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Abstract: Ultrashort-pulsed lasers have been attracting worldwide interest in science and engineering. Studying the ther-

mal deformation induced by ultrashort-pulsed lasers is important for preventing thermal damage. This article presents a

new numerical method for studying thermal deformation in 3D double-layered film micro-structures exposed to ultras-

hort-pulsed lasers. The method is demonstrated by investigating thermal deformations in a 3D double-layered thin film

and a 3D double-layered sphere, respectively.

INTRODUCTION

Ultrashort-pulsed lasers have been attracting worldwide
interest in science and engineering, because their pulse dura-
tions are of the order of sub-picoseconds to femtoseconds
and because they possess exclusive capabilities of limiting
the undesirable spread of the thermal process zone in the
heated sample [1]. The success of using high-energy ultras-
hort-pulsed lasers in real applications relies on three factors
[1]: (1) well characterized pulse width, intensity and experi-
mental techniques; (2) reliable microscale heat transfer mo-
dels; and (3) prevention of thermal damage. Up to date, a
number of models that focus on heat transfer in the context
of ultrashort-pulsed lasers have been developed. However,
only a few mathematical models for studying thermal defor-
mation induced by ultrashort-pulsed lasers have been deve-
loped [1-7]. Tzou and his colleagues [1] presented a one-
dimensional model in a double-layered thin film. The model
was solved using a differential-difference approach. Chen
and his colleagues [5] considered a two-dimensional axi-
symmetric cylindrical thin film and proposed an explicit fi-
nite difference method by adding an artificial viscosity term
to eliminate numerical oscillations. Dai and his colleagues
[2, 4] developed a new method for studying thermal defor-
mation in 2D thin films exposed to ultrashort-pulsed lasers.
The method was obtained based on the parabolic two-step
heat transport equations and implicit finite difference sche-
mes on a staggered grid. It accounts for the coupling effect
between lattice temperature and strain rate, as well as for the
hot-electron blast effect in momentum transfer. Numerical
results show that there are no numerical oscillations in the
solution. Unfortunately, when applied to a 3D thin film case,
they found that the nonphysical oscillations appeared again
in the normal stress in the thickness direction. Recently, Dai
and his colleagues [8, 9] have improved their previous me-
thod by developing a fourth order compact finite difference
scheme for solving the dynamic equations of motion. Results
show that the non-physical oscillations disappear. In this
article, we extend this method to study thermal deformation
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in 3D double-layered metal thin films and micro spheres

exposed to ultrashort-pulsed lasers. Layered metal thin films

are considered because they are widely used in engineering

applications due to the fact that a single metal layer often

cannot satisfy all mechanical, thermal and electronic requi-

rements, while micro spheres are of interest related to micro

resonators in optical applications, such as ultra-low-

threshold lasing, sensing, optoelectronic microdevices, cavi-

ty quantum electrodynamics and their potential in quantum

information processing. This research provides a numerical

method for studying thermal deformations induced by ul-

trashort-pulsed lasers when layered micro-structures are

considered.

MATHMATICAL MODEL

Consider a 3D double-layered thin film in Cartesian
coordinates, which is exposed to an ultrashort-pulsed laser,
as shown in Fig. (1a). The governing equations for studying
thermal deformation in the thin film can be expressed as fol-
lows:

(1) Dynamic Equations of Motion [1, 2, 5, 9]
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Here, m = 1, 2, denotes layer 1 and layer 2, respectively;
)(mu , )(mv , )(mw are the displacements

in the x, y, z directions, respectively;
)(m

x� , )(m
y� ,and

)(m
z� are the normal strains in the x, y and z directions, res-

pectively;
)(m

xy� is the shear strain in the xy plane,
)(m

xz� is the

shear strain in the xz plane,
)(m

yz� is the shear strain in the yz

plane;
)(m

x� ,
)(m

y� and
)(m

z� are the normal stresses in the x,

y and z directions, respectively;
)(m

xy� is the shear stress in the

xy plane,
)(m

xz� is the shear stress in the xz plane,
)(m

yz� is the

shear stress in the yz plane;
)(m

eT and
)(m

lT are electron and

lattice temperatures, respectively; 0T is the initial tempera-

ture;
)(m� is density;

)(m� is the electron-blast coefficient;

Fig. (1a). A 3D thin film and (b) a 3D micro sphere irradiated by ultrashort-pulsed lasers.
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)(m� ( )()(

3

2 mmK μ�= [10]) and
)(mμ are Lame’s coeffi-

cients; and
)(m

T� is the thermal expansion coefficient.

(2) Energy Equations [1, 2, 5, 11]
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where the heat source introduced by [5] is extended for a
Gaussian laser beam focusing at ),( 00 yx on the top surface
as
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the electron-lattice coupling factor,
)(m

lC is the lattice heat

capacity, respectively; Q is the energy absorption rate; J is

the laser fluence; R is the surface reflectivity; pt is the la-

ser pulse duration; sz is the optical penetration depth; sr is

the spatial profile parameter. In addition, 0.94 and 2.77 in

Eq. (7) are given in [11, 12]. Eqs. (5) and (6) are often re-

ferred to as parabolic two-step heat transport equations

[13]. It should be pointed out that the term
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Eq. (6) to consider the coupling effect between lattice tempe-

rature and strain rate. However, from our experience the

strain rate effect is insignificant.

The boundary conditions are assumed to be stress free [1,

5] and no heat losses from the surface in the short time res-

ponse [12]:
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where n
�
is the unit outward normal vector on the boundary.

The interfacial conditions are assumed to be perfect

thermal contact at
2

zLz = (the continuity of temperature and

heat flux across the interface),
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The initial conditions at 0=t are assumed to be

,0

,0,

)()()(

)()()(
0

)()(

===

=====

m
t

m
t

m
t

mmmm
l

m
e

wvu

wvuTTT
(10)

It should be pointed out that the laser beam is applied on

the top surface )0( =z at 0=t and the peak intensity occurs

when ptt 2= .

For micro spheres as shown in Fig. (1b), the above go-
verning equations may be transformed to the equations under
spherical coordinates

);,,(( ��r )0,20 ���� ���� as follows:

(1’) Dynamic Equations of Motion [8, 4]
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Here, m = 1,2 denote the outside layer and the inside
layer, respectively.

(2’) Energy Equations [8, 15]
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where the heat source term, which is obtained based on that
in Eq. (7) under spherical coordinates, is given by
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Here, L is the radius of the micro-sphere and � is the opti-
cal penetration depth.

FINITE DIFFERENCEMETHOD

Following the approach in [2-4, 9], we introduce three
velocity components 1v , 2v and 3v into the model and re-
write the dynamic equations of motion, Eqs. (1)-(4), as fol-
lows:
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To develop a finite difference scheme, we first construct

a staggered grid as shown in Fig. (2), where
)(
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To avoid non-physical oscillations in the solution, we

further follow the approach in [2-4, 9] and employ a fourth-

order compact finite difference scheme for obtaining stress

derivatives,
x
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the etc. in Eqs. (19)-(21).

For example,
x

x
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can be obtained by solving the following

tridiagonal linear system (indices j and k are omitted).

Fig. (2A). 3D staggered mesh for a thin film and locations of variables.
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As such, the implicit finite difference schemes for sol-
ving Eqs. (18)-(21) coupled with Eqs. (4a)-(4f) can be writ-
ten as follows:
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On the other hand, the energy equations, Eqs. (15)-(16),
are solved using the Crank-Nicholson finite difference me-
thod [16]:
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and from Eqs. (9b) and (9c)
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It should be pointed out that Eqs. (25)-(27) are nonlinear

since the terms ,))(( 21
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ez T� are nonlinear. Also, it can be seen that

Eq. (33) is nonlinear. Therefore, the above scheme must be

solved iteratively. An iterative method for solving the above

scheme at time level n + 1 is developed as follows:

Step 1. Set the initial values for ,)( 1)( +nm
x� ,)( 1)( +nm

y�

,)( 1)( +nm
z� ,)( 1)( +nm

xy� 1)( )( +nm
xz� and ,)( 1)( +nm

yz� solve itera-

tively Eqs. (33) and (34) coupled with the interfacial condi-

tions, Eqs. (35e)-(35f), for
1)( )( +nm

eT and
1)(

)( +nm
lT .

Step 2. Solve for ,)( 1)( +nm
x� ,)( 1)( +nm

y� ,)( 1)( +nm
z�

,)( 1)( +nm
xy� 1)( )( +nm

xz� and
1)( )( +nm

yz� using Eqs. (30)-(31).

Step 3. Solve for the derivatives of ,)( 1)( +nm
x�

,)( 1)( +nm
y� ,)( 1)( +nm

z� ,)( 1)( +nm
xy� 1)( )( +nm

xz� and

1)( )( +nm
yz� using Eqs. (23)-(24) or similar equations.

Step 4. Solve for
1)(

1 )( +nm
v ,

1)(
2 )( +nm
v and

1)(
3 )( +nm
v

using Eqs. (25)-(27).

Step 5. Update ,)( 1)( +nm
x� ,)( 1)( +nm

y� ,)( 1)( +nm
z�

,)( 1)( +nm
xy� 1)( )( +nm

xz� and ,)( 1)( +nm
yz� using Eqs. (28)-(29).

Given the required accuracy 1� (for temperature) and 2�

(for strain), repeat the above steps until a convergent solution

is obtained based on the following criteria.
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Using a similar argument, a numerical method can be
obtained for studying thermal deformation in a double-
layered micro sphere induced by an ultrashort-pulsed laser.

NUMERICAL EXAMPLES

To test the applicability of the developed numerical

scheme, we investigated the temperature rises and thermal

deformations in a 3D double-layered thin film consisting of a

gold layer on a chromium padding layer with dimensions

m1.0m100m100 μμμ �� , and in a 3D double-layered micro

sphere consisting of a gold layer on a chromium padding

layer with a radius of m05.0 μ for each layer, respectively.

The thermophysical properties for gold and chromium are

listed in Table 1 [1, 5, 17]. We assumed that the laser was

focused on the center of the top surface of the thin film and

that it irradiated the top surface )
4

0(
�

� �� of the sphere,

respectively. Three different values of laser fluences (J =500

J/m
2
, 1000 J/m

2
and 2000 J/m

2
) were chosen to study

the hot electron blast force. Three meshes

of ,602020 �� ,802020 �� 1002020 �� for each layer in

),,( zyx for the thin film and three meshes of

,202060 �� ,202080 �� 2020100 �� for each layer in

),,( ��r for the micro sphere were chosen in order to test the

convergence of the scheme. The time increment was chosen

to be ps005.0 and 0T was set to be K300 . The convergence

criteria were chosen to be
8

1 10�=� for temperature and

16
1 10�=� for deformation.

Fig. (3a) shows the changes in electron temperature

( max)/( ee TT �� ) at the center =centerx( 50 μm,

m50μ=centery and )m0μ=z of the thin film and at the top

point )0,0,(L of the sphere with a laser fluence of

2J/m500=J , respectively. The maximum temperature rise

of Te (i.e., ( max)eT� ) is about 3765 K, which is close to the

3727 K obtained by Tzou et al. [1]. It can be seen from this

figure that there is a slight difference between the thin film

and the sphere. This is probably because of the different

geometries. Fig. (3b) shows the displacement )(w at the cen-

ter )0,,( centercenter yx of the thin film and the displace-

ment )( ru at the top point )0,0,(L of the sphere versus time,

respectively. The negative value of displacement )(w indica-

tes that the thin film at the center )0,,( centercenter yx is expan-

ding along the negative z direction, while the positive value

of displacement )( ru implies that the sphere at the top point

Table 1. Thermophysical Properties

Properties Unit Gold Chromium Others

� kg/m3 19300 7190

� J/(m3K2) 70 1933

� Pa
9100.199 � 9103.83 �

μ Pa
9100.27 � 9100.115 �

T� 1/K
6102.14 �� 6109.4 ��

0eC J/(m3K)
4101.2 � 4108.5 �

lC J/(m3K)
6105.2 � 6103.3 �

G W/(m3K)
16106.2 � 161042�

ek W/(mK) 315 94

R 93.0

pt s
12101.0 ��

�,sz m
9103.15 ��

sr m 6100.1 ��

J 2J/m 500, 1000, 2000
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Fig. (3a). Change in electron temperature and (b) displacements at the center of top surface of thin film and at the top point of sphere versus

time with a laser fluence (J) of 500 J/m
2
. The w is the displacement at (xcenter, ycenter, 0) of thin film and ru is the displacement at the top point

(L, 0, 0) of sphere, respectively.

Fig. (4). Electron temperature profiles along z at (xcenter, ycenter) at different times (a) t = 0.25 ps, (b) t = 0.5 ps, (c) t = 10 ps, and (d) t =
20 ps with a mesh of 20� 20� 80 and three different laser fluences (J) of 500 J/m2, 1000 J/m2 and 2000 J/m2.
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Fig. (5). Lattice temperature profiles along z at (xcenter, ycenter) at different times (a) t = 0.25 ps, (b) t = 0.5 ps, (c) t = 10 ps, and (d) t =
20 ps with a mesh of 20� 20� 80 and three different laser fluences (J) of 500 J/m2, 1000 J/m2 and 2000 J/m2.

Fig. (6). Displacement (w) profiles along z at (xcenter, ycenter) at different times (a) t = 5 ps, (b) t = 10 ps, (c) t = 15 ps, and (d) t = 20 ps
with a mesh of 20� 20� 80 and three different laser fluences (J) of 500 J/m2, 1000 J/m2 and 2000 J/m2.
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Fig. (7). Normal stress (
z� ) profiles along z at (xcenter, ycenter) at different times (a) t = 5 ps, (b) t = 10 ps, (c) t = 15 ps, and (d) t = 20 ps

with a mesh of 20� 20� 80 and three different laser fluences (J) of 500 J/m2, 1000 J/m2 and 2000 J/m2.

)0,0,(L is expanding along the positive r direction. It can

be seen from both figures that the mesh size had no signifi-

cant effect on the solution and hence the solution is conver-

gent.

Figs. (4 and 5) show electron temperature and lattice

temperature of the thin film along z at ),( centercenter yx with

three different laser fluences (J =500 J/m
2
, 1000 J/m

2
and

2000 J/m
2
) at different times (a) t = 0.25 ps, (b) t = 0.5 ps, (c)

t = 10 ps, and (d) t = 20ps, respectively. It can be seen from

Fig. (4) that the electron temperature is in maximum at t =

0.25 ps, then it decays with time and it is almost uniform at t

= 20 ps along the thickness direction. On the other hand, Fig.

(5) shows that the lattice temperature increases gradually
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Fig. (8). Contours of electron temperature distributions in the cross section of y = 50 μm at different times (a) t = 0.25 ps, (b) t = 0.5 ps,
(c) t = 1 ps, (d) t = 10 ps, and (e) t = 20 ps with a mesh of 20� 20� 80 and a laser fluence (J) of 1000 J/m2.

with time in both gold and chromium layers, due to constant

heating of acoustic phonons by electrons. Since the heat is

transferred from the gold layer to the chromium layer and the

conductivity of chromium is smaller than that of gold, the

lattice temperature increases drastically across the interface.

A clear discontinuity of the temperature gradient at the inter-

face can be seen in Fig. (5), which is the same prediction as

was obtained in [1, 11]. The difference of electron and lattice

temperatures in Figs. (4 and 5) gives a strong flavor of non-

equilibrium heating during the picosecond transient.

Fig. (6) shows the displacement )(w of the thin film

along z at ),( centercenter yx at different times (a) t = 5 ps, (b)
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Fig. (9). Contours of lattice temperature distributions in the cross section of y = 50 μm at different times (a) t = 0.25 ps, (b) t = 0.5 ps, (c)
t = 1 ps, (d) t = 10 ps, and (e) t = 20 ps with a mesh of 20� 20� 80 and a laser fluence (J) of 1000 J/m2.
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Fig. (10). Contours of displacement (w) distributions in the cross section of y = 50 μm at different times (a) t = 5 ps, (b) t = 10 ps, (c) t =
15 ps, and (d) t = 20 ps with a mesh of 20� 20� 80 and a laser fluence (J) of 1000 J/m2.

t = 10 ps, (c) t = 15 ps, and (d) t = 20 ps with a mesh of

802020 �� and three different laser fluences

(J =500 J/m
2
, 1000 J/m

2
and 2000 J/m

2
). It can been seen

that the displacement w , particularly at t = 20 ps, changes
from negative to positive for each layer along the thickness
direction. The negative value indicates that the displacement
moves in the negative z direction, while the positive value
implies that it moves in the positive z direction. From this
figure, one may see that the film is expanding. At t = 10 ps
and 20 ps, the displacement shows a clear alteration across

the interface, implying that both layers push each other and
the bond between these two layers could be damaged under
high intensity laser irradiation.

Fig. (7) shows the normal stress z� along z at
),( centercenter yx at different times (a) t = 5 ps, (b) t = 10 ps,

(c) t = 15 ps, and (d) t = 20 ps with a mesh of
802020 �� and three different laser fluences (J =500 J/m

2
,

1000 J/m
2
and 2000 J/m

2
). In our experience, the conventio-

nal finite difference method produces local oscillations in the
normal stress z� (see Fig. (5) in [2]). It can be seen from
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Fig. (11). Contours of displacement (u) distributions in the cross section of y = 50 μm at different times (a) t = 5 ps, (b) t = 10 ps, (c) t =
15 ps, and (d) t = 20 ps with a mesh of 20� 20� 80 and a laser fluence (J) of 1000 J/m2.

Fig. (7) that the curve of z� is smooth and does not appear
to have local oscillations, implying that our method prevents
the appearance of non-physical oscillations in the solution.

Figs. (8-12) were plotted based on the results obtained
with a mesh of 802020 �� and with a laser fluence
of 2J/m1000=J . Figs. (8 and 9) show contours of the elec-
tron temperature distribution and the lattice temperature dis-
tribution in the cross section of centeryy = at different times
(a) t = 0.25 ps, (b) t = 0.5 ps, (c) t = 1 ps, (d) t = 10 ps, and

(e) t = 20 ps, respectively. It can be seen from both figures
that the heat is mainly transferred along the z direction.
This result confirms the fact that the femtosecond lasers are
an ideal candidate for precise thermal processing of functio-
nal nanophase materials. Fig. (9) also shows that there is a
clear difference between the lattice temperatures in these two
layers, because of the different conductivities. Figs. (10-12)
show contours of displacements ),,( wvu in the cross section
of centeryy = at different times (a) t = 5 ps, (b) t = 10 ps, (c)



A Finite Difference Method for Studying Thermal Deformation The Open Applied Mathematics Journal, 2008, Volume 2 119

Fig. (12). Contours of displacement (v) distributions in the cross section of y = 50 μm at different times (a) t = 5 ps, (b) t = 10 ps, (c) t =
15 ps, and (d) t = 20 ps with a mesh of 20� 20� 80 and a laser fluence (J) of 1000 J/m2.

t = 15 ps, and (d) t = 20 ps, respectively. It can be seen from
Figs. (10-12) that the central part of the film is expanding
because displacements change from negative to positive
along the center line in the z direction, and along the x and
y directions, respectively.

We now turn our attention to the sphere. Figs. (13) and
(14) show profiles of the electron temperature and the lattice

temperature along the diameter at 0=� and �� = with
three different laser (J =500 J/m

2
, 1000 J/m

2
and 2000 J/m

2
)

at different times(a) t = 0.25 ps, (b) t = 0.5 ps, (c) t = 10 ps,
and (d) t = 20 ps, respectively. Again, it can be seen from
Fig. (13) that the heat is transferred from the gold layer to
the chromium layer, and the lattice temperature increases
drastically across the interface. A clear discontinuity of the
temperature gradient at the interface is also seen in Fig. (14).
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Fig. (13). Electron temperature profiles along the diameter at 0=� and �� = at different times (a) t = 0.25 ps, (b) t = 0.5 ps, (c) t =
10 ps, and (d) t = 20 ps with a mesh of 80� 20� 20 and three different laser fluences (J) of 500 J/m2, 1000 J/m2 and 2000 J/m2.

Fig. (15) shows the displacement ru along the diameter at
0=� and �� = at different times (a) t = 5 ps, (b) t = 10 ps,

(c) t = 15 ps, and (d) t = 20 ps with a mesh of

202080 �� and three different laser fluences (J =500 J/m
2
,

1000 J/m
2
and 2000 J/m

2
). It can be seen that the displace-

ment ru moves in the positive r direction, implying the
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Fig. (14). Lattice temperature profiles along the diameter at 0=� and �� = at different times (a) t = 0.25 ps, (b) t = 0.5 ps, (c) t =
10 ps, and (d) t = 20 ps with a mesh of 80� 20� 20 and three different laser fluences (J) of 500 J/m2, 1000 J/m2 and 2000 J/m2.

sphere is expanding. However, the displacement gradient
shows a clear difference across the interface, implying that
the bond between these two layers could be damaged under
high intensity laser irradiation.

Figs. (16) and (17) show contours of the electron tempe-

rature distribution and the lattice temperature distribution in

the cross section of 0=� and �� = at different times (a) t

= 0.25 ps, (b) t = 0.5 ps, (c) t = 10 ps, and (d) t = 20 ps,
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Fig. (15). Displacement ( ru ) profiles along the diameter at 0=� and �� = at different times (a) t = 5 ps, (b) t = 10 ps, (c) t = 15
ps, and (d) t = 20 ps with a mesh of 80� 20� 20 and three different laser fluences (J) of 500 J/m2, 1000 J/m2 and 2000 J/m2.

respectively. Again, both figures show that the heat is trans-

ferred from the upper hemisphere to the lower hemisphere

and also from the gold layer to the chromium layer.

Fig. (18) shows contours of the displacement ru in the
cross section of 0=� and �� = at different times (a) t = 5
ps, (b) t = 10 ps, (c) t = 15 ps, and (d) t = 20 ps, respectively.
It can be seen that the sphere is expanding and further the
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Fig. (16). Contours of electron temperature distributions in the cross section of 0=� and �� = at different times (a) t = 0.25 ps, (b) t =
0.5 ps, (c) t = 10 ps, and (d) t = 20 ps with a mesh of 80� 20� 20 and a laser fluence (J) of 1000 J/m2.

Fig. (17). Contours of lattice temperature distributions in the cross section of 0=� and �� = at different times (a) t = 0.25 ps, (b) t =
0.5 ps, (c) t = 10 ps, and (d) t = 20 ps with a mesh of 80� 20� 20 and a laser fluence (J) of 1000 J/m2.
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Fig. (18). Contours of displacement ( ru ) distributions in the cross section of 0=� and �� = at different times (a) t = 5 ps, (b) t = 10
ps, (c) t = 15 ps, and (d) t = 20 ps with a mesh of 80� 20� 20 and a laser fluence (J) of 1000 J/m2.

upper hemisphere expands more than the lower hemisphere
because the laser irradiates the upper hemisphere.

CONCLUSION

We have developed a finite difference method for stu-
dying thermal deformation in 3D double-layered thin films
and micro spheres exposed to ultrashort-pulsed lasers. The
method, based on the parabolic two-step heat transport equa-
tions, accounts for the coupling effect between lattice tempe-
rature and strain rate, as well as for the hot-electron blast
effect in momentum transfer. By replacing the displacement
components in the dynamic equations of motion using the
velocity components, developing a fourth-order compact
method for evaluating stress derivatives in the dynamic
equations of motion, and employing a staggered grid, we
have developed a numerical method that allows us to avoid
non-physical oscillations in the solution. Numerical results
show that the central part of the thin film and the micro
sphere expand and the bond between these two layers could
be damaged under high intensity laser irradiation.

NOMENCLATURE

le CC , = electron and lattice heat capacity,

respectively

G = electron - lattice coupling factor

J = laser fluence

K = bulk modulus

ek = thermal conductivity

L = radius of sphere

zyx LLL �� = dimension of thin film

m = index for layer

R = surface reflectivity

Q = energy absorption rate

),,( ��r = spherical coordinates

sr = spatial profile parameter of laser

le TT , = electron temperature and lattice

temperature

ntt, = time

pt = laser pulse duration

wvu ,, = displacements in the x , y and z

directions, respectively

�� uuur ,, = displacements in the �,r and �

directions, respectively
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n
kjiu ,, = numerical solution of

),,,( nkji tzyxu

321 ,, vvv = velocity components in the x ,

y and z directions, respectively

),,( zyx = Cartesian coordinates

�,sz = optical penetration depth

T� = thermal expansion coefficient

zyxt ���� ,,, = time increment and spatial step

sizes,

respectively

zyxt ��� ,,,�� = finite difference operators

x� , y� , z� = normal strains in the x , y and z

directions, respectively

r� , �� , �� = normal strains in the �,r and �

directions, respectively

� = electron - blast coefficient

yzxzxy ��� ,, = shear strains in Cartesian coordi-

nates

�� r , �� r , ��� = shear strains in spherical coordi-

nates

μ�, = Lame’s coefficients

� = density

zyx ��� ,, = normal stresses in the x , y and

z directions, respectively

�� ��� ,,r = normal stresses in the �,r and �

directions, respectively

yzxzxy ��� ,, = shear stresses in the x , y and z

directions, respectively

���� ��� ,, rr = shear stresses in the �,r and �

directions, respectively
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