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Abstract: Computational methods for predicting the subcellular localization of bacterial proteins play a crucial role in the 

ongoing efforts to annotate the function of these proteins and to suggest potential drug targets. These methods, used in 

combination with other experimental and computational methods, can play an important role in biomedical research by 

annotating the proteomes of a wide variety of bacterial species. We use the ngLOC method, a Bayesian classifier that pre-

dicts the subcellular localization of a protein based on the distribution of n-grams in a curated dataset of experimentally-

determined proteins. Subcellular localization was predicted with an overall accuracy of 89.7% and 89.3% for Gram-

negative and Gram-positive bacteria protein sequences, respectively. Through the use of a confidence score threshold, we 

improve the precision to 96.6% while covering 84.4% of Gram-negative bacterial data, and 96.0% while covering 87.9% 

of Gram-positive data. We use this method to estimate the subcellular proteomes of ten Gram-negative species and five 

Gram-positive species, covering an average of 74.7% and 80.6% of the proteome for Gram-negative and Gram-positive 

sequences, respectively. The current method is useful for large-scale analysis and annotation of the subcellular proteomes 

of bacterial species. We demonstrate that our method has excellent predictive performance while achieving superior pro-

teome coverage compared to other popular methods such as PSORTb and PLoc. 

INTRODUCTION 

 High-throughput experimental methods continue to gen-
erate large repositories of genomic and proteomic data that 
must be analyzed and annotated. Unfortunately, experimen-
tal methods are prohibitively expensive, thus limiting their 
use in large-scale functional annotation of these proteins. 
Computational methods have become a crucial part of the 
ongoing efforts to annotate these growing sequence data re-
positories. Computational prediction of protein subcellular 
localization has been an active research area because knowl-
edge of the subcellular localization of a protein can aid in 
inferring its function. Accurate prediction of subcellular pro-
teomes can improve our understanding of defined cellular 
processes at various subcellular levels. Such methods can aid 
in suggesting plausible candidates for drug targeting in bac-
terial pathogen research, which is important because immu-
nogenic proteins targeted to the cell surface make ideal drug 
targets. 

 Gram-negative bacterial cells are primarily composed of 
the cytoplasm, an inner membrane surrounding the cyto-
plasm, and a cell envelope consisting of an outer membrane 
and an area between the membranes known as the periplasm. 
Gram-positive bacteria have a slightly different structure, in 
that they have a peptidoglycan cell wall surrounding the in-
ner/cytoplasmic membrane instead of a defined outer mem-
brane and periplasm. Bacterial proteins are synthesized in the 
cytoplasm of the cell. These proteins remain in the cyto-
plasm, or are targeted to one or more possible locations in  
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the cell through various transport systems and signal pep-
tides in the sequence. Proteins that are transported to the 
extracellular space are of particular interest since they are 
ideal candidates for drug targeting. Although many of these 
transport systems are well understood, the total range of pos-
sible targeting mechanisms has yet to be characterized [1, 2]. 
Regardless, the signaling and transport mechanisms for the 
protein, along with most of the structural and functional at-
tributes for the protein, lie in the primary structure of the 
protein – the sequence of amino acids. Computational meth-
ods that predict subcellular localization from sequence in-
formation alone capitalize on this knowledge. 

 Numerous methods have been developed for prediction 
of subcellular localization of bacterial proteins [2-11]. Some 
methods explicitly use prior knowledge of known transport 
and signaling mechanisms; some rely solely on machine-
learned classifiers to implicitly represent this knowledge, 
while others use a combination of both to generate the pre-
diction for a protein. The PSORT-I method [3], one of the 
first methods available for subcellular localization predic-
tion, was a rule-based system that used amino-acid composi-
tion, known motifs, targeting signals and other structural 
information to make predictions for four Gram-negative and 
three Gram-positive subcellular locations. This work has 
been improved with the release of the PSORTb method [4, 
5], which expanded the number of subcellular locations pre-
dicted as well as the coverage of predicted proteins. The 
PSORTb approach is similar to the original PSORT-I 
method, in that both apply prior knowledge of various fea-
tures known to correlate to distinct localizations. The predic-
tive performance of the PSORTb method was improved by 
the use of modern classification algorithms, such as support 
vector machines (SVM) and through integration of each in-
dividual component output via a Bayesian network to  
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produce a final score. SVM-based methods are common in 
this field of research, with methods that focus on bacterial 
protein localization differing only in the feature space con-
sidered as the input to the classifier [5-9]. A few methods 
that extract keywords from the annotations associated with 
each sequence have appeared in recent years. The Proteome 
Analyst is one such method that can be used on bacterial 
proteins. The method works by BLASTing the query se-
quence against the Swiss-Prot database, selecting a set of the 
best homologous sequences, and extracting text associated 
with the homologous sequences [10, 12, 13]. For further in-
formation on bacterial protein subcellular localization pre-
diction, we recommend that the reader refer to an excellent 
review by Gardy and Brinkman [2]. For a general review of 
many of the current methods and challenges in protein local-
ization prediction, we recommend the reviews by Dönnes 
and Höglund [11] and Sprenger et al. [14]. 

 Though there are a wide range of methods available for 
subcellular localization, most of these are not suitable for 
proteome-wide prediction. They often require prior structural 
or functional information for the protein sequences used for 
training purposes. This significantly limits the size and scope 
of datasets used, which results in datasets that are not suffi-
ciently robust to represent entire proteomes. In addition, 
many methods can predict only a few prominent subcellular 
classes or usually perform poorly on highly unbalanced data, 
which is characteristic of datasets used in subcellular local-
ization prediction. 

 In this study, we address the task of predicting the sub-
cellular localization of bacterial proteins using information 
that can be derived from the sequence of the protein alone. 
Our work is based on previous work completed on the 
ngLOC method [15], which was developed to annotate the 
subcellular localization of eukaryotic proteins. The ngLOC 
method is an n-gram based Bayesian method based on se-
quence homology, and operates by observation of fixed 
length subsequences of length n (i.e. n-grams) over different 
subcellular localization classes. The method was designed to 
address many of the known limitations of existing methods 
that make them prohibitive for proteome-wide predictions. 

MATERIALS AND METHODOLOGY 

Training Dataset 

 The dataset used for this task is a set of protein sequences 
taken from the Swiss-Prot database, release 54 [16], which 

contains experimentally determined annotations for subcellu-
lar localization. We applied the following filters to obtain 
high-quality data for training and testing purposes: only bac-
terial (not archael) sequences were considered; sequences 
with predicted and ambiguous localizations were removed, 
including those annotated with the terms 'probable', 'poten-
tial', 'likely', or 'by similarity'; sequences shorter than 10 
residues in length were removed. There are very few bacte-
rial proteins in the Swiss-Prot database that have been ex-
perimentally determined to be multi-localized in the cell, and 
therefore we removed such sequences. We separated proteins 
from Gram-negative (i.e. have an outer membrane encasing 
an inner membrane, with a very thin cell wall) and Gram-
positive (i.e. an inner membrane encased in a thick cell wall) 
species, resulting in 7,229 and 2,814 sequences, respectively. 
Finally, we used the cd-hit sequence clustering software [17] 
to reduce the maximum sequence identity to 98%, resulting 
in a final dataset of 6,558 Gram-negative sequences and 
2,447 Gram-positive sequences. A further reduction in simi-
larity resulted in loss of discriminatory n-grams (data not 
shown). Table 1 shows the location-wise distribution of the 
resulting datasets. 

Proteome Datasets 

 The proteomes and corresponding PSORTb v2.0 predic-
tions were downloaded from the PSORTdb online database 
of subcellular localization predictions for bacteria [5, 18]. 
We randomly chose ten Gram-negative organisms and five 
Gram-positive organisms for subcellular proteome estima-
tion purposes. The Gram-negative examples include An-
aeromyxobacter dehalogenans, Campylobacter jejuni, Cau-
lobacter crescentus, Escherichia coli, Geobacter sulfurre-
ducens, Haemophilus influenzae, Helicobacter pylori, Neis-
seria gonorrhoeae, Rickettsia conorii, and Thiobacillus deni-
trificans. The Gram-positive examples include Bacillus an-
thracis, Clostridium acetobutylicum, Lactobacillus acidophi-
lus, Mycobacterium tuberculosis, and Streptococcus pneu-
moniae. 

Prediction Algorithm 

 The ngLOC method is a Bayesian classification method 
for predicting protein subcellular localization as described in 
King and Guda [15]. Our method uses n-gram peptides de-
rived solely from the primary structure of a protein to ex-
plore the search space of proteins. It is suitable for proteome-
wide predictions, and is also capable of inferring multi-
localized proteins, namely those localized to more than one 

Table 1. Gram-Negative and Gram-Positive Training Data 

 

Localization Code Gram-Negative Sequences Gram-Negative % of Data Gram-Positive Sequences Gram-Positive % of Data 

Cytoplasm CYT 4,139 63.0% 1,776 72.6% 

Extracellular EXC 263 4.0% 292 11.9% 

Inner Membrane IN 1,397 21.3% 347 14.2% 

Outer Membrane OUT 344 5.2% NA NA 

Periplasm PER 415 6.3% NA NA 

Cell Wall WAL NA NA 32 1.3% 

Total  6,558  2,447  

This table shows the distribution of proteins in the training data for both Gram-negative and Gram-positive bacteria over each subcellular location. NA – Not applicable. 
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subcellular location. We modified the original method to 
predict distinct subcellular localization classes over Gram-
negative and Gram-positive bacterial proteins, and to empha-
size a balance between high precision across all subcellular 
localization classes, versus high coverage across prokaryotic 
proteomes. The essential parts of this method are described 
here. 

 The core of the ngLOC method is based on a vast amount 
of work performed in document classification, where the 
popular naïve Bayes classifier has been used to effectively 
classify documents based on the frequency of occurrence of 
all possible words observed over different document classes 
[19]. In protein classification, we consider the frequency of 
occurrence of all possible n-grams in a dataset of protein 
sequences, where an n-gram is defined as a protein subse-
quence having a fixed length of n. 

 Given a protein sequence di, a probabilistic approach to 

subcellular localization prediction is to develop a model to 

estimate the probability that di is localized into each localiza-

tion class jc C , where C  represents the set of all possible 

such classes. The classifier h predicts the localization of di to 

the class that has the highest posterior probability. Equation 

1 shows this in probabilistic terms, and shows how the well-

known Bayes rule is used to derive an estimate for this prob-

ability. 
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 An accurate Bayesian classifier is dependent on accurate 
estimates for the probabilities on the right-hand side of equa-
tion 1. The denominator P(di) is dropped because it is con-
stant. The prior probability of each subcellular localization 
cj, denoted P(cj), is estimated from the training data by 
counting the number of sequences assigned to class cj, di-
vided by the total number of sequences in the training data. 
The posterior probability of protein sequence di, given loca-
tion cj, denoted as P(di | cj), is the difficult parameter to esti-
mate. We assume that each sequence di is viewed as a collec-
tion of unordered n-grams generated by a random process 
that follows a multinomial distribution. Letting wt denote the 
t
th

 n-gram over all possible n-grams that may occur in the 
data and Nit be a count of the number of occurrences of n-
gram wt in sequence di, then under our assumptions, the pos-
terior probability of protein sequence di, given location cj, is 
estimated as follows: 
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 To estimate P(wt | cj), the posterior probability of n-gram 
wt, given class cj, we use the LaPlace correction to prevent 
probabilities of zero from being calculated and count the 
number of occurrences of wt in all sequences belonging to 
that class. Letting S be the set of all possible n-grams that 
occur in the entire set of training data, we compute the esti-
mate as: 
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j
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        (3) 

Probabilistic Confidence Score 

 We developed a probabilistic confidence score (CS) for 
sequence di being localized into each class cj, and normalized 
it to sum to 100 over all classes. Our CS can be interpreted 
as an estimate of the conditional probability of class cj, given 
sequence di and the n-gram model used. 

 For a given sequence di, we define dnull to be a sequence 
of null symbols of a length that is equal to the length of di. 
(A null symbol is essentially any symbol that does not repre-
sent an amino acid.) Thus, each instance of dnull is guaranteed 
to never occur in the model. To calculate the probability that 
each class model generated dnull, we can use this fact to sim-
ply Equations 2 and 3, giving us: 
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 We then set minNullProb to be the minimum joint prob-
ability of dnull and class cj observed across all classes: 
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 A log-odds ratio that sequence di is targeted for location 
cj against minNullProb is calculated and then normalized by 
dividing by the sum over all log-odds scores, to create a 
separate score for each subcellular location cj for a given 
sequence di as follows: 
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 The range for each score will always be between 0-100, 
with the sum of the scores over all classes totaling 100.  

Evaluation Methods 

 To evaluate the performance of the method, we apply a 
standard validation technique known as ‘leave-one-out’ vali-
dation (also known as ‘jack-knife’), in which one sequence is 
removed from the training data, the predictive model is 
trained using the remainder of the data, and the model is then 
tested on the single sequence that was removed. This process 
is repeated for the entire dataset, one sequence at a time. We 
report standard performance measures over each subcellular 
location, including sensitivity (recall), precision, specificity, 
and Matthews correlation coefficient (MCC). The latter pro-
vides a measure of performance for a single predicted class; 
the MCC value is 1 for perfect predictions on that class, 0 for 
random assignments, and less than 0 if predictions are worse 
than random [20]. (See supplementary material for more 
details on performance measurements.) 

 For evaluation of the overall classifier performance, we 
report overall accuracy as the fraction of the test datasets that 
were correctly classified. However, due to the highly unbal-
anced nature of the data over each localization class, overall 
accuracy is not a useful measure upon which to rely exclu-
sively. For such unbalanced datasets, a good solution that 
has been used in information retrieval is to report macro-
averaged class measures, which average the individual class 
measures over all classes [21]. We also report a macro-
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averaged F1 measure, where the F1 measure for a given class 
combines sensitivity and precision with equal weighting to 
produce a balanced measure [22]. 

 Finally, we report a receiver operating characteristic 
(ROC) curve for each class as a graphical means of observ-
ing the discriminatory ability of the classifier. ROC curves 
have been increasingly adopted in the machine learning and 
data mining community as a more rigorous means of com-
paring classifiers, in part because researchers are realizing 
that simple accuracy measures are often a poor metric for 
measuring classifier performance [23, 24]. Moreover, it is 
known that resulting ROC curves plotting the classifier per-
formance are independent of class distributions, which is an 
ideal consideration for our classification problem due to our 
highly unbalanced dataset. ROC curves typically plot the 
true positive rate (TPR, which is equivalent to sensitivity) 
against the false positive rate (FPR, which is equivalent to 
1.0 - specificity). Individual points on the graph are plotted 
on the basis of selected scoring thresholds output by the clas-
sifier. The curve begins at the bottom-left corner of the plot 
area and rise to the top-right corner. A classifier that per-
forms no better than random will result in a plot that is close 
to the diagonal. The closer a curve comes to the top-left cor-
ner, the better the classifier will be able to discriminate be-
tween positive and negative instances. We generate a single 
ROC curve for a classifier by computing the macro-average 
of the fraction of true positives and false positives over each 
class observed at distinct CS thresholds, denoted as a Mac-
ROC curve. These curves help us determine the ability for 
the classifier to discriminate between true predictions and 
false predictions over the entire range of confidence scores 
for each class. We compute the area under the Mac-ROC 
curve as another single measure to evaluate the overall pre-
dictive performance of the classifier. The range of the AUC 
measure will be between 0.0 and 1.0, where 1.0 is a perfect 
classifier, and a 0.5 is a classifier that is performing no better 
than random, and less than 0.5 is worse than random guess-
ing. This last measure is particularly useful to determine how 
well the confidence score generated by the ngLOC method 
discriminates between correct and incorrect predictions. 

ngLOC-X – Proteome-Wide Predictions for a Single Spe-
cies 

 We also developed an extension of the ngLOC core 
method called ngLOC-X, which is used to generate predic-
tions for the proteome of a single species. For more informa-
tion pertaining to the derivations behind ngLOC-X, for the 
sake of brevity, we ask the reader to refer to our previous 
work [15]. 

RESULTS 

 We use a naïve Bayesian approach to model the density 
distributions of fixed-length subsequences (i.e. n-grams) 
over five different subcellular locations in Gram-negative 
bacteria, and four different subcellular locations in Gram-
positive bacteria. These distributions are determined from 
protein sequence data that contain experimentally deter-
mined annotations of subcellular localizations. 

Determination of Optimal n-Gram Size 

 Our first test consisted of determining an appropriate n-
gram length for constructing the feature space. In the context 

of proteins, an n-gram is defined as a subsequence of the 
primary structure of a protein with a fixed length of n. The 
optimal value of n chosen will depend on a variety of factors. 
The size of the training data and the measure of similarity of 
the data have a clear influence on n, because as the percent-
age of sequence identity observed in the training data in-
creases, the value of n required to discriminate between se-
quences belonging to different classes also increases [15]. 
Values of n that are too large, however, will lack an ability to 
generalize beyond the training data because n-grams ob-
served in the test sequence are unlikely to be observed in the 
training data. Likewise, a value of n that is too short will be 
unable to effectively learn discriminatory features in the 
training data. These problems are more pronounced when 
learning model parameters from highly unbalanced classes. 
We perform a separate test for each dataset to ensure that we 
select an optimal value of n for each classifier. Table 2 
shows the performance results for both datasets. 

Table 2. Performance of Different n-Gram Models 

 

Gram-Negative Gram-Positive 
n-Gram 

Size Overall  

Accuracy 
Mac-F1 AUC 

Overall  

Accuracy 
Mac-F1 AUC 

1 82.5% 0.658 0.673 87.4% 0.715 0.770 

2 84.5% 0.715 0.746 88.7% 0.738 0.772 

3 88.5% 0.788 0.829 91.1% 0.769 0.807 

4 90.3% 0.819 0.882 92.1% 0.694 0.780 

5 89.7% 0.795 0.904 90.8% 0.751 0.756 

6 89.8% 0.808 0.898 89.3% 0.732 0.895 

7 87.3% 0.799 0.862 87.7% 0.706 0.898 

8 84.5% 0.771 0.847 86.7% 0.682 0.901 

This table shows overall accuracy, macro-averaged F1, and the area under the ROC 

curve (AUC) performance metrics over varying n-gram lengths on both the Gram-
negative and Gram-positive datasets. 

 

 Notice that on both datasets, the 4-gram model has the 
highest overall accuracy. Based on the results for the Gram-
negative data, one may consider using either the 4-gram, 5-
gram or 6-gram models, because these models have rela-
tively close performance measures. The ROC curve in Fig. 
(1) shows that the 5-gram and 6-gram models offer the most 
discrimination between true and false predictions. To illus-
trate, we use the confidence score (CS) output by the ngLOC 
method to select only those predictions of high confidence. 
This has the effect of increasing the precision by lowering 
false positive predictions. If we select a CS threshold 
(CSthresh) that allows only 70% coverage (where ‘coverage’ 
is defined as the percentage of the data that is meeting or 
exceeding the specified CSthresh), we obtain excellent 
macro-averaged precisions of 98.6%, 99.0% and 99.5% for a 
4-gram, 5-gram and 6-gram model, respectively. (See Table 
S1 in supplementary material.) However, we lose predictions 
for 30% of the data. A more liberal threshold that allows 
coverage of 95% of the data results in macro-averaged preci-
sions of 89.9%, 94.9% and 95.5%, respectively, coinciding 
with the resulting ROC curves. While the curve does suggest 
that certain CSthresh values could be chosen to allow a 
slightly higher precision on a 5-gram model, the mac-F1 met-
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ric suggests that the 6-gram model should have slightly bet-
ter performance (see Table 2). We are interested in maximiz-
ing the number of correct predictions, as opposed to maxi-
mizing overall accuracy. Therefore, we chose the 6-gram 
model for the Gram-negative dataset. 

 Analyzing the results for the Gram-positive data shows 
impressive overall performance measures for the 3-gram and 
4-gram model, at 91.1% and 92.1%, respectively (see Table 
2). However, it is interesting that the 4-gram model also re-
sults in one of the lowest mac-F1 values, at only 0.694. 
Moreover, if we were to choose either of these models, we 
would lose significant sensitivity on the smallest classes, 
compared to higher n-gram models. For example, selecting a 
threshold that allows a generous 90% coverage results in 
macro-averaged precision values of 86.8% and 71.9% on a 
3-gram and 4-gram model, compared with 92.4% and 95.2% 
on the 5-gram and 6-gram models, respectively (data not 
shown). The poor performance of the 4-gram model is a re-
sult of an absence of predictions for cell wall at this thresh-
old. Moreover, for those predictions achieving a CS below 
our threshold, only 9% of all sequences localized to the cell 
wall were predicted correctly with the 4-gram model. We 
can conclude that the 3-gram and 4-gram models lack an 
ideal CSthresh value that would achieve high coverage while 
reducing the false positive rate (FPR) across all classes. The 
ROC curves for the Gram-positive data (see Fig. (S1) in the 
supplementary material) and corresponding AUC (see Table 
2) show that the 6-gram, 7-gram and 8-gram models all per-
form reasonably well, suggesting that a CSthresh value can 
be chosen that can effectively discriminate between true-
positives and false-positives for these models. However, the 
7-gram and 8-gram models have comparatively poor mac-F1 
values compared to the 6-gram model, suggesting that they 
will not perform well on the smallest classes. These reasons 
suggest that the 6-gram model should be the model of choice 
for the Gram-positive data. 

Class-Wise Analysis of the 6-Gram Model 

 For our next test, we used the 6-gram model to further 
analyze the performance on individual classes. We ran both 
datasets separately, with and without specifying a confidence 
score threshold (CSthresh) (see Table 3). We chose a 
CSthresh that would result in a macro-averaged precision of 
98% on the Gram-negative data and 95% on the Gram-
positive data. While these are rather restrictive selections, we 
deemed this to be important in order to use only high-
confidence predictions. (We chose a slightly lower threshold 
for the Gram-positive data because of the extremely small 
proportion of data localized to the cell wall). 

 Table 3 shows the effect of selecting a proper CS thresh-
old, which produces a remarkable improvement in the preci-
sion measures across all classes. The only drawback to the 
use of a scoring threshold in this manner is the reduced cov-
erage, i.e., reduction in the number of sequences for which 
predictions are generated. Positive test sequences with a CS 
score below the specified CS threshold are considered to be 
false-negatives, and likewise affect the overall accuracy (re-
ported as micro-averaged sensitivity in Table 3). This value 
decreased from 89.8% to 81.6% in the results for Gram-
negative data, and from 89.3% to 84.4% for Gram-positive 
data. Fig. (2) shows the ROC curve for each individual class 
for the Gram-negative data. The bold-line curve is the 
macro-averaged ROC curve (mac-ROC) over all classes, 
which is identical to the 6-gram curve in Fig. (1). Note that 
this curve is distinct and distant from the curve for cyto-
plasm, which is the most prominent class in the data that 
shows the highest discriminatory performance. This illus-
trates the importance of using macro-averaged values to in-
dicate performance in the context of unbalanced data. With-
out averaging, the mac-ROC curve would be very close to 
the curve for cytoplasmic sequences, giving a false sense that 
the classifier is near perfect for all classes. We noticed that 

 

Fig. (1). ROC curves for [1-8]-gram models on Gram-negative data. This figure depicts the ROC curves plotted, where the sensitivity 

and specificity are based on macro-averaged calculations observed for distinct confidence score (CS) thresholds across each class.  We point 

out that the 5-gram and 6-gram are likely to have the best discriminatory ability based on CS. 
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the curve for the outer membrane data looks peculiar; how-
ever, we also observed remarkably high precision on these 
sequences without a CS threshold, at 98.7%. This is an 
anomaly that may happen when there are very few false pre-
dictions generated with relatively higher confidence scores. 
See the Discussion section for more information pertaining 
to these and related topics surrounding ROC curves. 

Comparison with Other Methods 

 For comparison purposes, we used a test dataset of 
Gram-negative bacteria protein sequences that was used by 
Chou and Shen [8] for comparing their method against 
PSORTb. This dataset, denoted as GP-PSORTb, contained 
1114 sequences of which 945 sequences were overlapping 
with our training dataset for Gram-negative bacteria. The 

 

Fig. (2). ROC curves for 6-gram model on Gram-negative data. This figure depicts the ROC curves plotted against a 6-gram model. The 

Mac-ROC plot is the average ROC curve over each of the individual curves. (CYT = cytoplasmic, EXC = extracellular/secreted, IN = in-

ner/cytoplasmic membrane, OUT = outer membrane, PER = periplasmic, Mac-ROC = macro-averaged ROC curve). 

Table 3. Jack-Knife Performance of ngLOC on Training Data Using a 6-Gram Model 

 

 ngLOC ngLOC (with CSthresh) 

GN Localization Precision Sensitivity Specificity MCC Precision Sensitivity Specificity MCC 

Cytoplasmic 88.7% 99.2% 78.5% 0.82 96.1% 95.6% 89.8% 0.85 

Extracellular 94.0% 59.7% 99.8% 0.74 98.6% 53.6% 100.0% 0.72 

Inner Membrane 90.8% 83.0% 97.7% 0.83 98.1% 60.1% 99.7% 0.72 

Outer Membrane 98.7% 68.0% 100.0% 0.81 99.0% 59.0% 100.0% 0.75 

Periplasmic 92.5% 56.1% 99.7% 0.71 98.1% 50.4% 99.9% 0.69 

Micro-averaged Results 89.8% 89.8% 97.5%  96.7% 81.6% 99.2%  

Macro-averaged Results 93.0% 73.2% 95.1%  98.1% 63.7% 97.9%  

GP Localization 

Cytoplasmic 88.8% 99.3% 66.8% 0.75 95.9% 96.7% 82.8% 0.81 

Extracellular 89.9% 63.7% 99.0% 0.73 97.7% 57.9% 99.8% 0.73 

Cell Membrane 94.1% 64.8% 99.3% 0.75 97.1% 49.0% 99.7% 0.66 

Cell Wall 78.6% 34.4% 99.9% 0.52 90.9% 31.3% 100.0% 0.53 

Micro-averaged Results 89.3% 89.3% 96.4%  96.1% 84.4% 98.7%  

Macro-averaged Results 87.8% 65.6% 91.3%  95.4% 58.7% 95.6%  

This table shows the performance of ngLOC on both the Gram-positive (GP) and Gram-negative (GN) bacterial datasets using a 6-gram model, with and without a CS threshold. We 
report both micro-averaged and macro-averaged results. 
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results are reported in Table 4. The ngLOC column indicates 
the performance of the ngLOC method on the entire GP-
PSORTb test dataset, and the ngLOC(UO) column indicates 
the performance on the 169 non-overlapping (or unobserved 
in the ngLOC training set) sequences that were unique to the 
GP-PSORTb dataset. We report these results separately to 
demonstrate that our method also performs well on the por-
tion of the test data that does not overlap with our training 
data. Specificity is also reported only for the ngLOC method. 
Finally, not all of the methods that were compared make use 
of a scoring threshold to improve precision; therefore we 
report the results without specifying a confidence score 
threshold. 

 While the results indicate that all methods outperform 
PSORTb v1.1, the ngLOC method outperforms the other 
results presented. (We were unable to obtain results for 
PSORTb v2.0.) The results presented in the ngLOC column 
represent an unfair comparison due to the substantial number 
of sequences that exist in both the training data and test data. 
The ngLOC(UO) test results offer a more legitimate per-
formance validation because the test eliminates any redun-
dant sequences between the training and testing datasets. 
Though the overall sensitivity for the non-overlapping se-
quences (ngLOC(UO)) drop slightly from 99.2% to 97.0%, 
these results still indicate that the method is performing re-
markably well compared to PSORTb and Gneg-PLoc. 

 We also use a separate dataset of test sequences, denoted 
GP-test, that was assembled by Chou and Shen [8] for the 
purpose of independently testing their own method, Gneg-
PLoc. This dataset consisted of 637 sequences, of which 512 
overlapped with sequences in the ngLOC training data for 
Gram-negative bacteria. We performed an analysis identical 
to the previous test and present our results in Supplementary 
Table S2. We used ngLOC to generate predictions for all 
sequences in the GP-test dataset. As with the previous test, 
we separated out the 125 sequences that did not overlap with 
any sequence in the ngLOC training data. Again, our method 
performed extremely well, resulting in an overall accuracy of 
99.1% versus 89.1% resulting from the Gneg-PLoc method. 
While we agree with the fact that these high performance 
results are partially an artifact of the substantial number of 
sequences (512) that exist in both the training and test data, 
we would like to emphasize that our method also shows a 
98.4% overall accuracy on the 125 sequences in the GP-test 

dataset that were not in the ngLOC training data (shown un-
der the column ngLOC(UO) in Table S2). These results sug-
gest that the ngLOC model has an ability to discriminate 
between subcellular localizations on bacterial protein se-
quences, with a predictive performance that surpasses most 
existing methods today. 

Generation of Proteome-Wide Predictions 

 For our final test, we used the ngLOC method to generate 
predictions for the entire proteome of ten Gram-negative and 
five Gram-positive organisms. To generate proteome-wide 
localization predictions, we trained ngLOC-X [15] using the 
Gram-negative training data (or Gram-positive, respec-
tively), using a 6-gram model, and a confidence score 
threshhold (CSthresh) value of 25 (30 for Gram-positive) 
that allowed inclusion of all predictions except those of very 
low confidence. Both ngLOC and PSORTb v2.0 methods 
use a scoring threshold to reduce false positives, and there-
fore predictions are not generated for the entire proteome. 
There are two reasons why using the CS threshold is impor-
tant: first, it reduces the chances of generating predictions for 
sequences targeted to subcellular locations that are not cov-
ered by our method. For example, there are other minor sub-
cellular locations to which a protein may be targeted in a 
Gram-negative cell, such as the flagellum or the fimbrium. 
Our method does not handle these locations due to the min-
iscule amount of experimentally determined localization data 
available for these locations. Second, sequences containing 
very low homology with respect to any other sequence in the 
training data will be hard to classify, and will likely result in 
a low CS. The proteome estimates shown in Tables 5 and 6 
are based on the proportion of sequences predicted with a CS 
of greater than or equal to CSthresh. 

 A large portion of the bacterial proteomes lack experi-
mentally determined localizations, and therefore no real ac-
curacy measure can be calculated at the proteome level. In-
stead, to establish a measure of credibility of our predictions, 
we report the fraction of the proteome covered by ngLOC-X 
and PSORTb v2.0, the fraction of the proteome for which 
predictions from both methods are available, and the fraction 
of this overlapping data that have identical predictions. Table 
5 shows the results for the Gram-negative organisms, and 
Table 6 shows the results for the Gram-positive organisms. 
We observed that ngLOC-X had a substantially larger cover-
age across all Gram-negative proteomes, with an average of 

Table 4. Comparison of ngLOC Against Other Methods Using GP-PSORTb Test Dataset 

 

 
Number of  

Sequences 

PSORTb 

Sensitivity 

Gneg-PLoc 

Sensitivity* 

ngLOC 

Sensitivity 

ngLOC 

Specificity 

ngLOC(UO) 

Sensitivity 

ngLOC(UO) 

Specificity 

Cytoplasm 140(39) 83.6% 93.6% 100% 99.6% 100% 96.9% 

Extracellular 74(18) 31.1% 90.5% 98.7% 100.0% 94.4% 100.0% 

Inner Membrane 687(74) 83.0% 97.5% 99.7% 98.8% 97.3% 98.9% 

Outer Membrane 97(21) 82.5% 87.6% 99.0% 99.4% 95.2% 100.0% 

Periplasmic 116(17) 81.0% 94.8% 95.7% 100.0% 94.1% 100.0% 

Overall Accuracy  79.4% 95.4% 99.2%  97.0%  

This table reports the individual sensitivity measures (TP / (TP + FN)) for each class resulting from the original PSORTb v1.1 method, Gneg-PLoc method, and ngLOC. Specificity 

is also indicated for the results from the ngLOC method. The Sequences column reports the number of sequences in each class. The number in parentheses is the number of se-
quences that are not in the ngLOC training data. The ngLOC column shows the results from the ngLOC method. The ngLOC(UO) column shows the performance of ngLOC on the 

169 unique sequences in the test data that did not exist in the training data. We show the overall accuracy resulting from each method at the bottom of the sensitivity columns. 
*(The PSORTb and Gneg-PLoc results are taken from the results reported by Chou and Shen [8]). 
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74.7% coverage, versus an average of 55.7% coverage by 
PSORTb. This represents a 34.1% increase in coverage by 
ngLOC-X, covering an additional 19% of the Gram-negative 
bacterial proteomes on average. Additionally, our results 
show that ngLOC-X predictions covered about 79% of the 
PSORTb predictions, where 82% of these have identical 
localizations predicted. The results for the Gram-positive 
bacterial proteomes are similar, with ngLOC-X resulting in 
an average coverage of 80.6% of the proteome, versus an 
average coverage of 72.5% by PSORTb, representing an 
11.1% increase in coverage by ngLOC-X, covering an addi-
tional 8.1% of the proteome. The ngLOC-X predictions cov-
ered about 80.7% of the PSORTb predictions, where 70.8% 
of those have identical localization prediction. 

 The fractions of subcellular proteomes scaled consis-
tently across most Gram-negative species for both methods 
(Table 5). The average subcellular proteome estimates are 
strikingly similar, with the largest difference observed be-
tween the estimates for the outer membrane, with ngLOC-X 
reporting 1.94% and PSORTb reporting 4.14%, respectively. 
However, there were significant departures for a few species. 
The largest anomaly is the ngLOC-X estimate for E. coli, 
with only 48.1% of its proteome estimated to localize into 
the cytoplasm – a significantly lower estimate than average 
(63.8%), and also substantially lower than the estimate from 
PSORTb (60.2%). However, we also observed that 83.2% of 
the overlapping predictions for this species between these 
two methods are in agreement. One possible reason for this 
anomaly is that our training data contains a disproportion-
ately higher number of E. coli sequences for non-
cytoplasmic locations, resulting in over-prediction of the 
non-cytoplasmic locations, and vice-versa. The dominance 
of E. coli protein sequences in our training data is likely due 
to the role of E. coli as an established model organism, and 
to the successful experimental characterization of the subcel-
lular localization of its proteome, compared to any other bac-

terium. The other significant anomaly was the substantially 
larger estimate for the outer membrane proteome by 
PSORTb for C. crescentus, C. jejuni, and H. pylori com-
pared to the ngLOC-X estimate. For the rest of the organ-
elles, both methods were relatively consistent across all loca-
tions. 

 The predicted proportions across different subcellular 
localizations of Gram-positive bacteria are also highly simi-
lar between ngLOC-X and PSORTb, though they are slightly 
more disproportionate than the Gram-negative predictions 
(Table 6). The two primary differences are in the subcellular 
proteome estimates for cell wall and extracellular space. The 
ngLOC-X method estimated an average of 4.27% of the pro-
teome to localize to cell wall, versus an average of 1.42% 
estimated from PSORTb. The estimates for extracellular 
space were also larger from ngLOC-X, which predicted an 
average of 9.58% of the proteome to localize here, versus an 
average of 5.93% estimated from PSORTb. The estimates 
for the cytoplasm and the cytoplasmic membrane were more 
proportionate between the methods. The overall estimates for 
S. pneumoniae were strikingly similar between the methods 
and also offered the most coverage and overlap of predic-
tions between the methods. 

DISCUSSION 

 The ngLOC method uses the naïve Bayes classification 
method to model the probability that any given protein se-
quence will be targeted to a specific localization. As with 
any Bayesian method, the performance of ngLOC is partially 
dependent on the development of a good estimate for the 
prior probability distribution of an arbitrary sequence being 
localized to each localization class. Our method uses the 
observed distribution in the training data to estimate the pa-
rameters of the prior distribution. This accentuates the im-
portance of ensuring that our training data is drawn in a way 
that is representative of the true underlying distribution of 

Table 5. Estimation of the Subcellular Proteome of Ten Gram-Negative Organisms 

 

 ngLOC PSORTb v2.0   ngLOC PSORTb v2.0 

Species 
Proteome 

Size 

% 

Coverage 

% 

Coverage 

% 

Overlap 

% 

Agreement 

%  

CYT 

%  

EXC 

%  

IN 

%  

OUT 

%  

PER 

%  

CYT 

%  

EXC 

%  

IN 

%  

OUT 

%  

PER 

A. dehalogenans 4346 79.8 57.7 48.3 78.3 76.18 0.46 21.94 0.61 0.81 62.36 0.8 30.3 3.07 3.47 

C. crescentus 3737 76.8 53.9 43.1 81.3 71.99 0.63 24.49 0.77 1.08 61.67 0.7 28.95 5.21 3.48 

C. jejuni 1628 70.0 55.0 41.6 83.3 62.25 1.23 32.92 1.67 1.93 57.43 0.67 32.18 6.26 3.46 

E. coli 5323 71.5 56.3 43.1 83.2 48.11 3.39 35.71 5.59 7.2 60.19 1 29.78 4.2 4.83 

G. sulfurreducens 3445 74.9 65.4 50.7 79.0 67.13 0.85 29.19 1.12 1.71 66.06 1.06 28.35 2.13 2.4 

H. influenzae 1791 72.6 59.4 46.5 87.1 58.08 1.85 34.85 2.69 2.54 64.85 0.66 27.44 3.01 4.04 

H. pylori 1575 67.2 54.6 39.6 84.3 61.38 1.7 33.62 1.23 2.08 61.4 1.4 27.67 8.02 1.51 

N. gonorrhoeae 2002 76.0 52.1 42.1 81.4 63.91 1.97 27.55 2.5 1.97 68.55 0.19 25.22 3.45 2.59 

R. conorrii 1374 77.2 42.7 34.5 81.2 59.28 1.51 31.1 2.36 1.98 60.48 0.34 34.24 2.73 2.21 

T. denitrificans 2827 81.3 59.4 49.6 80.8 69.63 0.48 26.15 0.83 1.83 63.75 0.36 29.35 3.27 3.27 

Average  74.7 55.7 43.9 82 63.79 1.41 29.75 1.94 2.31 62.67 0.72 29.35 4.14 3.13 

This table presents the location-wise percentages of the proteome predicted to localize into one of the five distinct organelles for ten Gram negative organisms. The proteomes and 

corresponding PSORTb v2.0 predictions were downloaded from the PSORTdb online database of subcellular localization predictions for bacteria [18]. We compared our predictions 
against PSORTb v2.0 for the subset of predictions for which both methods generated predictions. The % overlap column indicates the fraction of the proteome in which both meth-

ods had a prediction. The % agreement column indicates the percent of the overlapping data that had identical predictions from both methods. The ngLOC predictions were gener-
ated with a 6-gram model, with a confidence score threshold of 25. CYT, cytoplasm; EXC, extracellular/secreted; IN, inner membrane; OUT, outer membrane; PER, periplasm. 
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the data. Our training data were derived from the subset of 
sequences in the Swiss-Prot repository that have experimen-
tally determined localizations annotated for bacterial se-
quences. Observing the class-wise distribution of our train-
ing data in Table 1 reveals the highly unbalanced nature of 
our data. This is expected, because the true distribution of 
proteins localized to each subcellular location is also unbal-
anced. Yet, we noticed that the data used by the PSORTb 
method are balanced [4, 5], which is not representative of the 
natural, underlying distribution across subcellular classes. As 
shown in Table 5 and Table 6, the prediction coverage of the 
proteome by ngLOC-X for all species was significantly 
larger than that by PSORTb. We attribute these successful 
results to using a robust training dataset with a location-wise 
distribution that is closely representative of the true underly-
ing proportions in a typical bacterial cell. 

 One significant benefit of the ngLOC method is its foun-
dation on a probabilistic model. We believe that there is a 
significant lack of methods that generate probabilities or 
confidence scores with each prediction. It is valuable to 
know "how true" or "how false" a true or false prediction 
may be. Although the prediction is based on the model with 
the highest probability, the probability can also be used as a 
comparative measure against other classes. Our method and 
the PSORTb method are among the very few methods avail-
able that generate a score associated with each prediction. By 
using a scoring threshold, the false positive rate can be sig-
nificantly contained, thereby improving the precision of the 
classifier (Table 3). 

 We demonstrated how a ROC curve could be used as a 
visual graphical indicator to measure the ability for a classi-
fier such as ngLOC to distinguish between correct and incor-
rect predictions. It is important to note that a ROC curve 
does not say anything directly about the overall accuracy of 
the classifier – this information is inferred. At face value, a 
ROC curve shows the ability of a classifier to rank positive 
instances relative to negative instances in the dataset accord-
ing to a score generated for each instance [25]. It is typically 
plotted only for binary classification problems, whereas in 
our classification task, we are working with 4 or 5 distinct 
classes, depending on the classification problem being ad-
dressed. We generate a single ROC curve, denoted as Mac-

ROC, by macro-averaging the fraction of true positives and 
false positives over each class observed at distinct CS 
thresholds (Fig. 2). We have not observed any other methods 
that have presented a multi-class ROC curve and analysis in 
this manner. 

 For the comparative test against other methods, the initial 
aim was to compare the ngLOC results with those of the 
PSORTb v2.0 method, a popular method for bacterial protein 
subcellular localization prediction [5]. However, numerous 
high-confidence predictions were observed from ngLOC that 
disagreed with the annotation in the PSORTb training data. 
The ngLOC predictions for these proteins were consistent 
with the annotation in Swiss-Prot. This problem was particu-
larly noticeable with multi-localized proteins, which is partly 
due to the way that multi-localized proteins are defined in 
the literature. Although the training data used by PSORTb 
was originally taken from the Swiss-Prot database, their data 
was further subject to manual verification based on literature 
review [4]. This process resulted in discrepancies in the in-
terpretation of multi-localized proteins. For instance, the 
curators of the PSORTb dataset consider some membrane 
proteins to be multi-localized if a significant part of a protein 
(i.e. a domain) lies outside of the membrane [F. S. Brinkman, 
Personal communication]. In contrast, the curators of Swiss-
Prot database, which is the basis for our training data, anno-
tate such proteins as ‘integral membrane proteins,’ since they 
are targeted to membranes. We concur with the annotation as 
defined by Swiss-Prot because we intend to use and predict 
localization information at the protein level, not at the do-
main level (as interpreted by PSORTb). Similar observations 
have been fully documented by Chou and Shen [8] and thus 
we do not delve into the topic here. However, due to the nu-
merous inconsistencies in the annotation between our data 
and that of PSORTb, we determined that a comparative test 
could not be performed on the PSORTb dataset. The ngLOC 
method has the ability to use multi-localized proteins for 
training and generating multi-localized predictions [15]. 
Nevertheless, there are far fewer bacterial proteins in Swiss-
Prot annotated as multi-localized, thus limiting their use. 
Therefore, we did not attempt to generate any multi-class 
predictions in this study. 

Table 6. Estimation of the Subcellular Proteome of Five Gram-Positive Organisms 

 

    ngLOC PSORTb v2.0     ngLOC PSORTb v2.0 

Species 

Proteome 

Size 

% 

Coverage 

% 

Coverage 

% 

Overlap 

% 

Agreement 

%  

CYT 

%  

EXC 

%  

IN 

%  

WAL 

%  

CYT 

%  

EXC 

%  

IN 

%  

WAL 

M. tuberculosis 4179 77.5 69.3 53.1 71.9 64.29 10.10 21.66 3.95 72.11 7.29 20.28 0.31 

S. pneumoniae  2088 86.2 77.8 66.6 69.7 66.72 8.00 23.06 2.22 65.83 7.76 25.25 1.17 

B. anthracis 5311 79.3 74.0 58.2 69.1 53.81 10.26 29.46 6.46 62.95 6.36 29.27 1.42 

C. acetobutylicum 3848 76.2 70.8 54.7 71.9 60.80 9.34 24.81 5.04 65.31 3.78 29.77 1.14 

L. acidophilus 1861 83.8 70.8 59.9 71.7 61.06 10.20 25.08 3.66 62.75 4.48 29.74 3.03 

Average   80.6 72.5 58.5 70.8 61.34 9.58 24.81 4.27 65.79 5.93 26.86 1.42 

This table presents the location-wise percentages of the proteome predicted to localize into one of the four distinct organelles for five Gram-positive organisms. The proteomes and 

corresponding PSORTb v2.0 predictions were downloaded from the PSORTdb online database of subcellular localization predictions for bacteria [18]. We compared our predictions 
against PSORTb v2.0 for the subset of predictions for which both methods generated predictions. The % overlap column indicates the fraction of the proteome in which both meth-

ods had a prediction. The % agreement column indicates the percent of the overlapping data that had identical predictions from both methods. The ngLOC predictions were gener-
ated with a 6-gram model, with a confidence score threshold of 30. CYT, cytoplasm; EXC, extracellular/secreted; IN, inner membrane; WAL, cell wall. 
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 We showed a significant overlap in the proteome-wide 
predictions that were generated by our method and the 
PSORTb method. However, we found several low-
confidence predictions generated by ngLOC-X for which the 
PSORTb method generated a high confidence prediction, 
and vice versa. This demonstrates the value of using such 
methods in tandem, in conjunction with experimental meth-
ods, in order to reduce the likelihood of false positives when 
understanding the localization of proteins. However, we also 
stress that functional attributes of protein sequences are an-
notated in a dynamic process; thus, some disagreements be-
tween the methods were likely due to differences in the time 
frame that the training data was acquired and in the methods 
used to assemble the training data. 

CONCLUSION 

 Computational methods for predicting protein subcellular 
localization are vital for functional annotation of proteomes 
en masse. In our study, we curated a new dataset with sub-
cellular annotation for Gram-negative and Gram-positive 
sequences. Using this new dataset, we extended the ngLOC 
method [15], a Bayesian classifier that can predict the sub-
cellular localization of a protein. We demonstrated the per-
formance of the ngLOC method through leave-one-out cross 
validation and direct comparison with similar methods, fur-
ther validating its usefulness and superior performance. This 
method shows an overall accuracy of 89.7% and 89.3% for 
Gram-negative and Gram-positive bacteria protein se-
quences, respectively. As a probabilistic method, the method 
can generate a confidence score (CS) that places a measure 
of credibility on each prediction. We showed how this meas-
ure can be used to improve the precision of the method, as 
well as be used to generate a receiver operating characteristic 
(ROC) curve for individual classes and a single macro-
averaged ROC curve covering all classes. We discussed the 
importance of micro-averaging and macro-averaging per-
formance results in the context of unbalanced datasets such 
as those used in this study. We used this method to annotate 
the subcellular proteomes of ten Gram-negative and five 
Gram-positive species that resulted in an impressive cover-
age of 74.7% and 80.6% of the proteomes in these species, 
respectively. To our knowledge, this study is the first to offer 
such a wide coverage for the estimation of bacterial subcellu-
lar proteomes. 

ABBREVIATIONS 

ROC = Receiver Operating Characteristic 

AUC =  Area Under the ROC Curve 

CS =  Confidence Score 

SVM =  Support Vector Machine 
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