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Abstract: In this paper, we propose a non-polynomial spline based method to develop a numerical method for approxi-

mation to the Burgers
’
 equation. Applying the Von-Neumann stability analysis, we show that the proposed method is un-

conditionally stable. A numerical example is given to illustrate the applicability and the accuracy of the presented new 

method. 
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INTRODUCTION 

 Consider the Burgers' equation of the form: 

ut + uux uxx = 0, a x b, t 0         (1) 

subject to the conditions 

u(a,t) = 1 t( ), u(b,t) = 2 t( ),

ux (a,t) = 1, ux (b,t) = 2 , t 0
         (2) 

 The last two additional conditions in (2) are true at the 

initial time for 0 < < 1 , so we suppose that it is true for 

any time; the initial condition takes the form:  

u x,0( ) = f x( ), a x b           (3) 

 The study of this Burgers’ equation is important due to 

its application in the approximate theory of flow through a 

shock wave propagating in a viscous fluid [1] and in the 

modeling of turbulence [2]. In the past few years a great deal 

of efforts has been expended to study the equation (1) as 

well as other forms of this partial differential equation, both 

theoretically and numerically, see for example, [3-11]. 

 Recently, there is a wide use of non-polynomial splines 

based methods for approximating the solution of boundary 

value problems of different orders, see for example, [12-15]. 

However, the numerical analysis of literature contains little 

for using these non-polynomial splines dealing with the solu-

tion of partial differential equations [16,17].  

 In this paper, we are concerned with the problem of ap-

plying non-polynomial spline functions to develop a numeri-

cal method for obtaining approximation for the solution for 

non-linear Burgers' equation (1). The non-polynomial spline 

function in this work has a trigonometric part, and a poly-

nomial part of first degree. 
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Remark 

 The C - differentiability of the trigonometric part of 

non-polynomial spline compensates for the loss of smooth-

ness inherited by polynomial splines. 

 The paper is organized as follows: In section 2, a new 

method which depends on the use of the non-polynomial 

splines is derived. In section 3, the stability analysis is theo-

retically discussed. Using Von Neuman method, for given 

values of specified parameters, the proposed method is 

shown to be unconditionally stable. Finally, in section 4, a 

numerical example is included to illustrate the practical im-

plementation of the proposed method. The accuracy per-

formance of the obtained numerical results is compared with 

the exact solution. Since we are using a new type of (mov-

ing) boundary conditions to improve the accuracy, therefore 

we can not make an accuracy comparison with other exciting 

methods for this problem. The numerical results show that 

our proposed method is a promising approach for solving 

different types of this nonlinear partial differential equation 

problem. 

DERIVATION OF THE NUMERICAL METHOD FOR 

THE NON-POLYNOMIAL SPLINE APPROACH TO 

BURGERS’ EQUATION  

 To set up the non-polynomial spline method, select an 

integer N > 0  and time-step size k > 0.  

With h =
b a

N + 1
,  the mesh points xi ,t j( )  are xi = a + ih,  

for each 
 i = 0,1,…, N +1,  

and t j = jk,  for each 
 
j = 0,1,….  

 Let Ui
j U(xi ,t j )  be an approximation to 

ui
j u(xi ,t j ),  obtained by the segment Pi (x,t j )  of the 

mixed spline function passing through the points (xi ,Ui
j )  

and (xi+1,Ui+1
j ) . Each segment has the form: 
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Pi (x,t j ) = ai (t j ) cos (x xi ) + bi (t j )

sin (x xi ) + ci (t j ) (x xi ) + di (t j )
        (4) 

for each 
 i = 0,1,…, N .  To obtain expressions for the coeffi-

cients of (4) in terms of Ui
j , Ui+1

j , Si
j , and Si

j+1 , we first 

define 

Pi (xi ,t j ) = Ui
j , Pi (xi+1,t j ) = Ui+1

j ,

Pi
(2) (xi ,t j ) = Si

j ,and Pi
(2) (xi+1,t j ) = Si+1

j
        (5) 

Using the Eqns. (4) and (5), we get: 

ai + di = Ui
j ,   

ai cos + bi sin + cih + di = Ui+1
j

         (6) 

ai
2

= Si
j  

ai
2 cos bi

2 sin = Si+1
j   

where, 

ai ai (t j ), bi bi (t j ), ci ci (t j ), di di (t j ) ,  

and = h. By solving the last four equations, we obtain the 

following expressions: 

ai =
h2

2
Si

j ,bi =
h2 cos Si

j Si+1
j( )

2 sin

ci =
Ui+1

j Ui
j( )

h
+

h Si+1
j Si

j( )
2

,di =
h2

2
Si

j
+Ui

j ,

        (7) 

 Using the continuity condition of the first derivative at 

x = xi , that is, Pi
(1) (xi ,t j ) = Pi 1

(1)(xi ,t j ) , we get the follow-

ing relation: 

bi + ci = ai 1 sin + bi 1 cos + ci 1          (8) 

Using (7), equation (8) gives us the following tridiagonal 

system: 

Ui+1
j 2Ui

j
+Ui 1

j
= Si+1

j
+ Si

j
+ Si 1

j ,.   

For 
 i = 1, 2,…, N            (9) 

Where, 

=
h2

sin

h2

2
, =

2h2 cos

sin
+

2h2

2
  

and 

Si
j
=

2Ui
j

x2
=

1 Ui
j

t
+ (Ui

j )
Ui

j

x
. 

Replacing j by j+1/2, system (9) becomes: 

Ui+1
j+1/2 2Ui

j+1/2
+Ui 1

j+1/2
=

Si+1
j+1/2

+ Si
j+1/2

+ Si 1
j+1/2 , i = 1,2,K , N .

      (10) 

where,  

Ui
j+1/2 U(xi ,t j+1/2 ), t j+1/2 =

t j+1 + t j

2
 

and,  

Si
j+1/2

=
1 Ui

j+1/2

t
+ (Ui

j+1/2 )
Ui

j+1/2

x
.  

Using the finite difference method, we obtain 

Ui
j+1/2 Ui

j+1
+Ui

j

2
,

t
Ui

j+1/2 Ui
j+1 Ui

j

k
,

and
x

Ui
j Ui+1

j Ui
j

h
.

      (11) 

Using these formulas allows us to express Si
j+1/2  as, 

Si
j+1/2 1

k
Ui

j+1 Ui
j( ) +

(Ui
j+1/2 )

2

Ui+1
j+1 Ui

j+1

h
+

Ui+1
j Ui

j

h

       (12) 

 The use of (11) and (12) in equation (10) gives us the 

following system: 

AiUi 1
j+1

+ BiUi
j+1

+ CiUi+1
j+1

+ DiUi+2
j+1

=

Ai
*Ui 1

j
+ Bi

*Ui
j
+ Ci

*Ui+1
j

+ Di
*Ui+2

j ,
 

For each i = 1, 2, 3, ..., N 1 j = 0,1, 2, ...        (13) 

where, 

Di =
i+1

2h
, Di

*
=

i+1

2h
,

Ci =
1

2
+

k
i+1

2 h
+

i

2 h
, Ci

*
=

1

2
+

k
+

i+1

2 h
i

2 h
,

Bi = 1+
k

i

2 h
+

i 1

2 h
, Bi

*
= 1+

k
+

i

2 h
i 1

2 h
,

Ai =
1

2
+

k
i 1

2 h
, Ai

*
=

1

2
+

k
+

i 1

2 h
,

and,

i = (Ui
j+1/2 )

 

 System (13) consists of N-1 equations in the unknowns 

 
Ui , i = 1,…, N + 1.  To get a solution to this system we need 

3-additional equations. These equations are obtained from 

the conditions in (2). The first two parts in (2) are replaced 

by: 

 
U0

j
= 1 t j( ), UN +1

j
= 2 t j( ), j = 0,1,….       (14) 

but the last part in (2) is discretized by the following equa-

tion: 

UN 2
j

+UN 1
j 13UN

j
+11UN +1

j

8h
x

UN +1
j

= 8h 2 t j( ), j 0.
       (15) 
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 The last equation is true for any time. Writing Eqns. (13)-

(15) in matrix form gives: 

Q U j+1
= Q* U j

+ r j+1          (16) 

where, 

 
U j

= U0
j , U1

j , U2
j , … … … UN 1

j , UN
j , UN +1

j( ) T ,  

 

Q =

1 0 0 0 0 0 0 …… 0

A1 B1 C1 D1 0 0 0 …… 0

0 A2 B2 C2 D2 0 0 …… 0

0 O

0 0 AN 2 BN 2 CN 2 DN 2 0

0 …… 0 0 0 AN 1 BN 1 CN 1 DN 1

0 …… 0 0 0 1 1 13 11

0 …… 0 0 0 0 0 0 1

,

 

 

Q*
=

0 0 0 0 0 0 0 …… 0

A1
* B1

* C1
* D1

* 0 0 0 …… 0

0 A2
* B2

* C2
* D2

* 0 0 …… 0

0

0 0 AN 2
* BN 2

* CN 2
* DN 2

* 0

0 …… 0 0 0 AN 1
* BN 1

* CN 1
* DN 1

*

0 …… 0 0 0 0 0 0 0

0 …… 0 0 0 0 0 0 0

,

 

and, 

 
r j

= 1 t j( ),0,0,………,0,8h 2 t j( ), 2 t j( )( )
T

 where r j
 

is an (N+2) dimensional column vector, while Q and Q* are 

(N+2)x (N+2) matrices. The initial condition 

u x, 0( ) = f x( ), for each a x b, implies that 

Ui
0

= f xi( ), for each 
 i = 0,1,…, N + 1.  These values can 

be used in Eq. (13) to find the value of Ui
1,  for each 

 i = 0,1,…, N + 1.  If the procedure is reapplied once all the 

approximations Ui
1  are known, the values of 

 
Ui

2 ,Ui
3,…  can 

be obtained in a similar manner. 

Remark 1 

 To cope with the nonlinear terms in System (13), the fol-

lowing steps are followed : 

1- At j = 0 , we approximate i  by i
0  calculated from Ui

0  

only , that is, 

 i i
0

= Ui
0( ) for each i = 0,1,…, N , which are needed 

to compute the elements 

of Q and Q*. We then obtain U1
 from (16). 

 

 

2- At j = 1 , we approximate i  by i
1  calculated from 

0.5 Ui
0

+Ui
1( ) , that is,  

 
i i

1
= 0.5 Ui

0
+Ui

1( )( ) for each i = 0,1,…, N ,  

which are needed to compute the elements of Q and Q*. We 

then obtain U 2
 from (16). 

3- At j = n , we approximate i  by i
n   

calculated from 0.5 Ui
n 1

+Ui
n( ) , That is, 

i i
n

= 0.5 Ui
n 1

+Ui
n( )( ) for each i=1,2,..N, which are 

needed to compute the elements of Q and Q*. We then ob-

tain U n+1
 from (16). 

THE STABILITY ANALYSIS 

 For stability analysis, we use the Von Neumann method. 

To do this, we must linearize the nonlinear term ( uux ) of the 

Burgers’ equation (1) by making i+1 = i = i 1 = d in the 

numerical scheme (16). According to the Von Neuman 

method we have: 

Ui
j
=

j exp q ih( ),          (17) 

where  is the mode number, q = 1 , h is the element 

size, and  is the amplification factor of the scheme. Substi-

tute Eq. (17) into Eq. (13) we get: 

j+1
Ai exp (i 1)q h( ) + Bi exp iq h( ) +

Ci exp (i +1)q h( ) + Di exp (i + 2)q h( )
=

j
Ai

* exp (i 1)q h( ) + Bi
* exp iq h( ) +

Ci
* exp (i +1)q h( ) + Di

* exp (i + 2)q h( )

   (18) 

where, 

Di =
d

2h
, Di

*
=

d

2h
,

Ci =
1

2
+

k

d

2 h
+

d

2 h
, Ci

*
=

1

2
+

k
+

d

2 h

d

2 h
,

Bi = 1+
k

d

2 h
+

d

2 h
, Bi

*
= 1+

k
+

d

2 h

d

2 h
,

Ai =
1

2
+

k

d

2 h
, Ai

*
=

1

2
+

k
+

d

2 h
,

     (19) 

Dividing both sides of Eq. (18) by exp iq h( )  we obtain: 

j+1 Ai exp q h( ) + Bi + Ci exp q h( ) + Di exp 2q h( ){ } =

j Ai
* exp q h( ) + Bi

*
+ Ci

* exp q h( ) + Di
* exp 2q h( ){ }

        (20) 

Using the following Euler’s formula: 

exp[q ] = cos + q sin , = h         (21) 

Eq. (20) can be represented in the form: 
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j+1
Ai cos qsin( ) + Bi + Ci cos + qsin( ) +

Di cos2 + qsin2( )
=

j
Ai

* cos qsin( ) + Bi
*
+ Ci

* cos + qsin( ) +

Di
* cos2 + qsin2( )

  

After simple calculations, we obtain: 

=
X*

+ qY *

X + qY
          (22) 

where, 

X*
= Ai

*
+ Ci

*( ) cos + Di
* cos2 + Bi

*,  

X = Ai + Ci( ) cos + Di cos2 + Bi ,        (23) 

Y *
= Ci

* Ai
*( ) sin + Di

* sin2  

Y = Ci Ai( )sin + Di sin2  

Eqns. (19) and (23) together give: 

X*
=

1

k
+ 2( )

4

k
sin2

2
2sin2

2
+

d

h
2( )sin2

2
+

d

h
sin2 ,

  

X =
1

k
+ 2( )

4

k
sin2

2
+ 2sin2

2
d

h
2( )sin2

2

d

h
sin2 ,

      (24) 

Y *
=

d

2 h
sin

d

2 h
sin2  

Y =
d

2 h
sin +

d

2 h
sin2  

The necessary and sufficient condition for (13) to be stable 

is: 

=
X*2

+ Y *2

X 2
+ Y 2

1  

Simplifying the above inequality, we obtain: 

X 2 X *2           (25) 

where Y 2
= Y *2

.  

The last inequality gives us: 

1

k
+ 2( )

4

k
sin2

2
  

2sin2

2

d

h
2( )sin2

2

d

h
sin2 0       (26) 

For > 2 , > 0 , and > 0  we obtain: 

1

k
+ 2( )

4

k
sin2

2
0  

which enables us to write (26) in the form: 

2sin2

2

d

h
2( )sin2

2

d

h
sin2 0       (27) 

 Our system is conditionally stable. The condition of sta-

bility is 2 , 0 and 0.  

NUMERICAL RESULTS 

 We now obtain the approximate numerical solution of 

Burgers’ equation for one standard problem. The accuracy of 

our proposed numerical method is measured by computing 

the difference between the analytic and numerical solutions 

at each mesh point, and use these differences to compute the 

L2 and L  error norms. 

The analytic solution of the Burgers’ equation (1) [8] is 

given by: 

u(x,t) =
(x / t)

1+ (t / )1/2 exp(x2 / 4 t)
,  

Where, 0 x 1 , t 1             (28) 

Where = exp(1 / 8 )  make initial condition to be the 

equation (28) evaluated at t = 1. The boundary conditions 

are: 

u(0, t ) = 0,  u(1,t) =
(1 / t j )

1+ (t j / )1/2 exp(1 / 4 t j )
,       (29) 

 Note that the second condition in Eq(28) is a type of 

moving boundary condition.  

Remark 2 

 The additional conditions: 

ux (a,t) =
x

u 0,t0( )  and ux (b,t) =
x

u 1,t0( )  are true at 

the initial time for 0 < < 1 , so we suppose that the analyti-

cal solution (28) satisfies these conditions  
 The obtained numerical results are summarized in the 

following tables for x = 0.025  (Tables 1-4). Table 1 gives 

the numerical and exact solutions at time t =3.  

Table 1.   = 0.05, t = 0.01, = 0.2´10
-6

and = 6´10
-4

 

xi Exact Solution Numerical Solution 

0.0 0.0000000  0.0000000 

0.1 0.0221546  0.0220390 

0.2 0.0435601  0.0433457 

0.3 0.0634297  0.0631439 

0.4 0.0809113  0.0805862 

0.5 0.0950889  0.0947549 

0.6 0.1050300  0.1047120 

0.7 0.1099090  0.1096260 

0.8 0.1092040  0.1089760 

0.9 0.1029440  0.1028100 

1.0 0.0918946  0.0918946 
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Table 2.   = 0.05, t = 0.01, = 0.2 ´ 10
-6

and = 6 ´ 10
-4

 

Time L2 – error x 10
3
 L - error x 10

3
 

2 0.129883 0.203959 

2.5 0.146748 0.235351 

3 0.246727 0.334341 

3.5 0.311609 0.428702 

5 0.342211 0.482112 

 

Table 3.   = 0.5, t = 0.1, = 0.2´10
-6

and = 6´10
-4

 

Time L2 – error x 10
3
 L - error x 10

3
 

 2  0.6625430  0.9333200 

 2.5  0.3534180  0.4977590 

 3  0.2141600  0.3015790 

 3.5  0.1422560  0.2002460 

 5  0.0574751  0.0808847 

 

Table 4.   = 0.005, t = 0.05, = 0.2 ´ 10
-9

and = 4 ´ 10
-4

 

Time L2 – error x 10
3
 L - error x 10

2
 

 2 8.015390  2.187940 

 2.5 9.622790  2.618230 

 3 9.835130  2.848630 

 3.5 5.998950  1.912170 

 5 1.520370  0.228921 

 

Remark 

 Using these new types of boundary conditions, (29) al-

lows us to compute the approximate solution for large value 

of the time t with an acceptable accuracy. In previous exist-

ing methods for Burgers
’
 equation, numerical solutions are 

computed for the time t with t << 5. 

 Next, we draw some of the obtained approximate solu-
tions U(x, t )  for this test problem versus the distance x. 
Figs. (1) and (2) illustrate the behavior of the numerical solu-
tion at = 0.05 , t = 0.01, x = 0.025 but Figs. (3) and (4) 
illustrate the behavior of the numerical solution at 

= 0.005 , t = 0.05, x = 0.025 for some different times t 
=2 and 3 respectively. 

 From Figs. (1), (3) at t =2 and Figs (2), (4) at t =3, we can 

conclude that as í  in the dispersion term uxx , increases 

from 0.005 to 0.05, the effect of the nonlinearity term, the 

second term uux  of Burgers
’
 equation (1), decreases. 

 

 

 

 

 

 

 

 

 

Fig. (1). 

 

 

 

 

 

 

 

 

 

Fig. (2). 

 

 

 

 

 

 

 

 

 

Fig. (3). 

 

 

 

 

 

 

 

 

 

Fig. (4). 

CONCLUSION 

 In this paper, a numerical treatment for the Burgers’ 

equation using non-polynomial spline is proposed. The sta-

bility analysis of the method is shown to be unconditionally 
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stable for given values of specified parameters. Namely for 

2 , 0 and 0 , our system is unconditionally 

stable. The obtained approximate numerical solutions are 

showed to maintain good accuracy. 
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