of specific
extraction  can  be  pattern-mined  in  which  the  CAD  analyses
thousands of images to match a specific pattern in the current
image  being  read  and  give  probability  feedback  of  what  it
could be [26].

6. DISCUSSION

This  study  aimed  to  see  how  artificial  intelligence/CAD
systems can assist radiology in MRT prostate examinations.

Use of CAD systems for MRI examinations may improve
the sensitivity of radiologists. Radiological assessments of MRI
prostate examinations are subjective and vary between radio-
logists. CAD systems can increase their effectiveness, and save
time  in  analysing  images.  CAD  systems  have  different
classification zones focused on peripheral, transitional and the
central gland of the prostate. Many CAD systems focus only on
peripheral zone and do not account for biological differences
caused by tumours in the transition zone [50]. Certain types of
CAD systems that use signal intensities as a base measurement
to differentiate between tissues show data that varies despite all
parameters remaining the same and re-running the exact same
examination.  This  variation  is  due  to  failed  series  sources
which  are  affected  by  heat  or  some  other  variation  in  MRT
parameters. CAD systems have the potential to learning on a
continuous  basis  and  also  the  ability  to  unlearn  unimportant
information itself such as background noise.

6.1.  Pathological  Scores  give  CAD  better  Sensitivity  and
Specificity

The ability of CAD to quantify and classify prostate cancer
is imperative when analysing images [52]. In one study of 364
patient  CADs  showed  100%  sensitivity  in  differentiating
prostate  cancer  aggressiveness  from  indolence.  This  dif-
ferentiating capability was due to preregistering tumour data in
different  image  planes  combined  with  the  Gleason  scores
received from targeted ultrasound biopsies [15, 53, 54]. Two
different studies produced 100% specificity [20, 24]. The first,
a  CAD  system,  used  two-dimensional  diffusion  weighted
images  based  on  geometric  deformation  to  segment  the
prostate.  Followed  by  describing  the  prostate  in  terms  of
mathematical  labels  and  then  classifying  it  [18].

In the second study, a CAD system focussed on the central
gland  of  the  prostate.  A  radiologist  marked  152  cancerous
regions of interest in the central gland of 136 patients, which
was confirmed by pathology after ultrasound-guided biopsies

and  given  Gleason  scores  [22,  54].  The  CAD  system  only
evaluated these cancerous regions and then different parametric
maps for programming. After which the artificial intelligence
system classified the prostate in terms of Gleason scores. The
artificial intelligence was trained on two evenly split datasets
based  on  14  image  features.  This  study’s  CAD  showed  a
sensitivity  of  95.2% and  a  specificity  of  100% in  Dataset  1.
Dataset 2 gave a sensitivity of 90.3% and a specificity 92.2%
[22]. By focusing the learning artificial intelligence and with
the  aid  of  histopathological  data,  artificial  intelligence  pro-
duced a high classification rate of prostate cancer. And showed
similar classification levels to experienced radiologists [55].

CAD systems are more sensitive to variations in images,
they could be optimal for treatment and distinguishing between
clinically-significant  cancer  or  benign  prostate  hyperplasia
[56]. Even with good results from improved multi-parametric
MRIs,  approximately  10-20% of  cancers  are  missed.  Benign
specific features can mimic cancer and make detection difficult
[56].  CAD  can  assist  by  quantifying  data  from  a  different
perspective and being able to distinguish benign features from
prostate cancer.

6.1.1. Wide Variation in CAD Systems

A  CAD  study  in  2014  of  40  different  CAD  systems
showed  the  following  sensitivity  and  specificity.  The  results
showed a wide variation in sensitivity between 74-100% and
specificity of between 43-93% [53]. Each CAD system did not
perform at the same rate due to the considerable difference in
type of system, classifiers, progressive advancements, algori-
thms  and  learning  parameter  of  these  systems.  Of  the  39
articles  analysed,  17  reported  sensitivity  of  46.8-98.0%  and
specificity of 57.1-100%. The sensitivity of 46.8% and 57.1%
specificity are single outliers which should not be considered
especially  relevant.  The  clear  majority  showed  sensitivity
82-98%  and  specificity  70-100%.  The  data  gathered  would
suggest  a  progressive  improvement  of  CAD  and  artificial
intelligence.

6.1.2. Pathological Scores Improve CAD Segmentation

The  best  current  CAD  segmentation  methods  combine
histological  and  pathological  findings  with  multi-parametric
MRIs  [57].  This  allows  these  systems  to  analyse  specific
textures and features within the prostate to segment them into
different zones. A selected few CAD systems have the capa-
bility  of  segmenting  tumours,  which  could  be  helpful  with
patient therapy.

6.2. PSA and Biopsies Less Sensitive than CAD with MRI

Pre-treatment and preoperative planning often utilise MRT
to  analyse  the  prostate.  MRT  is  not  used  as  a  grading  or
screening  method  for  prostate  cancer  [58].  But  could  MRT
with  CAD algorithms  outperform PSA and  ultrasound?  PSA
testing has a sensitivity of 77% and a high false negative rate
[56,  58].  PSA is  beneficial  because it  is  fast  and cheap [57].
Relying upon PSA only as the first line of defence could cause
a delay in cancer detection which could mean years before first
detection.  Classifying  prostate  cancer  can  also  be  a  difficult
task.  The  accuracy  of  detection  for  prostate  cancer  using
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standard ultrasound-guided biopsy can be as low as 40% [51].
And  approximately  30%  of  patients  must  undergo  repeated
biopsies  or  prostate  removal  [56].  The  lowest  reported
sensitivity of CAD/artificial intelligence is 43% with the clear
majority being between 82-100%.

6.3. CAD Prostate Segmentation Capabilities

Manual segmentation is both tedious and time consuming
due to the number of images requiring segmentation. It is also
difficult  to  distinguish  between  different  tissues  due  to  the
inhomogeneous nature of the prostate. The prostate size, shape
and outer surface appearance can vary [7, 59]. These aspects
make it more difficult to make classifications and can increase
the  risk  of  more  false  findings.  Incorrect  findings  lead  to
unnecessary  measures  or  lack  of  proper  treatment.  Multiple
studies have shown that CAD algorithms are just as capable or
superior  to  radiologists  [60  -  62].  Using  CAD  in  a  clinical
setting has the potential  to  save time for  radiologists  as  they
could begin by reading already-segmented images.  CAD can
even  produce  a  segmentation  analysis  over  time  from
extrapolations which shows the probabilities of how prostate
tumours and the prostate could progress over time.

6.4. CAD-Assisted Reading Times - Discussion

The  accuracy  and  speed  of  these  CAD/AI  systems  are
dependent upon how their algorithms register data and how the
system has been trained to learn effect calculation times [59].
One  example  is  a  multi-atlas  algorithm  that  segments  the
prostate  in  an  axial  direction  which  requires  data  labels  for
learning  each  voxel.  The  process  causes  overlapping  of  1-3
slices, which requires the system to take longer in calculating
data from these slices and re-verifying that the data is correct
[57]. It takes approximately 30 milliseconds for algorithms to
analyse  a  new  image  [63].  Due  to  the  great  extent  of
variabilities  in  algorithms,  segmentation  times  and  reading
times vary from as fast as 4 seconds to 4 minutes [40 - 42, 60].

6.5.  Limitations  of  CAD  use  with  MRI  Prostate  Exa-
minations

CAD  is  capable  of  many  good  things  but  does  not  do
everything  perfectly.  There  are  multiple  factors  why
radiologists  or  clinics  may  not  use  CAD  for  MRI  prostate
examination. One limitation is too much variation due to the
myriad of different systems which focus on different aspects of
the prostate. Many of which are partial carbon copies of parts
of earlier systems which affect how they are built and trained
to  learn  information.  These  are  some  of  the  factors  that
contribute  to  the  wide  variations  in  the  accuracy  and
effectiveness  of  CAD  systems.  A  more  standardised  CAD
system is necessary to scan the entire prostate. One study that
tested  a  commercially-ready product  found that  it  performed
well below the performance of a radiologist. That same study
did  not  mention the  expected  sensitively  and specificity,  nor
did it mention whether the CAD system specialised in one area
of  the  prostate.  There  was  no  mention  in  any  study  of  how
much these different CAD systems cost. Some CAD systems
have  limited  training  data  sets  due  to  personal  data  security
laws or too unattainable training data. While they can perform
well with a small training set, they can perform more weakly in

larger  population.  No  studies  were  found  on  the  cost
effectiveness  of  CAD  systems.

CONCLUSION

By  analysing  current  peer-reviewed  articles  of  MRI
prostate  cancer  images,  analysis  by  CAD  systems  was
evaluated. CAD systems have shown progressive advancement
in their effectiveness in analysing the prostate.

When  analysing  clinically-significant  cancers  with  a
Gleason score of  greater  than 6,  CAD systems outperformed
radiologists.  Different  CAD systems can  reach  a  peak  sensi-
tivity  of  100%  and  others  with  a  peak  specificity  of  100%.
CAD systems are just as capable of segmenting the prostate as
radiologists.  This  can  be  carried  out  in  a  similar  or  faster
reading time than radiologists. CAD systems have shown they
can achieve higher sensitivities and specificities than currently-
recognised gold standards.

CAD systems are often specialised in the peripheral zone,
this may be a weakness as 30% of cancers in the transitional
zone  could  be  missed.  This  would  mean  the  use  of  multiple
CAD systems to analyse the entire prostate efficiently. Another
weakness is a considerable difference in the variation of CAD
system sensitivity and specificity.

This study recommends that  CAD results  show that  they
could form a good compliment  to  radiologists  and can assist
them in their tasks. They can reduce reading times, segment the
prostate, colour code the prostate and mark areas of interest.
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