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Abstract: In this paper, a perturbing nonlinear Schrodinger equation is studied under limited time interval through homo-

geneous boundary conditions and real initial condition. The analytical solution for the linear case is introduced. The per-

turbation method is used to introduce an approximate solution for the perturbative nonlinear case for which a power series

solution is proved to exist. Using Mathematica, the solution algorithm is tested through first order approximation. The

method of solution is illustrated through case studies and figures.
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INTRODUCTION

In many fields such as plasma physics [1], quantum me-
chanics [2] and wave propagation in nonlinear media [3,4],
the nonlinear Schrodinger equation (NLS) is the principal
equation to be analyzed and solved. In the literature, there
are a lot of NLS problems depending on additive or multipli-
cative noise in the random case [5,6] or a lot of solution
methodologies in the deterministic case.

Wang et al. [7] obtained the exact solutions to NLS using

what they called the sub-equation method. They got four

kinds of exact solutions of the equation
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for which no sign to the initial or boundary conditions type is

made. Xu L. and Zhang J. [8] followed the same previous

technique in solving the higher order NLS:
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Sweilam [9] solved
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with initial condition ( ,0) ( )u x g x= and boundary con-

ditions
0 1( , ) ( , ) 0x xu L t u L t= = which gives rise to soli-

tary solutions using variational iteration method. Zhu [10]

used the extended hyperbolic auxiliary equation method in

getting the exact explicit solutions to the higher order NLS:
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without any conditions. Sun et al. [11] solved the NLS:
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with the initial condition
0( ,0) ( )x x� �= using Lie group

method. By using coupled amplitude phase formulation,

Parsezian and Kalithasan [12] constructed the quartic anhar-

monic oscillator equation from the coupled higher order

NLS. Two-dimensional grey solitons to the NLS were nu-

merically analyzed by Sakaguchi and Higashiuchi [13]. The

generalized derivative NLS was studied by Huang et al. [14]

introducing a new auxiliary equation expansion method. El-

Tawil et al. introduced a new approach in solving a pertur-

bative cubic nonlinear Schrodinger equation in [15] and with

variable group velocity in [16].

In this paper, a straight forward solution algorithm is

introduced using the transformation from a complex solution

to coupled equations in two real solutions. Eliminating one

of the real solutions to get separate independent equations, a

higher order equation is obtained in each variable. Finally, a

perturbative approximate solution to the system is intro-

duced. Section 2 illustrates the method applied on the linear

equation. Section 3 deals with the nonlinear case.

THE LINEAR CASE

Consider the non homogeneous linear Schrodinger equa-

tion:

i
�u(t, z)

�z
+�

�2u(t, z)

�t2
+ i� u(t, z)

= F(t, z), (t, z)�(0,� ) � (0,�)

(1)

where ( , )u t z is a complex valued function which is sub-

jected to:

I.C. : u(t,0) = f (t), a real valued function, (2)

. : (0, ) 0, ( , ) 0.BC u z u z�= = (3)
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Let ( , ) ( , ) ( , ), ,u t z t z i t z� � � �= + : real valued

functions. The following coupled equations are obtained:
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where ( ,0) ( )t f t� = while all corresponding other I.C.

and B.C. are zeros.

To get rid of the loss terms in equations (4) and (5), one

can use the following effective transformations:

( , ) ( , ),zt z e w t z�� �= (6)

( , ) ( , ),zt z e v t z�� �= (7)

where ( ,0) ( )w t f t= while all corresponding other I.C.

and B.C. are zeros. The following coupled equations are ob-

tained:
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where

1 ( , ) ( , ).zG t z e F t z�= (10)

Eliminating one of the variables in equations (8) and (9),

one can get the following independent equations:
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Using the eigenfunction expansion technique [17], the

following solution expressions are obtained:

0
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where ( )nT z and ( )n z� can be got through the applica-

tions of initial conditions and then solving the resultant sec-

ond order differential equations using the method of the

variational parameter [18]. The final expressions can be got

as the following:

1 2 1( ) ( )sin ( ( )) cos ,n n nT z A z z C B z z� �= + + (17)

2 2 2( ) ( )sin ( ( )) cos ,n n nz A z z C B z z� � �= + +� (18)
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The following conditions should also be satisfied:
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2 2 (0).C B= �� (27)

Finally, the following solution is obtained:

( , ) ( ( , ) ( , )),zu t z e w t z iv t z��= + (28)

or

2 2 2 2( , ) ( ( , ) ( , )).zu t z e w t z v t z��= + (29)

Example-1

Solving equations (1), (2) and (3) with taking ( )f t �= ,

( , ) 0F t z = and following the previous solution algorithm,

the following final result is obtained:
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One can justify the following facts:
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0

lim ( , ) 0,u t z
��

=

ii) lim ( , ) 0,u t z
���

= 0,z >



On The Analytical Solution of Perturbative Nonlinear Schrodinger The Open Applied Mathematics Journal, 2008, Volume 2 3

iii)
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which coincide with the physical conditions. The following

figures illustrate some cases:

Fig. (1). The solution u at , , 1, 20T� � � = = for 50 terms using

mathematica 5.

Fig. (2). The solution u at z=0 and , , 1, 20T� � � = = for 50

terms.

Fig. (3). The solution u at z=15 and , , 1, 20T� � � = = for 50

terms.

One can notice the high reduction of the solution level.

Example-2

Taking the case of ( ) sin( )
m

f t t
T

�
�= , the following

final result is obtained:

( , ) cos sin( ) ,z

m

m
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The following figures illustrate the solution at different

cases:

Fig. (4). The solution
2

u at , , , 1, 20m T� � � = = .

Fig. (5). The solution
2

u at , , , 1, 20m T� � � = = for different

z range.

One can also notice the high reduction of the solution

level.

THE NON- LINEAR CASE

Consider the homogeneous non-linear Schrodinger equa-

tion:
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where ( , )u t z is a complex valued function which is sub-

jected to the initial and boundary conditions (2) and (3).

Lemma

The solution of equation (31) with the constraints (2) and

(3) is a power series in � if exists.

Proof

At 0� = , the following linear equation is got:
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which has the solution
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Following Pickard approximation, equation (31) can be

rewritten as
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At n=1, the iterative equation takes the following form:
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which can be solved as a linear case with zero initial and

boundary conditions. The following general solution can be

obtained:
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At n=2, the following equation is obtained:
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which can be solved as a linear case with zero initial and

boundary conditions. The following general solution can be

obtained:
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As n � � , the solution (if exists) can be reached as

( , ) lim ( , )n
n
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= . Accordingly, the solution is a

power series in � .////

According to the previous lemma, one can assume the

solution of equation (31) as the following:
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Let ( , ) ( , ) ( , ), ,u t z t z i t z� � � �= + : real valued

functions. The following coupled equations are got:
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where ( ,0) ( )t f t� = and all corresponding other I.C. and

B.C. are zeros.

As a second order perturbation solution, one can assume

that
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0 ( ,0) ( )t f t� = and all corresponding other I.C. and
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Substituting from equations (35) and (36) into equations

(33) and (34) and then equating the equal powers of � , one
can get the following set of coupled equations:
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Following the solution algorithm described in the previ-

ous section for the linear case, the following final results are

obtained:
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First and second order approximations

In this case, the solution of equation (31) takes the fol-

lowing form

(1)

0 1u u u�= + . (57)

Substituting from equations (43) and (47), one can get

the following final expression:
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The second order approximation takes the following form
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Example-3

Solving equations (31), (2) and (3) with taking ( )f t �=

and following the previous solution algorithm, the following

selective results for the first order approximation are ob-

tained:

Fig. (6). The first order approximation of
2

(1)u at 0� = and

, , 1, 20T� � � = = and

only one term in the series (m=1).



6 The Open Applied Mathematics Journal, 2008, Volume 2 Maha A. El-Hazmy

Fig. (7). The first order approximation of
2

(1)u at 2� = and

, , 1, 20T� � � = = and

only one term in the series (m=1).

Fig. (8). The first order approximation of
2

(1)u at 5� = and

, , 1, 20T� � � = = and

only one term in the series (m=1).

Fig. (9). The first order approximation of
2

(1)u at 4� = and

, , 1, 20T� � � = = and only one term in the series (m=1) for

different z values.

Example-4

Taking the case of ( ) sin( )
m

f t t
T

�
�= , the following

final results for the first order approximation are obtained:

Fig. (10). The first order approximation of
2

(1)u at 0� = and

, , 1, 20T� � � = = (m=1).

Fig. (11). The first order approximation of
2

(1)u at 3� = and

, , 1, 20T� � � = = (m=1).

Fig. (12). The first order approximation of
2

(1)u at 5� = and

, , 1, 20T� � � = = (m=1).
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Fig. (13). The first order approximation of
2

(1)u at 3� = and

, , 1, 20T� � � = = (m=1).

Fig. (14). The first order approximation of
2

(1)u at 5� = and

, , 1, 20T� � � = = (m=1) for different values of z.

Fig. (15). The first order approximation of
2

(1)u at 10� = and

, , 1, 20T� � � = = (m=1) for different values of z.

CONCLUSIONS

The perturbation technique introduces an approximate
solution to the NLS equation with a perturbative nonlinear
term under homogeneous boundary conditions and real ini-
tial condition for a finite interval. Using mathematica, the
difficult and huge computations problems were fronted to
some extent, even for the first order approximation and for
limited series terms. To get more improved orders, it is ex-
pected to face a problem of computation. In general, the so-
lution is decreased with the distance z and is greatly affected
according to the initial pulse. The solution level is increased
with the increase of the nonlinearity level.
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