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Abstract: High-throughput genome analysis techniques produce the ever increasing number of heterogeneous large-scale 

datasets. Studies of these mutually complementary sources of data promise insights into a global picture of the living cell. 

Here, we present a simple bioinformatics methodology for the analysis of multiple heterogeneous sources of ‘omic’ (ge-

nomic, proteomic, etc) data. We apply this methodology to study associations among four types of human ‘omic’ data: 

protein-protein interactions, gene expression, transcription factor binding sites, and functional pathways. The results of 

our study indicate that the proposed approach can be used to identify and rank statistically significant functional associa-

tions among genes. We show that combinations of multiple data types provide additional insights into the properties of 

functional pathways. The proposed methodology can also be used as a quantitative procedure for evaluating the quality of 

‘omic’ datasets. 

INTRODUCTION 

 Recent technological advances in high-throughput data 
acquisition provide us with various types of large-scale 
datasets, such as whole genome sequences, gene expression, 
protein-protein interactions, functional pathways, location of 
transcription factor binding sites, etc. This gives us a unique 
opportunity to use bioinformatics to integrate diverse and 
mutually complementary sources of ‘omic’ data (e.g., ge-
nomic, proteomic, etc.) into a single coherent systems biol-
ogy framework in order to provide functional inference, re-
veal essential features of gene and protein interaction net-
works, and ultimately to model these networks. The results 
of such integrative studies have several key advantages (re-
viewed in [1-3]). In particular, using multiple sources of in-
formation may allow us to reduce systematic noise inher-
ently present in all types of experimental data. Integrative 
approaches are also important for the studies of complex 
diseases, such as cancer [4], since predicting the status of 
disease cases based on multiple biomarkers represents a 
starting point towards translating genomics research into 
clinical medicine. The integrative approach can also be used 
for predicting properties of one type of data based on other 
types of ‘omic’ (genomic, proteomic, etc) data [2, 5-7], for 
evaluating ‘omic’ datasets [8], and for functional prediction 
and inference [9-11]. Such a promise of the integrative ap-
proach is based on the general assumption that, within a 
given genome, there exist inter-relationships between het-
erogeneous types of genomic data [12]. Since even seem-
ingly different data types describe various functional aspects 
of the same genome (e.g., the human genome), it seems rea-
sonable to anticipate the existence of non-random associa-
tions among them. However, the existence of such associa-
tions needs to be verified and their strength needs to be  
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quantified for each particular combination of data types [3]. 
In this manuscript, we use the term ‘association’ instead of 
‘correlation’ in order not to confuse it with correlation be-
tween expression profiles. 

 A number of studies have demonstrated the existence of 
non-random pairwise associations between different types of 
large-scale ‘omic’ datasets. ‘Non-random association’ or just 
‘association’ in this context means that genes that are func-
tionally related with respect to one data type also tend to be 
related with respect to another data type. For the first time, 
such an association was demonstrated on the example of the 
yeast interactome and transcriptome. Since interacting pro-
teins must be present within the cell at the same time, genes 
that encode them should also be expressed during the same 
time intervals. Consistent with this reasoning, it was shown 
that yeast genes with similar expression profiles are more 
likely to encode interacting proteins than randomly chosen 
genes [13]. A related study of the yeast genome showed that 
genes encoding interacting proteins exhibit higher than aver-
age co-expression [12]. This study also showed that the yeast 
protein-protein interaction (PPI) dataset contains a larger 
proportion of strongly co-expressed proteins, compared to 
their baseline proportion in the entire yeast proteome. Simi-
larly, yeast proteins from the same protein complex show a 
stronger co-expression than random proteins [14]. The inter-
actome-transcriptome correlation demonstrated in yeast was 
also demonstrated for multicellular organism C. elegans [10, 
15-16]. Another important type of association is that be-
tween expression and transcription factors (TF). It was 
shown for the yeast genome that when the same TFs target 
the same genes, these genes exhibit stronger co-expression 
than randomly selected ones [17]. 

 The existence of two associations, PPI-expression and 
expression-TF locations, implies that there should also exist 
an association between PPI and TF locations. Consistent 
with this expectation, it was shown for proteins from the 
human N-methyl D-aspartate (NMDA) receptor that regula-
tory regions of the genes that encode interacting proteins are 
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targeted by similar sets of TFs [18-19]. The correlation be-
tween PPI and TF data was also employed in order to dis-
cover cooperative TF pairs that synergistically influence the 
expression of proteins that are located close to each other in 
the yeast protein-protein interaction network [20]. Correla-
tions that involve biological pathways were also studied. 
Since genes that belong to the same pathway are functionally 
related, they can be expected to be co-expressed and co-
regulated. An association between pathways and expression 
was shown for both tumor [21-22] and normal cells [22] 
from the human genome. An association between pathway 
data and data on transcriptional regulation was also demon-
strated for several selected human pathways [18]. In yeast, 
relationships in a combination of three or more heterogene-
ous types of genome-wide datasets have also been studied 
[23-25]. 

 Most integrative studies have been done on the example 
of the yeast genome. Because of its relative simplicity, yeast 
is the best experimentally characterized eukaryotic organism 
for which many experimental large-scale datasets, such as 
PPI and locations of transcription factor binding sites 
(TFBS), are readily available. The human genome, on the 
other hand, is much more complex in nature and signifi-
cantly harder to study experimentally. For instance, no com-
prehensive experimental datasets on protein-protein interac-
tions and TFBS locations are yet available for the human 
genome. Due to the absence of such experimental datasets, 
information about multiple genome-wide associations that 
involve PPI and TFBS locations in the human genome is 
lacking. A possible way to overcome this limitation is to 
study associations using computationally inferred genome-
wide datasets. 

 In this work, we use a novel computational approach to 
perform a comprehensive analysis of four types of data that 
describe the following functional features of the human ge-
nome: functional pathways, expression profiles, inferred 
protein-protein interactions, and inferred locations of tran-
scription factor binding sites. We use inferred protein-protein 
interactions from OPHID (Online Predicted Human Interac-
tome Database), the largest publicly available PPI database 
[26], that includes 8,687 human proteins. This PPI dataset is 
more than two orders of magnitude larger than the dataset of 
only 76 proteins used in a previously reported study of corre-
lations involving the human interactome [18]. We analyze 
types of associations that have not been studied previously 
for the human genome, including associations between ex-
pression and TFBS locations, PPI and expression, and path-
way information and PPI. We study associations not only in 
pairwise combinations, but also in combinations of three and 
four data types. 

METHODS 

Sources of Genomic Data 

 This work deals with multiple heterogeneous sources of 
genomic data. We therefore need to use consistent unique 
gene identifiers for each of these sources. We utilize the hu-
man genome annotation version 38 from the Ensembl data-
base [27] to assign a unique id to each gene and keep this id 
for each data type. We obtained the following four types of 
data for the human genome using publicly available sources: 

1. Biological pathways from the KEGG database [28]. 
In KEGG, each gene from the human genome is as-
signed to one or more functional pathways. By map-
ping KEGG identifiers onto Ensembl identifiers, we 
generated a list of 4,024 genes for which pathway an-
notation is available. 

2. Protein-protein interactions (PPI) from the OPHID 
database [26]. OPHID catalogs human protein-protein 
interactions that are either determined experimentally 
or inferred from known protein-protein interactions in 
model organisms (S. cerevisiae, C. elegans, D. mela-
nogaster, and M. musculus). By mapping OPHID 
identifiers onto Ensembl identifiers, we generated a 
list of 8,687 genes whose protein products are anno-
tated in the OPHID database. 

3. Gene expression data from the SymAtlas database 
[29]. SymAtlas reports genome-scale gene expression 
measurements for 73 normal human tissues and 6 dis-
ease state tissues hybridized to Affymetrix HG-
U133A array. Two replicates were used for each tis-
sue. In our analysis, we excluded disease state tissues 
and only used 73 normal tissues. Expression levels 
for each tissue were averaged over the two replicates. 
Thus, each gene was represented by an expression 
profile that consists of 73 data points. By mapping 
Affymetrix identifiers onto Ensembl identifiers, we 
generated a list of 12,306 genes whose expression 
profiles are annotated in the SymAtlas database. 

4. The data on transcription factor binding sites (TFBS) 
were obtained as follows. First, we used the Ensembl 
human genome assembly version 38 [27] to retrieve 
regulatory upstream region of each gene. We define 
regulatory upstream region as a 2KB region upstream 
of the transcription start site. In Ensembl, a gene can 
be annotated as producing multiple transcripts, 1.3 
transcripts per gene on average [30]. In cases when 
more than one transcript is annotated for a given 
gene, we use known transcript with most 5’ transcrip-
tion start site. We choose known transcripts over 
novel transcripts because the former have more sup-
porting evidence that the latter [30]. We used this 
procedure to retrieve regulatory upstream regions of 
all protein-coding genes (a total of 23,326 genes). 
Second, we used the Match software program [31] to 
scan the upstream regions for TFBS annotated in the 
TRANSFAC database [32]. The TRANSFAC data-
base is a library of experimentally identified tran-
scription factor binding sites represented in the form 
of a position weight matrix (PWM). Match is a tool 
that searches for putative TFBS in input DNA se-
quences by using a library of PWMs. Match was run 
using the library of high-quality vertebrate PWMs 
and the option to minimize the number of false posi-
tives. By parsing Match output, we obtained a list of 
putative TFBS found in the upstream regions of 
23,326 human genes. 

Conversion of Genomic Data into a Unified Matrix For-
mat 

 Each type of genomic data was converted into a unified 
matrix format. In this format, a symmetric n by n matrix nu-
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merically summarizes a particular type of functional rela-
tionships observed among n genes. Each of the four types of 
data described above was converted into a matrix format as 
follows. 

1. KEGG pathways are represented by matrix K (size 
4,024 x 4,024). An element kij in K matrix is equal to 
1 if products of genes i and j belong to at least one 
common KEGG pathway and 0 otherwise. 

2. Protein-protein interactions are represented by matrix 
P (size 8,687 x 8,687). An element pij in P matrix has 
a binary value of 1 or 0, indicating the presence or ab-
sence of protein-protein interaction between products 
of genes i and j. 

3. Expression profiles are represented by matrix R (size 
12,306 x 12,306). An element rij in R matrix is the 
Pearson correlation coefficient (PCC) between ex-
pression profiles of genes i and j. For the cases when 
at least one gene in a pair (i,j) is mapped onto multi-
ple Affymetrix probe sets (3,837 out of 12,306 
genes), we calculate PCC between all probe set pairs 
that correspond to (i,j) and choose a PCC with the 
largest magnitude. Negative correlations in R matrix 
were set to zero. For analyses that involve computing 
association scores (see below), we use a binary ver-
sion of R matrix in which all elements that have val-
ues equal to or greater than 0.7 (strong correlation) 
are set to 1 and all elements that have values below 
0.7 are set to 0. 

4. The cis-similarity between promoter regions of genes 
is represented by matrix T (size 23,326 x 23,326). An 
element tij in T matrix is the number of unique TFBSs 
observed in the promoter regions of both gene i and j. 
Unique means that all occurrences of binding sites for 
the same TF are counted only once for each promoter 
region. For instance, if the promoter region of gene i 
contains 4 sites for transcription factor A and 1 site 
for transcription factor B, whereas the promoter re-
gion of gene j contains 2 sites for transcription factor 
A and 3 sites for transcription factor B, the value of tij 
will be equal to 2. The idea of this definition of cis-
similarity is to attempt to account for the number of 
common transcription factors that control both gene i 
and j. 

 When we study a combination of two or more types of 
data, we only use genes for which all types of required anno-
tation are available and exclude genes with missing annota-
tion. For example, when we study associations between K 
and P matrices, we take a set of genes for which both KEGG 
pathway and protein-protein interaction data are annotated. 

Testing the Statistical Significance of the Associations 
Among Multiple Data Types 

 The main idea of presenting a particular type of genomic 
data as a symmetric matrix that describes a certain type of 
functional relationship between gene pairs is to reveal statis-
tically significant functional associations among multiple 
matrices by using multiplication of equivalent matrix ele-
ments. In general, when elements from k matrices of dimen-
sion n, M1…Mk, that represent k types of genomic data for n 
genes are multiplied, and a final matrix is obtained, 

F[i,j]=M1[i,j]*…*Mk[i,j] (note that this is an element-wise 
multiplication, not a conventional matrix product). In this 
final matrix F, gene pairs that exhibit strong associations 
across all k types of data will correspond to elements with 
large absolute value. The overall strength of functional asso-
ciations within a group of n genes represented by k matrices 
can be quantified by computing the sum of all elements in 
the final matrix, S(n,k), as follows: 
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 If S(n,k) is significantly higher than that expected by 
chance, it will indicate that genes in the multiplied matrices 
exhibit a strong non-random association across k types of 
genomic data. We estimate the statistical significance of 
S(n,k) by comparing it to the distribution of random scores. 
A random score is obtained by randomly permuting elements 
in each matrix M1,…,Mk and then using these permuted ma-
trices to obtain a score according to Eq. 1. For each matrix 
combination we generate 10,000 random scores. The p-value 
of the observed score, P(R(n,k) S(n,k)), is computed as fol-
lows: 
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where R(n,k) is random score and N(R(n,k) S(n,k)) is the 
number of random scores that are equal to or larger than 
S(n,k). We applied the Shapiro-Wilk normality test and 
found random association scores to be normally distributed 
(data not shown). Histograms of the distributions of random 
scores can be found in Supplementary information. Since 
most p-values obtained from random simulations are zero, 
we use the z-score to rank the associations: 
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where <R(n,k)> is the average and R(n,k) is the standard de-
viation of the random score. 

RESULTS 

Representation of Genomic Data in a Matrix Format 

 For each gene in the human genome, we collected four 
types of raw functional data (see Methods for details): 
KEGG pathways, protein-protein interactions, expression 
profiles, and putative transcription factor binding sites (see 
Table 1). Each raw data type was converted into a unified 
matrix format, abbreviated as follows: K (KEGG pathway 
matrix), P (PPI matrix), R (co-expression matrix), and T (cis-
similarity matrix). In this format, each symmetric n by n ma-
trix numerically summarizes a particular type of functional 
relationships observed among n genes. An element kij in K 
matrix has a binary value of 1 if products of genes i and j 
belong to at least one common KEGG pathway and 0 other-
wise. An element pij in P matrix has a binary value of 1 or 0, 
indicating the presence or absence of protein-protein interac-
tion between products of genes i and j. An element rij in R 
matrix is the Pearson correlation coefficient (PCC) between 
expression profiles of genes i and j. An element tij in T ma-
trix is a degree of cis-similarity between genes i and j. We 
define cis-similarity as the number of unique TFBSs shared 
by the promoter regions of genes i and j. Unique means that 
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all occurrences of TFBSs for the same transcription factor 
are counted only once for each promoter region. Thus, our 
definition of cis-similarity is the number of common TFs 
involved in transcriptional control of both gene i and j. 

Associations Observed Among Multiple Types Of Ge-

nomic Data 

 In this section, we perform a qualitative study of ge-
nome-wide associations observed among the four types of 
genomic data. The idea of this study is to examine whether 
the properties of genes with respect to one type of functional 
data are correlated with other types of functional data. For 
example, we can classify pairs of genes into interacting and 
non-interacting categories and examine the average correla-
tion coefficient between their expression profiles in order to 
see whether expression profiles of genes whose products 
interact tend to have a higher correlation coefficient than the 
profiles of non-interacting ones. Here, we study global ge-
nome-wide associations for the following combinations of 
data types: K-P, R-T, K-R, P-T, K-P-R, and K-P-T and dem-
onstrate the existence of potentially significant relationships 
observed among these data types. A rigorous statistical 
analysis of the significance of associations for all possible 
combinations of data types that confirms the qualitative 
trends discussed here is presented in the following sections 
of the manuscript. 

 First, we analyze the associations between functional 
pathways and protein-protein interactions (K-P association). 
The comparison of pathway information for interacting and 
non-interacting proteins shows that 40.82% of interacting 
protein pairs share at least one functional pathway (meaning 
that both proteins in the pair belong to the same pathway), 
whereas only 5.55% of non-interacting protein pairs share 
pathway annotation (Fig. 1A). This means that interacting 
protein pairs are seven times more likely to participate in the 
same pathway than non-interacting protein pairs. Analysis of 
the reverse relation shows that if two proteins participate in 
the same pathway, they are eleven times more likely to inter-
act than proteins from different pathways (Fig. 1B). 

 Second, we analyze the associations between co-
expression and cis-similarity of promoter regions (R-T asso-
ciation). This analysis shows that, on average, correlation 
between expression profiles of genes that share common 
TFBS is higher (PCC=0.375) than that between expression 
profiles of genes that do not share any common TFBS 
(PCC=0.369) (Fig. 1C). Analysis of the reverse relation 
shows that an increase in the level of co-expression of gene 
pairs is associated with an increase in the number of com-
mon TFBS found in their promoter regions (Fig. 1D). These 
results confirm to an empirical expectation that co-expressed 

genes should have similar cis-profiles and vice versa. How-
ever, the trends shown in Figs. (1C) and (1D) are very subtle 
and their statistical significance is not obvious. One possible 
reason of weak trends is that the computational identification 
of putative TFBS via sequence motif-based methods is in-
herently prone to noise because of a very high percentage of 
false positive predictions [33]. We will address the issue of 
statistical significance in the next section of the manuscript. 

 Third, we analyze the following three types of associa-
tions: K-R, P-R, and K-P-R. We divided all gene pairs into 
six categories according to whether their products are inter-
acting and/or participating in same functional pathways and 
compared the average correlations between expression pro-
files for these six categories (Fig. 1E). From right to left in 
Fig. (1E), the largest average PCC between expression pro-
files is found for gene pairs that both interact and participate 
in same pathways (PCC = 0.4331), whereas the smallest av-
erage PCC is found for gene pairs that neither interact nor 
participate in same pathways (PCC = 0.3216). We also ob-
serve that the average PCC is higher for gene pairs that par-
ticipate in same pathways (PCC = 0.4028) than for interact-
ing pairs (PCC = 0.3773). These observations suggest that, 
with respect to concerted expression, genes from the same 
pathway act as a more cohesive biological module than 
genes producing physically interacting proteins. Experimen-
tal evidence shows that interacting proteins from the same 
complex are not necessarily produced by co-regulated genes. 
For example, cyclin-dependent kinase and cyclin together 
form a protein complex. While the former is produced from 
a constantly transcribed gene, the latter is produced in a 
regulated manner [13]. 

 Fourth, we analyze K-T, P-T, and K-P-T associations by 
computing the average number of common TFBS for the 
same six categories of gene pairs described above. The re-
sults of this analysis, shown in Fig. (1F), reveal a trend very 
similar to the one shown in Fig. (1E): the largest number of 
common TFBS is observed for gene pairs that both interact 
and participate in the same pathways, whereas the smallest 
number of common TFBS is observed for gene pairs that 
neither interact nor participate in the same pathway. These 
two related trends indirectly indicate that the level of co-
expression (measured by PCC) and the cis-similarity (meas-
ured by the number of common TFBS) are correlated with 
each other, which is in agreement with the direct relationship 
between them shown in Figs. (1C) and (1D). The small dif-
ferences in the number of common TFBS observed in Fig. 
(1F) can be attributed to the fact that the computational pro-
cedure for the identification of putative TFBS produces a 
very large number of false positives [33]. 

 

Table 1. Four Types of Data Used in this Study 

 

Data Type Description Source Genes 

K Functional pathways KEGG [28] 4,024 

P Protein-protein interactions OPHID [26] 8,687 

R Expression profiles SymAtlas [29] 12,306 

T Putative TFBS found in the promoter regions Ensembl [27], TRANSFAC [32] 23,326 
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Statistical Significance of the Associations Among Multi-
ple Types of Genomic Data 

 The qualitative analyses shown in the previous section 
indicate the existence of potentially significant associations 
among various types of ‘omic’ data. In this section, we use a 
rigorous quantitative approach to evaluate the statistical sig-
nificance of the observed associations on the genome-wide 
scale. Given two or more matrices that represent particular 

types of ‘omic’ data for a group of genes, we measure the 
strength of association among these data types by means of 
an association score. This association score is defined as the 
sum of products between corresponding elements of the ma-
trices under consideration (Eq. 1, see Methods for details). 
Statistical significance of the observed association score is 
estimated by comparing it to the distribution of random as-
sociation scores obtained from randomly permuted matrices. 

 

Fig. (1). Associations exist among the four types of functional data. (A) Interacting protein pairs are more likely to participate in the same 

pathway than non-interacting protein pairs. (B) Protein pairs from the same pathway are more likely to interact than protein pairs from dif-

ferent pathways. (C) A pair of genes that share common TFBS in the promoter regions shows a higher correlation between expression pro-

files than a pair without any shared TFBS. (D) An increase in correlation between expression profiles is associated with an increase in the 

number of shared TFBS. (E) Pairs of proteins from the same pathway and/or pairs of interacting proteins are more likely to show correlated 

expression. (F) Pairs of protein from the same pathway and/or pairs of interacting proteins are more likely to share common TFBS in their 

promoter regions. 
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Since we have four matrices that correspond to the four types 
of data, there are eleven possible combinations of two, three 
and four matrices. P-values and z-scores for each combina-
tion are shown in Table 2. Histograms of all random distri-
butions can be found in the Supplementary information, with 
three selected distributions shown in Figs. (2-4). 

 The results shown in Table 2 indicate that all eleven 
combinations of data types demonstrate significant associa-
tions as evidenced by low p-values. Below, we briefly dis-
cuss biological implications of each association. The results 
for pairwise combinations indicate: 

 K-P (z-score=160.97, p=0) - the existence of a highly 
significant association between protein-protein interactions 
and protein function. Since in our methodology associations 
are not directional, K-P association is equivalent to P-K as-
sociation, thus implying that interacting proteins tend to par-
ticipate in the same functional pathway, and vice versa, pro-
teins from the same functional pathway tend to interact. 

 

Fig. (2). The distribution of random K-P scores. 

 K-R (z-score=85.35, p=0) - the existence of a highly sig-
nificant association between co-expression and gene func-
tion. It shows that genes participating in the same pathway 

tend to be co-expressed, and vice versa, co-expressed genes 
tend to participate in the same pathway. 

 R-T (z-score=75.63, p=0) - co-expressed genes tend to 
share similar cis-profiles, and vice versa, genes with similar 
cis-profiles tend to be co-expressed. 

 P-R (z-score=7.70, p=0) - genes that encode interacting 
proteins tend to be co-expressed, and vice versa, co-
expressed genes tend to encode interacting proteins. 

 K-T (z-score=7.59, p=0) - genes from the same pathway 
tend to have similar cis-profiles, and vice versa, genes with 
similar cis-profiles tend to participate in the same pathway. 

 

Fig. (3). The distribution of random K-R scores. 

 P-T (z-score=1.66, p=0.0498) - the existence of a mar-
ginally significant association between protein-protein inter-
actions and the similarity of cis-profiles of the genes that 
encode interacting proteins. 

 The results for all combinations of three data types, de-
scribed below, also demonstrate highly statistically signifi-
cant genome-wide associations: 

 K-P-T (z-score=142.26, p=0) - the existence of a highly 
significant association that links gene function, K, interac-

Table 2. P-Values and Z-Scores Estimated from the Random Permutation Experiment 

 Type of Association Genes P-Value Z-Score 

K-P 2,424 0 160.97 

K-R 3,271 0 85.35 

R-T 11,775 0 75.63 

P-R 6,784 0 7.70 

K-T 3,939 0 7.59 

Pairwise combinations 

P-T 8,513 0.0498 1.66 

K-P-T 2,424 0 142.26 

K-P-R 2,154 0 82.22 

K-R-T 3,271 0 73.90 
Triple combinations 

P-R-T 6,784 0 7.47 

Quadruple combination K-P-R-T 2,154 0 75.65 
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tions between gene products, P, and cis-similarity of the 
promoter regions, T. This association implies that genes 
from the same pathway both tend to code for interacting pro-
teins and share a similar set of TFs in their promoter regions. 

 

Fig. (4). The distribution of random K-P-R scores. 

 K-P-R (z-score=82.22, p=0) - the existence of a highly 
significant association that links gene function, K, interac-
tions between gene products, P, and co-expression, R. Bio-
logically, this association is similar to K-P-T association and 
implies that genes from the same pathway both tend to code 
for interacting proteins and to be co-expressed. 

 K-R-T (z-score=73.90, p=0) - the existence of a highly 
significant association that links gene function, K, co-
expression, R, and cis-similarity of the promoter regions, T. 
This association implies that genes from the same pathway 
tend to be both co-expressed and have a similar set of TFs in 
their promoter regions. 

 P-R-T (z-score=7.47, p=0) - the existence of a significant 
association that links interactions between gene products, P, 
co-expression, R, and cis-similarity of the promoter regions, 
T. This association implies that genes whose products inter-
act tend to be co-expressed and have a similar set of TFs in 
their promoter regions. However, it should be pointed out 
that the strength of P-R-T association is much weaker than 
that of other triple associations as indicated by a considera-
bly lower z-score. 

 Finally, the results for the combination of all four data 
types, K-P-R-T, indicate that this quadruple association is 
also highly significant (z-score=75.65, p=0). This association 
indicates that genes from the same pathway simultaneously 
tend to encode interacting proteins, be co-expressed, and 
have a similar set of TFs in their promoter regions. 

Pathway-Level Analysis of the Associations Among Data 
Types 

 The analysis reported in the previous section summarizes 
global genome-wide relations among data types by consider-
ing all genes in the human genome simultaneously. A similar 
analysis can be performed by considering a group of genes 
that belong to a particular functional category. A good ex-
ample of a functional category is a functional pathway, 
which can be considered as a biological module that carries 
out a specific genomic function. Depending on the function 

of the pathway, one may expect certain pathway-specific 
associations to be more pronounced than the others. In this 
section, we use the classification of functional pathways 
from the KEGG database [28]. The main difference from the 
global analysis reported in the previous section is that path-
way-level analysis is done for a group of functionally related 
genes that belong to a particular KEGG pathway. This kind 
of analysis enables us to categorize the associations between 
the pathway data and other types of genomic data and to 
determine which types of associations are most profound in a 
particular functional category. Since the TFBS data seem to 
be noisy and therefore least reliable, we use only the PPI 
data and the gene expression data for the pathway-level 
analysis. This leaves us with three combinations to analyze 
for pathway-level associations: K-P, K-R and K-P-R. These 
three combinations provide the following biological informa-
tion for a given pathway: K-P describes its relative enrich-
ment in interacting proteins, K-R describes its relative en-
richment in co-expressed genes, and K-P-R describes its 
relative enrichment in genes that are both co-expressed and 
code for interacting proteins. When we use Eqs. 2,3 to ana-
lyze a group of m genes that belong to a particular pathway, 
each random m by m matrix for a given type of data is ob-
tained by randomly sampling, without replacement, m genes 
from a list of all human genes annotated with this particular 
data. Pathways containing less than five annotated genes 
were excluded from this analysis. 

 Out of 174 pathways annotated in the KEGG database for 
the human genome, we identified 98 pathways that are sig-
nificantly (p<0.05) enriched in interacting proteins, 34 path-
ways that are significantly enriched in co-expressed genes, 
and 75 pathways that are significantly enriched in genes that 
are both co-expressed and code for interacting proteins. Lists 
for all pathways and all combinations, ranked by z-score, are 
given in Supplementary information. Top 10 scoring path-
ways for each combination are shown in Tables 3, 4 and 5. It 
should be noted that when pathways are analyzed with  
 

Table 3. Top 10 Pathways Enriched in Interacting Proteins 

 

KEGG ID  Z-Score  Pathway Name 

hsa03050 237.19 Proteasome 

hsa03020 134.22 RNA polymerase 

hsa03010 86.94 Ribosome 

hsa00193 61.66 ATP synthesis 

hsa00240 48.63 Pyrimidine metabolism 

hsa04110 44.15 Cell cycle 

hsa03022 40.98 Basal transcription factors 

hsa04130 39.30 SNARE interactions in vesicular transport 

hsa00020 39.19 Citrate cycle (Tca cycle) 

hsa04350 34.76 Tgf-beta signaling pathway 

 

respect to concomitant enrichment in co-expressed genes 
whose protein products also interact (the triple K-P-R asso-
ciation), several additional pathways emerge as significant 
(Table 5 and Supplementary Table 3). For example, two 
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pathways (‘Glutamate metabolism’ and ‘Glutathione me-
tabolism’) are identified as showing significant concomitant 
enrichment, even though they do not show enrichment in 
interacting proteins or co-expressed genes. Some pathways 
are concomitantly enriched even though they show enrich-
ment in either interacting proteins or co-expressed genes, but 
not both. For example, ‘Cholera’ pathway shows very strong 
concomitant enrichment (top 5

th
 in Table 5), but it does not 

show enrichment in co-expressed genes. Similarly, ‘Olfac-
tory transduction’ pathway shows a significant concomitant 
enrichment without being enriched in interacting proteins. 
These observations indicate that combining multiple types of 
genomic data reveals additional functional features of indi-
vidual pathways that cannot be revealed by studying simple 
pairwise associations. 

Table 4. Top 10 Pathways Enriched in Co-Expressed Genes 

 

KEGG ID Z-Score Pathway Name 

hsa04080 9.73 Neuroactive ligand-receptor interaction 

hsa04630 5.11 Jak-Stat signaling pathway 

hsa04620 4.94 Toll-like receptor signaling pathway 

hsa00190 4.91 Oxidative phosphorylation 

hsa04020 4.69 Calcium signaling pathway 

hsa00602 4.60 Glycosphingolipid biosynthesis-neo-
lactoseries 

hsa04010 3.86 MAPK signaling pathway 

hsa04060 3.81 Cytokine-cytokine receptor interaction 

hsa04730 3.57 Long-term depression 

hsa04664 3.51 Fc epsilon RI signaling pathway 

 
Table 5. Top 10 Pathways Enriched in Both Interacting and 

Co-Expressed Genes 

 

KEGG ID Z-Score Pathway Name 

hsa00193 78.58 ATP synthesis 

hsa03050 76.25 Proteasome 

hsa03020 44.87 RNA polymerase 

hsa00190 36.83 Oxidative phosphorylation 

hsa05110 30.64 Cholera 

hsa04350 29.41 TGF-beta signaling pathway 

hsa04660 27.01 T cell receptor signaling pathway 

hsa03010 25.52 Ribosome 

hsa05120 25.18 Epithelial cell signaling in helicobacter 
pylori infection 

hsa04610 23.94 Complement and coagulation cascades 

 

DISCUSSION 

 In general, the results of the quantitative analysis of the 
genome-wide pairwise associations are consistent with the 
qualitative study performed on the same datasets (see Fig. 1) 
and discussed in the first section of Results, thus confirming 

the utility of the proposed approach. For instance, Fig. (1E) 
shows that the average correlation between expression pro-
files is larger for gene pairs from the same pathway, K, 
(PCC=0.4028) than for gene pairs that encode interacting 
proteins (PCC=0.3773). This observation is consistent with a 
larger z-score observed for K-R association (z-score=85.35) 
compared to that for P-R association (z-score=7.70). Simi-
larly, Fig. (1F) shows that the average number of shared 
TFBS is larger for gene pairs from the same pathway 
(3.2869) than for gene pairs whose products interact 
(3.2705). This observation is also consistent with a larger z-
score observed for K-T association (z-score=7.59) compared 
to that for P-T association (z-score=1.66). If we assume that 
K and P matrices contain similar amounts of noise, then the 
observation that the z-scores for K-R and K-T associations 
are larger than those for P-R and P-T suggests that transcrip-
tional co-regulation is more important for genes from the 
same pathway than for genes that encode interacting pro-
teins. It should also be noted that, to the best of our knowl-
edge, out of the six pairwise combinations of data types util-
ized in this work, three (P-R, R-T, and K-P) have never been 
studied for the human genome. 

 The strongest pairwise associations, indicated by very 
high z-scores, are observed for combinations involving 
pathway data, K-P and K-R. This observation is consistent 
with empirical expectations and confirms that genes from the 
same functional pathway tend to be co-expressed and code 
for interacting proteins. The only marginally significant ge-
nome-wide association is observed between PPI data and cis-
similarity of promoter regions (P-T combination, p=0.0498, 
Table 2). The relatively low z-scores for two associations 
involving the T matrix (P-T and K-T) are not straightforward 
to interpret. On one hand, a large amount of noise present in 
matrix T may dampen real biological associations. On the 
other hand, the R-T association is quite significant (z-
score=75.63) despite the noise present in the T matrix. The 
observation that P-R association, which is related to P-T, 
also has a relatively low z-score of 7.7 provides an additional 
argument in favor of the assumption that the weakness of the 
genome-wide P-T association may reflect a real biological 
phenomenon. 

 The application of our methodology to study associations 
in groups of genes from individual functional pathways 
shows that pathways enriched in interacting proteins (K-P 
association, Table 3 and Supplementary Table 1) are mostly 
the ones for genetic information processing. These pathways 
tend to contain large protein complexes, such as the ribo-
some and DNA/RNA polymerases. Pathways enriched in co-
expressed genes (K-R association, Table 4 and Supplemen-
tary Table 2) are mostly the pathways for environmental 
information processing. These pathways can be thought of as 
biological modules whose genes need to be expressed in a 
concerted manner in response to external stimuli. Metabolic 
pathways seem to be under-represented in the list of path-
ways enriched in co-expressed genes. There are 112 meta-
bolic pathways, comprising 64% of all 174 annotated path-
ways. However, out of the total of 34 pathways significantly 
enriched in co-expressed genes, only six (18%) are metabolic 
pathways. This observation is consistent with previously 
reported results that metabolic pathways do not show similar 
cis-profiles [18]. 
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 Another possible application of the proposed methodol-
ogy is to benchmark the quality of various large-scale 
datasets. In this work, we used PPI from the OPHID data-
base [26], where about 60% of all annotated interactions 
were inferred computationally, rather than obtained experi-
mentally. Obviously, the quality of this inference needs to be 
validated. Since proteins that participate in the same func-
tional pathway often form multi-protein complexes and can 
be expected to interact, the strength of K-P association can 
be used as an indicator of the non-randomness of PPI annota-
tions. The fact that, according to our results, K-P association 
ranks highest among all pairwise combinations studied, sug-
gests that the assignment of PPI in groups of functionally 
related proteins is highly non-random, thus confirming the 
quality of the OPHID annotation. Therefore, the present 
work can also be considered as an independent validation of 
OPHID, in addition to the validation provided by the authors 
of this database. A similar approach can be used to bench-
mark other types of data. For instance, given several meth-
ods for finding TFBS in promoter regions, the R-T associa-
tion experiment can be used as a quantitative evaluation pro-
cedure to benchmark which of these methods gives the best 
correlation with expression data. 

CONCLUSIONS 

 We presented a methodology for quantifying the signifi-
cance of associations observed among multiple heterogene-
ous types of ‘omic’ data. We used this methodology to ana-
lyze and rank associations among four types of data in hu-
mans: functional pathways, protein-protein interactions, ex-
pression profiles, and transcription factor binding sites. Us-
ing the largest datasets currently available for the human 
genome, we showed that associations in all combinations of 
data types are significantly higher than random expectation. 
We find that pathways involved in genetic information proc-
essing are enriched in interacting proteins, and that signaling 
pathways are enriched in co-expressed genes. We show that 
combinations of multiple data types provide additional in-
sights into the properties of functional pathways. This work 
can also be considered as an independent validation of the 
inferred protein-protein interactions annotated in the OPHID 
database. 

ABBREVIATIONS 

PPI = protein-protein interaction 

TF = Transcription factor 

TFBS = Transcription factor binding site 

PCC = Pearson correlation coefficient 

K = KEGG pathway data matrix 

P = PPI data matrix 

R = Co-expression data matrix 

T = Cis-similarity data matrix 

REFERENCES 

[1] M. Gerstein, N. Lan, R. Jansen, “Proteomics. Integrating interac-
tomes,” Science, vol. 295, pp. 284-287, January 2002. 

[2] D. Greenbaum, N. M. Luscombe, R. Jansen, J. Qian, M. Gerstein, 
“Interrelating different types of genomic data, from proteome to se-

cretome: 'oming in on function,” Genome Res., Vol. 11, pp. 1463-
1468, September 2001. 

[3] M. Vida, “A biological atlas of functional maps,” Cell, Vol. 104, 

pp. 333-339, February 2001. 
[4] S. Wachi, K. Yoneda, R. Wu, “Interactome-transcriptome analysis 

reveals the high centrality of genes differentially expressed in lung 
cancer tissues,” Bioinformatics, Vol. 21, pp. 4205-4208, February 

2005. 
[5] A. Drawid, M. Gerstein, “A Byesian system integrating expression 

data with sequence patterns for localizing proteins: comprehensive 
application to the yeast genome,” J. Mol. Biol., Vol. 301, pp. 1059-

1075, December 2001. 
[6] J. Qian, J. Lin, N. M. Luscombe, H. Yu, M. Gerstein, “Prediction 

of regulatory networks: genome-wide identification of transcription 
factor targets from gene expression data,” Bioinformatics, Vol. 19, 

pp. 1917-1926, August 2003. 
[7] L. V. Zhang, S. L. Wong, O. D. King, F. P. Roth, “Predicting co-

complexed protein pairs using genomic and proteomic data integra-
tion,” BMC Bioinformatics, Vol. 5, pp. 38, April 2004. 

[8] J. S. Bader, A. Chaudhuri, J. M. Rothberg, J. Chant, “Gaining 
confidence in high-throughput protein interaction networks,” Nat. 

Biotechnol. Vol. 22, pp. 78-85, January 2004. 
[9] C. S. Goh, T. A. Gianoulis, Y. Liu, et al. “Integration of curated 

databases to identify genotype-phenotype associations,” BMC Ge-
nomics, Vol. 7, pp. 257, October 2006. 

[10] K. C. Gunsalus, H. Ge, A. J. Schetter, et al. “Predictive models of 
molecular machines involved in Caenorhabditis elegans early em-

bryogenesis,” Nature, Vol. 436, pp. 861-865, August 2005. 
[11] I. Lee, S. V. Date, A. T. Adai, E. M. Marcotte, “A probabilistic 

functional network of yeast genes,” Science, Vol. 306, pp. 1555-
1558, November 2004. 

[12] A. Grigoriev, “A relationship between gene expression and protein 
interactions on the proteome scale: analysis of the bacteriophage 

T7 and the yeast Saccharomyces cerevisiae,” Nucleic Acids Res., 
Vol. 29, pp. 3513-3519, September 2001. 

[13] H. Ge, Z. Liu, G. M. Church, M. Vidal, “Correlation between tran-
scriptome and interactome mapping data from Saccharomyces cer-

evisiae,” Nature Genet., Vol. 29, pp. 482-486, December 2001. 
[14] R. Jansen, D. Greenbaum, M. Gerstein, “Relating whole-genome 

expression data with protein-protein interactions,” Genome 
Res.Vol. 12, pp. 37-46, January 2002. 

[15] A. J. Walhout, J. Reboul, O. Shtanko, et al. “Integrating interac-
tome, phenome, and transcriptome mapping data for the C. elegans 

germline,” Curr. Biol., Vol. 12, pp. 1952-1958, November 2002. 
[16] S. Li, H. Ge, T. Hao, et al. “A map of the interactome network of 

the metazoan C. elegans,” Science, Vol. 303, pp. 540-543, January 
2004. 

[17] H. Yu, N. M. Luscombe, J. Qian, M. Gerstein, “Genomic analysis 
of gene expression relationships in transcriptional regulatory net-

works,” Trends Genet., Vol. 19, pp. 422-427, August 2003. 
[18] S. Hannenhalli, S. Levy, “Transcriptional regulation of protein 

complexes and biological pathways,” Mamm. Genome, Vol. 14, pp. 
611-619, September 2003. 

[19] O. Alter, G. H. Golub, “Integrative analysis of genome-scale data 
by using pseudoinverse projection predicts novel correlation be-

tween DNA replication and RNA transcription,” Proc. Natl. Acad. 
Sci. USA, Vol. 101, pp. 16577-16582, November 2004. 

[20] N. Nagamine, Y. Kawada, Y. Sakakibara, “Identifying cooperative 
transcriptional regulations using protein-protein interactions,” Nu-

cleic Acids Res., Vol. 33, pp. 4828-4837, August 2005. 
[21] H. H. Yang, Y. Hu, K. H. Buetow, M. P. Lee, “A computational 

approach to measuring coherence of gene expression in pathways,” 
Genomics, Vol. 84, pp. 211-217, July 2004. 

[22] R. Huang, A. Wallqvist, D. G. Covell, “Comprehensive analysis of 
pathway or functionally related gene expression in the National 

Cancer Institute's anticancer screen,” Genomics, Vol. 87, pp. 315-
328, March 2006. 

[23] A. Tanay, R. Sharan, M. Kupiec, R. Shamir, “Revealing modularity 
and organization in the yeast molecular network by integrated 

analysis of highly heterogeneous genomewide data,” Proc. Natl. 
Acad. Sci. USA, Vol. 101, 2981-2986, March 2004. 

[24] D. Hwang, A. G. Rust, L. Hood, et al. “A data integration method-
ology for systems biology,” Proc. Natl. Acad. Sci. USA, Vol. 102, 

pp. 17296-17301, November 2005. 
[25] P. Carmona-Saez, M. Chagoyen, A. Rodriguez, O. Trelles, J. M. 

Carazo, A. Pascual-Montano, “Integrated analysis of gene expres-
sion by association rules discovery,” BMC Bioinformatics, Vol. 7, 

pp. 54, February 2006. 



10    The Open Applied Informatics Journal, 2007, Volume 1 Hwang and Kuznetsov
 
 

[26] K. R. Brown, I. Jurisica, “Online predicted human interaction data-

base,” Bioinformatics, Vol. 21, pp. 2076-2082, May 2005. 
[27] T. Hubbard, D. Andrews, M. Caccamo, et al. “Ensembl 2005,” 

Nucleic Acids Res., Vol. 33, pp. D447-D453, January 2005. 
[28] M. Kanehisa, S. Goto S, “KEGG: Kyoto Encyclopedia of Genes 

and Genomes,” Nucleic Acids Res., Vol. 28, pp. 27-30, January 
2000. 

[29] A. I. Su, H. Lapp, J. Zhang et al. “A gene atlas of the mouse and 
human protein-encoding transcriptomes,” Proc. Natl. Acad. Sci. 

USA, Vol. 101, pp. 6062-6267, April 2005. 
[30] V. Curwen, E. Eyras, T. D. Andrews, et al. “The Ensembl auto-

matic gene annotation system,” Genome Res., Vol. 14, pp. 942-950, 
May 2004. 

[31] A. E. Kel, E. Gossling, I. Reuter, E. Cheremushkin, O. V. Kel-

Margoulis, E. Wingender, “MATCH: a tool for searching transcrip-
tion factor binding sites in DNA sequences,” Nucleic Acids Res., 

Vol. 31, pp. 3576-3579, July 2003. 
[32] V. Matys, E. Fricke, R. Geffers, et al. “TRANSFAC: transcrip-

tional regulation, from patterns to profiles,” Nucleic Acids Res., 
Vol. 31, pp. 374-378, January 2003. 

[33] M. Robinson, Y. Sun, R. T. Boekhorst, et al. “Improving computa-
tional predictions of cis-regulatory binding sites,” Pac. Symp. Bio-

comput., Vol. 11, pp. 391-402, November 2006. 

 
 

Received: May 15, 2007 Revised: May 22, 2007  Accepted: May 26, 2007 

 

 

 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


